Advertisement

pp 1-28 | Cite as

The Periodic Table as a Career Guide: A Journey to Rare Earths

  • Austin J. Ryan
  • William J. EvansEmail author
Chapter
Part of the Structure and Bonding book series

Abstract

This chapter describes a personal journey through the periodic table in which an undergraduate starting research in boron hydride chemistry developed into a professorial researcher in rare earth chemistry. The chapter details how the periodic table became a career guide through connections and developments that led the boron chemist into the rare earth field. Also presented is the evolution of reductive rare earth chemistry which started with just a few +2 lanthanide ions, Eu(II), Yb(II), and Sm(II), and now extends to +2 ions for all the rare earth metals, i.e., Sc and Y, and the lanthanides, La-Lu. The special reactivity of Sm(II), which led to the first lanthanide-based dinitrogen reduction, is described, as well as the rare earth dinitrogen reduction that led to the new Ln(II) ions. Periodic trends in these developments are discussed, and speculation on the future of the rare earth elements in terms of periodic properties is also presented.

Keywords

Actinide Bismuth Boron Boron hydride Lanthanide Metal vapor reactor Oxidation state Rare earth Samarium Scandium Yttrium 

Notes

Acknowledgments

We thank the National Science Foundation (CHE-1565776) and the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences of the Department of Energy (DE-SC0004739) for support of the rare earth metal and actinide metal parts of this review, respectively.

References

  1. 1.
    Pimentel GC, Spratley RD (1971) Understanding chemistry. Holden-Day, San FranciscoGoogle Scholar
  2. 2.
    Evans WJ, Sollberger MS (1986) Synthesis and x-ray crystal structure of a soluble pentametallic organoyttrium alkoxide oxide complex,(C5H5)5Y5(μ-OCH3)45-O). J Am Chem Soc 108(19):6095–6096Google Scholar
  3. 3.
    Gaines DF, Iorns TV (1971) 1-Silyl derivatives of pentaborane (9). Inorg Chem 10(5):1094–1095Google Scholar
  4. 4.
    Evans WJ, Engerer SC, Neville AC (1978) Nonaqueous reductive lanthanide chemistry. 1. Reaction of lanthanide atoms with 1, 3-butadienes. J Am Chem Soc 100(1):331–333Google Scholar
  5. 5.
    Evans W, Engerer S, Piliero P, Wayda A (1979) Organometallic chemistry of the lanthanides under reductive conditions. Fundamental research in homogeneous catalysis. Springer, Berlin, pp 941–952Google Scholar
  6. 6.
    Klabunde K (1980) Chemistry of free atoms and particles. Academic Press, New YorkGoogle Scholar
  7. 7.
    Evans WJ, Coleson KM, Engerer SC (1981) Reactivity of lanthanide metal vapor with unsaturated hydrocarbons. Reactions with ethene, propene, and 1, 2-propadiene. Inorg Chem 20(12):4320–4325Google Scholar
  8. 8.
    Evans WJ, Engerer SC, Piliero PA, Wayda AL (1979) Homogeneous catalytic activation of molecular hydrogen by lanthanoid metal complexes. J Chem Soc Chem Commun 22:1007–1008Google Scholar
  9. 9.
    Evans WJ, Bloom I, Engerer SC (1983) Catalytic activation of molecular hydrogen in alkyne hydrogenation reactions by lanthanide metal vapor reaction products. J Catal 84(2):468–476Google Scholar
  10. 10.
    Evans WJ, Meadows JH, Wayda AL, Hunter WE, Atwood JL (1982) Organolanthanide hydride chemistry. 1. Synthesis and x-ray crystallographic characterization of dimeric organolanthanide and organoyttrium hydride complexes. J Am Chem Soc 104(7):2008–2014Google Scholar
  11. 11.
    Fieser ME, Palumbo CT, La Pierre HS, Halter DP, Voora VK, Ziller JW, Furche F, Meyer K, Evans WJ (2017) Comparisons of lanthanide/actinide +2 ions in a tris (aryloxide) arene coordination environment. Chem Sci 8(11):7424–7433Google Scholar
  12. 12.
    King RB, Bisnette MB (1967) Organometallic chemistry of the transition metals XXI. Some π-pentamethylcyclopentadienyl derivatives of various transition metals. J Organomet Chem 8(2):287–297Google Scholar
  13. 13.
    Brintzinger H, Bercaw JE (1971) Bis (pentamethylcyclopentadienyl) titanium (II). Isolation and reactions with hydrogen, nitrogen, and carbon monoxide. J Am Chem Soc 93(8):2045–2046Google Scholar
  14. 14.
    Manriquez JM, Bercaw JE (1974) Preparation of a dinitrogen complex of bis (pentamethylcyclopentadienyl) zirconium (II). Isolation and protonation leading to stoichiometric reduction of dinitrogen to hydrazine. J Am Chem Soc 96(19):6229–6230Google Scholar
  15. 15.
    Woen DH, Kotyk CM, Mueller TJ, Ziller JW, Evans WJ (2017) Tris(pentamethylcyclopentadienyl) complexes of late lanthanides Tb, Dy, Ho, and Er: solution and mechanochemical syntheses and structural comparisons. Organometallics 36(23):4558–4563Google Scholar
  16. 16.
    Evans WJ, Bloom I, Hunter WE, Atwood JL (1981) Synthesis and x-ray crystal structure of a soluble divalent organosamarium complex. J Am Chem Soc 103(21):6507–6508Google Scholar
  17. 17.
    Evans WJ, Grate JW, Hughes LA, Zhang H, Atwood JL (1985) Reductive homologation of carbon monoxide to a ketenecarboxylate by a low-valent organolanthanide complex: synthesis and x-ray crystal structure of [(C5Me5)4Sm2(O2CCCO)(THF)]2. J Am Chem Soc 107(12):3728–3730Google Scholar
  18. 18.
    Evans WJ, Hughes LA, Drummond DK, Zhang H, Atwood JL (1986) Facile stereospecific synthesis of a dihydroxyindenoindene unit from an alkyne and carbon monoxide via samarium-mediated carbon monoxide and CH activation. J Am Chem Soc 108(7):1722–1723Google Scholar
  19. 19.
    Evans WJ, Hughes LA, Hanusa TP (1984) Synthesis and crystallographic characterization of an unsolvated, monomeric samarium bis (pentamethylcyclopentadienyl) organolanthanide complex,(C5Me5)2Sm. J Am Chem Soc 106(15):4270–4272Google Scholar
  20. 20.
    Streitwieser Jr A, Mueller-Westerhoff U (1968) Bis (cyclooctatetraenyl) uranium (uranocene). A new class of sandwich complexes that utilize atomic f orbitals. J Am Chem Soc 90(26):7364–7364Google Scholar
  21. 21.
    Kagan H, Namy J (1986) Tetrahedron report number 213: lanthanides in organic synthesis. Tetrahedron 42(24):6573–6614Google Scholar
  22. 22.
    Morss LR (1976) Thermochemical properties of yttrium, lanthanum, and the lanthanide elements and ions. Chem Rev 76(6):827–841Google Scholar
  23. 23.
    Morss LR (1994) Comparative thermochemical and oxidation-reduction properties of lanthanides and actinides. Handb Phys Chem Rare Earths 18:239–291Google Scholar
  24. 24.
    Evans WJ, Ulibarri TA, Ziller JW (1988) Isolation and X-ray crystal structure of the first dinitrogen complex of an f-element metal, [(C5Me5)2Sm]2N2. J Am Chem Soc 110(20):6877–6879Google Scholar
  25. 25.
    Woen DH, Chen GP, Ziller JW, Boyle TJ, Furche F, Evans WJ (2017) End-on bridging dinitrogen complex of scandium. J Am Chem Soc 139(42):14861–14864Google Scholar
  26. 26.
    Evans WJ, Fang M, Zucchi G, Furche F, Ziller JW, Hoekstra RM, Zink JI (2009) Isolation of dysprosium and yttrium complexes of a three-electron reduction product in the activation of dinitrogen, the (N2)3− radical. J Am Chem Soc 131(31):11195–11202Google Scholar
  27. 27.
    Evans WJ, Fang M, Bates JE, Furche F, Ziller JW, Kiesz MD, Zink JI (2010) Isolation of a radical dianion of nitrogen oxide (NO)2−. Nat Chem 2(8):644Google Scholar
  28. 28.
    Rinehart JD, Fang M, Evans WJ, Long JR (2011) A N23− radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K. J Am Chem Soc 133(36):14236–14239.Google Scholar
  29. 29.
    Rinehart JD, Fang M, Evans WJ, Long JR (2011) Strong exchange and magnetic blocking in N23−-radical-bridged lanthanide complexes. Nat Chem 3(7):538–542Google Scholar
  30. 30.
    Evans WJ, Gonzales SL, Ziller JW (1991) Organosamarium-mediated synthesis of bismuth-bismuth bonds: x-ray crystal structure of the first dibismuth complex containing a planar M2(μ-η22-Bi2) unit. J Am Chem Soc 113(26):9880–9882Google Scholar
  31. 31.
    Evans WJ, Gonzales SL, Ziller JW (1992) The utility of (C5Me5)2Sm in isolating crystallographically characterizable zintl ions. X-ray crystal structure of a complex of (Sb3)3−. J Chem Soc Chem Commun 16:1138–1139Google Scholar
  32. 32.
    Evans WJ, Rabe GW, Ziller JW, Doedens RJ (1994) Utility of organosamarium (II) reagents in the formation of polyatomic group 16 element anions: synthesis and structure of [(C5Me5)2Sm]2(E3)(THF), [(C5Me5)2Sm(THF)]2(E), and related species (E = S, Se, Te). Inorg Chem 33(13):2719–2726Google Scholar
  33. 33.
    Schoo C, Bestgen S, Egeberg A, Seibert J, Konchenko SN, Feldmann C, Roesky PW (2019) Samarium polyarsenides derived from nanoscale arsenic. Angew Chem Int Ed Engl 58(13):4386–4389Google Scholar
  34. 34.
    Cloke FGN (1993) Zero oxidation state compounds of scandium, yttrium, and the lanthanides. Chem Soc Rev 22(1):17–24Google Scholar
  35. 35.
    Corbett J (1973) Reduced halides of rare-earth elements. Rev Chim Mineral 10(1–2):239–257Google Scholar
  36. 36.
    Meyer G (2013) The divalent state in solid rare earth metal halides. In: Atwood DA (ed) The rare earth elements: fundamentals and applications. Wiley, New York, pp 161–173Google Scholar
  37. 37.
    Bochkarev MN, Fedushkin IL, Fagin AA, Petrovskaya TV, Ziller JW, Broomhall-Dillard RNR, Evans WJ (1997) Synthesis and structure of the first molecular thulium(II) complex: [TmI2(MeOCH2CH2OMe)3]. Angew Chem Int Ed Engl 36(1–2):133–135Google Scholar
  38. 38.
    Bochkarev MN, Fagin AA (1999) A new route to neodymium(II) and dysprosium(II) iodides. Chem A Eur J 5(10):2990–2992Google Scholar
  39. 39.
    Evans WJ, Allen NT, Ziller JW (2000) The availability of dysprosium diiodide as a powerful reducing agent in organic synthesis: reactivity studies and structural analysis of DyI2(DME)3 and its naphthalene reduction product. J Am Chem Soc 122(47):11749–11750Google Scholar
  40. 40.
    Bochkarev MN, Fedushkin IL, Dechert S, Fagin AA, Schumann H (2001) [NdI2(thf)5], the first crystallographically authenticated neodymium(II) complex. Angew Chem Int Ed 40(17):3176–3178Google Scholar
  41. 41.
    Hitchcock PB, Lappert MF, Maron L, Protchenko AV (2008) Lanthanum does form stable molecular compounds in the +2 oxidation state. Angew Chem Int Ed 47(8):1488–1491Google Scholar
  42. 42.
    Evans WJ, Lee DS, Ziller JW (2004) Reduction of dinitrogen to planar bimetallic M2(μ-η22-N2) complexes of Y, Ho, Tm, and Lu using the K/Ln[N(SiMe3)2]3 reduction system. J Am Chem Soc 126(2):454–455Google Scholar
  43. 43.
    Evans WJ, Lee DS, Lie C, Ziller JW (2004) Expanding the LnZ3/alkali-metal reduction system to organometallic and heteroleptic precursors: formation of dinitrogen derivatives of lanthanum. Angew Chem Int Ed 43(41):5517–5519Google Scholar
  44. 44.
    Evans WJ, Lee DS, Rego DB, Perotti JM, Kozimor SA, Moore EK, Ziller JW (2004) Expanding dinitrogen reduction chemistry to trivalent lanthanides via the LnZ3/alkali metal reduction system: evaluation of the generality of forming Ln2(μ-η22-N2) complexes via LnZ3/K. J Am Chem Soc 126(44):14574–14582Google Scholar
  45. 45.
    Evans WJ, Lee DS, Johnston MA, Ziller JW (2005) The elusive (C5Me4H)3Lu: its synthesis and LnZ3/K/N2 reactivity. Organometallics 24(26):6393–6397Google Scholar
  46. 46.
    MacDonald MR, Bates JE, Fieser ME, Ziller JW, Furche F, Evans WJ (2012) Expanding rare-earth oxidation state chemistry to molecular complexes of holmium(II) and erbium(II). J Am Chem Soc 134(20):8420–8423Google Scholar
  47. 47.
    MacDonald MR, Bates JE, Ziller JW, Furche F, Evans WJ (2013) Completing the series of +2 ions for the lanthanide elements: synthesis of molecular complexes of Pr2+, Gd2+, Tb2+, and Lu2+. J Am Chem Soc 135(26):9857–9868Google Scholar
  48. 48.
    Palumbo CT, Darago LE, Windorff CJ, Ziller JW, Evans WJ (2018) Trimethylsilyl versus bis(trimethylsilyl) substitution in tris(cyclopentadienyl) complexes of La, Ce, and Pr: comparison of structure, magnetic properties, and reactivity. Organometallics 37(6):900–905. Google Scholar
  49. 49.
    MacDonald MR, Ziller JW, Evans WJ (2011) Synthesis of a crystalline molecular complex of Y2+, [(18-crown-6)K][(C5H4SiMe3)3Y]. J Am Chem Soc 133(40):15914–15917Google Scholar
  50. 50.
    Evans WJ (2016) Tutorial on the role of cyclopentadienyl ligands in the discovery of molecular complexes of the rare-earth and actinide metals in new oxidation states. Organometallics 35(18):3088–3100Google Scholar
  51. 51.
    Woen DH, Evans WJ (2016) Expanding the+ 2 oxidation state of the rare-earth metals, uranium, and thorium in molecular complexes. Handb Phys Chem Rare Earths 50:337–394Google Scholar
  52. 52.
    MacDonald MR (2013) New reaction overturns periodic table assumptions. CEN Online. https://www.youtube.com/watch?v=CoGFF4YReFo
  53. 53.
    Fieser ME, MacDonald MR, Krull BT, Bates JE, Ziller JW, Furche F, Evans WJ (2015) Structural, spectroscopic, and theoretical comparison of traditional vs recently discovered Ln2+ ions in the [K(2.2.2-cryptand)][(C5H4SiMe3)3Ln] complexes: the variable nature of Dy2+ and Nd2+. J Am Chem Soc 137(1):369–382Google Scholar
  54. 54.
    Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(5):751–767Google Scholar
  55. 55.
    Wilkinson G, Birmingham JM (1954) Cyclopentadienyl compounds of Sc, Y, La, Ce and some lanthanide elements. J Am Chem Soc 76(23):6210–6210Google Scholar
  56. 56.
    Holton J, Lappert MF, Ballard DGH, Pearce R, Atwood JL, Hunter WE (1979) Alkyl-bridged complexes of the d- and f-block elements. Part 1. Di-μ-alkyl-bis(η-cyclopentadienyl)metal(III)dialkylaluminium(III) complexes and the crystal and molecular structure of the ytterbium methyl species. J Chem Soc Dalton Trans 1:45–53Google Scholar
  57. 57.
    Arnold PL, Cloke FGN, Nixon JF (1998) The first stable scandocene: synthesis and characterisation of bis(η-2,4,5-tri-tert-butyl-1,3-diphosphacyclopentadienyl)scandium(II). Chem Commun 7:797–798Google Scholar
  58. 58.
    Woen DH, Chen GP, Ziller JW, Boyle TJ, Furche F, Evans WJ (2017) Solution synthesis, structure, and CO2 reduction reactivity of a scandium(II) complex, {Sc[N(SiMe3)2]3}. Angew Chem Int Ed 56(8):2050–2053Google Scholar
  59. 59.
    Moehring SA, Beltrán-Leiva MJ, Páez-Hernández D, Arratia-Pérez R, Ziller JW, Evans WJ (2018) Rare-earth metal(II) aryloxides: structure, synthesis, and EPR spectroscopy of [K(2.2.2-cryptand)][Sc(OC6H2tBu2-2,6-Me-4)3]. Chem A Eur J 24(68):18059–18067Google Scholar
  60. 60.
    Ryan AJ, Darago LE, Balasubramani SG, Chen GP, Ziller JW, Furche F, Long JR, Evans WJ (2018) Synthesis, structure, and magnetism of tris(amide) [Ln{N(SiMe3)2}3]1− complexes of the non-traditional+ 2 lanthanide ions. Chem A Eur J 24(30):7702–7709Google Scholar
  61. 61.
    Evans WJ, Gonzales SL, Ziller JW (1991) Synthesis and x-ray crystal structure of the first tris(pentamethylcyclopentadienyl)metal complex: (η5-C5Me5)3Sm. J Am Chem Soc 113(19):7423–7424Google Scholar
  62. 62.
    Evans WJ, Davis BL (2002) Chemistry of tris(pentamethylcyclopentadienyl) f-element complexes, (C5Me5)3M. Chem Rev 102(6):2119–2136Google Scholar
  63. 63.
    Evans WJ, Seibel CA, Ziller JW (1998) Unsolvated lanthanide metallocene cations [(C5Me5)2Ln][BPh4]: multiple syntheses, structural characterization, and reactivity including the formation of (C5Me5)3Nd. J Am Chem Soc 120(27):6745–6752.Google Scholar
  64. 64.
    Evans WJ, Perotti JM, Kozimor SA, Champagne TM, Davis BL, Nyce GW, Fujimoto CH, Clark RD, Johnston MA, Ziller JW (2005) Synthesis and comparative η1-alkyl and sterically induced reduction reactivity of (C5Me5)3Ln complexes of La, Ce, Pr, Nd, and Sm. Organometallics 24(16):3916–3931Google Scholar
  65. 65.
    Evans WJ, Davis BL, Champagne TM, Ziller JW (2006) C–H bond activation through steric crowding of normally inert ligands in the sterically crowded gadolinium and yttrium (C5Me5)3M complexes. Proc Natl Acad Sci 103(34):12678Google Scholar
  66. 66.
    Evans WJ, Forrestal KJ, Ziller JW (1997) Activity of [Sm(C5Me5)3] in ethylene polymerization and synthesis of [U(C5Me5)3], the first tris(pentamethylcyclopentadienyl) 5f-element complex. Angew Chem Int Ed Engl 36(7):774–776Google Scholar
  67. 67.
    Evans WJ, Nyce GW, Johnston MA, Ziller JW (2000) How much steric crowding is possible in tris(η5-pentamethylcyclopentadienyl) complexes? Synthesis and structure of (C5Me5)3UCl and (C5Me5)3UF. J Am Chem Soc 122(48):12019–12020Google Scholar
  68. 68.
    Evans WJ, Kozimor SA, Nyce GW, Ziller JW (2003) Comparative reactivity of sterically crowded nf3 (C5Me5)3Nd and (C5Me5)3U complexes with CO: formation of a nonclassical carbonium ion versus an f element metal carbonyl complex. J Am Chem Soc 125(45):13831–13835Google Scholar
  69. 69.
    Evans WJ, Kozimor SA, Ziller JW (2003) A monometallic f element complex of dinitrogen: (C5Me5)3U(η-N2). J Am Chem Soc 125(47):14264–14265.Google Scholar
  70. 70.
    Evans WJ, Mueller TJ, Ziller JW (2009) Reactivity of (C5Me5)3LaLx complexes: synthesis of a tris(pentamethylcyclopentadienyl) complex with two additional ligands, (C5Me5)3La(NCCMe3)2. J Am Chem Soc 131(7):2678–2686Google Scholar
  71. 71.
    Evans WJ, Mueller TJ, Ziller JW (2010) Lanthanide versus actinide reactivity in the formation of sterically crowded [(C5Me5)3MLn] nitrile and isocyanide complexes. Chem A Eur J 16(3):964–975Google Scholar
  72. 72.
    Langeslay RR, Chen GP, Windorff CJ, Chan AK, Ziller JW, Furche F, Evans WJ (2017) Synthesis, structure, and reactivity of the sterically crowded Th3+ complex (C5Me5)3Th including formation of the thorium carbonyl, [(C5Me5)3Th(CO)][BPh4]. J Am Chem Soc 139(9):3387–3398Google Scholar
  73. 73.
    Casely IJ, Ziller JW, Fang M, Furche F, Evans WJ (2011) Facile bismuth−oxygen bond cleavage, C−H activation, and formation of a monodentate carbon-bound oxyaryl dianion, (C6H2tBu2-3,5-O-4)2−. J Am Chem Soc 133(14):5244–5247Google Scholar
  74. 74.
    Kindra DR, Casely IJ, Fieser ME, Ziller JW, Furche F, Evans WJ (2013) Insertion of CO2 and COS into Bi–C bonds: reactivity of a bismuth NCN pincer complex of an oxyaryl dianionic ligand, [2,6-(Me2NCH2)2C6H3]Bi(C6H2tBu2O). J Am Chem Soc 135(20):7777–7787Google Scholar
  75. 75.
    Brennan JG, Andersen RA, Zalkin A (1986) Chemistry of trivalent uranium metallocenes: electron-transfer reactions with carbon disulfide. Formation of [(RC5H4)3U]2[μ-η1 η2-CS2]. Inorg Chem 25(11):1756–1760Google Scholar
  76. 76.
    MacDonald MR, Fieser ME, Bates JE, Ziller JW, Furche F, Evans WJ (2013) Identification of the +2 oxidation state for uranium in a crystalline molecular complex, [K(2.2.2-cryptand)][(C5H4SiMe3)3U]. J Am Chem Soc 135(36):13310–13313Google Scholar
  77. 77.
    Blake PC, Lappert MF, Atwood JL, Zhang H (1986) The synthesis and characterisation, including X-ray diffraction study, of [Th{η-C5H3(SiMe3)2}3]; the first thorium(III) crystal structure. J Chem Soc Chem Commun 15:1148–1149Google Scholar
  78. 78.
    Langeslay RR, Fieser ME, Ziller JW, Furche F, Evans WJ (2015) Synthesis, structure, and reactivity of crystalline molecular complexes of the {[C5H3(SiMe3)2]3Th}1− anion containing thorium in the formal+ 2 oxidation state. Chem Sci 6(1):517–521Google Scholar
  79. 79.
    Windorff CJ, Chen GP, Cross JN, Evans WJ, Furche F, Gaunt AJ, Janicke MT, Kozimor SA, Scott BL (2017) Identification of the formal +2 oxidation state of plutonium: synthesis and characterization of {PuII[C5H3(SiMe3)2]3}1−. J Am Chem Soc 139(11):3970–3973Google Scholar
  80. 80.
    Su J, Windorff CJ, Batista ER, Evans WJ, Gaunt AJ, Janicke MT, Kozimor SA, Scott BL, Woen DH, Yang P (2018) Identification of the formal +2 oxidation state of neptunium: synthesis and structural characterization of {NpII[C5H3(SiMe3)2]3}1−. J Am Chem Soc 140(24):7425–7428Google Scholar
  81. 81.
    Neculai AM, Neculai D, Roesky HW, Magull J, Baldus M, Andronesi O, Jansen M (2002) Stabilization of a diamagnetic ScIBr molecule in a sandwich-like structure. Organometallics 21(13):2590–2592Google Scholar
  82. 82.
    Arnold PL, Cloke FGN, Hitchcock PB, Nixon JF (1996) The first example of a formal scandium(I) complex: synthesis and molecular structure of a 22-electron scandium triple decker incorporating the novel 1,3,5-triphosphabenzene ring. J Am Chem Soc 118(32):7630–7631Google Scholar
  83. 83.
    Beck HP (1976) NdI2, a metallic high pressure modification. Z Naturforsh B 31b:1548–1549Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of California, IrvineIrvineUSA

Personalised recommendations