Advertisement

Rhenium Hexanuclear Clusters: Bonding, Spectroscopy, and Applications of Molecular Chevrel Phases

  • Alvaro Muñoz-Castro
  • Dayan Paez-Hernandez
  • Ramiro Arratia-Perez
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 180)

Abstract

The discovery in 1971 of the high critical field superconducting properties of Chevrel phases with transition temperatures Tc between 10 and 18 K stimulated extensive research to improve their superconducting behavior. This fact was also the starting point for a new research area in solid-state and molecular chemistry involving the Mo6 and Re6 clusters where the intercluster bonding interactions seen in the solid phases are lacking, so a more localized cluster wave function at the Fermi level arises, as suggested by Fischer in 1978. Here, we describe the bonding, optical, magnetic, redox, and biological properties of related hexanuclear species given by M6(Q, X)8L6 (M = Mo, W, Re; Q = S, Se, Te; X = Cl, Br, I; and L = σ or π ligand) molecular clusters. Noteworthy, cancer cells are more sensitive to [Re6Se8I6]3− cluster-induced cell death than normal cells. The molecular view of such species offers a fresh perspective enabling further rational design of building blocks for interesting materials.

Keywords

Chevrel phases Molecular cluster Relativistic effects 

Notes

Acknowledgments

We thank Fondecyt 1180683, 1180017, and 1150629 for funding this work.

References

  1. 1.
    Chevrel R, Sergent M, Prigent J (1971) Sur de nouvelles phases sulfurées ternaires du molybdène. J Solid State Chem 3:515–519CrossRefGoogle Scholar
  2. 2.
    Perrin C, Sergent M, Prigent J (1973) Chalcohalogénures de basse valence du molybdène. C R Acad Sci Paris Ser C 277:465–468Google Scholar
  3. 3.
    Chevrel R, Hirrien M, Sergent M (1986) Superconducting Chevrel phases: prospects and perspectives. Polyhedron 5:87–94CrossRefGoogle Scholar
  4. 4.
    Chevrel R, Gougeon P, Potel M, Sergent M (1985) Ternary molybdenum chalcogenide: a route to new extended clusters. J Solid State Chem 15:25–33CrossRefGoogle Scholar
  5. 5.
    Chevrel R, Sergent M (1982) In: Fischer O, Maple MB (eds) Topics in current physics: superconductivity in ternary compounds I, vol 32. Springer, Berlin, p 25CrossRefGoogle Scholar
  6. 6.
    Hugbanks T, Hoffmann R (1983) Molybdenum chalcogenides: clusters, chains, and extended solids. The approach to bonding in three dimensions. J Am Chem Soc 105:1150–1162CrossRefGoogle Scholar
  7. 7.
    Fischer O (1978) Chevrel phases: superconducting and normal state properties. Appl Phys 16:1–28CrossRefGoogle Scholar
  8. 8.
    Fisher O, Treyvaud A, Chevrel R, Sergent M (1975) Superconductivity in the RexMo6S8. Solid State Commun 17:721–724CrossRefGoogle Scholar
  9. 9.
    Fisher O, Jones H, Bondi G, Sergent M, Chevrel R (1974) Measurements of critical fields up to 500kG in the ternary molybdenum sulphides. J Phys C 7:LA50CrossRefGoogle Scholar
  10. 10.
    Perrin A, Perrin C (2012) The molybdenum and rhenium octahedral cluster chalcohalides in solid state chemistry: from condensed to discrete cluster units. CR Chim 15:815–836CrossRefGoogle Scholar
  11. 11.
    Saito T, Yamamoto N, Yamagata T, Imoto H (1988) Synthesis of [Mo6S8(PEt3)6] by reductive dimerization of a trinuclear molybdenum chloro sulfido cluster complex coordinated with triethylphosphine and methanol: a molecular model for superconducting Chevrel phases. J Am Chem Soc 110:1646–1647CrossRefGoogle Scholar
  12. 12.
    Saito T, Yoshikawa Y, Yamagata T, Imoto H, Unoura K (1989) Synthesis, structure and electronic properties of octakis (μ3sulfido) hexakis(triethylphosphine) hexatungsten as a tungsten analog of the molecular model for superconducting Chevrel phases. Inorg Chem 28:3588–3592CrossRefGoogle Scholar
  13. 13.
    Saito T, Yamamoto N, Nagase T, Tsuboi T, Kobayashi T, Yamagata T, Imoto H, Unoura K (1990) Molecular models of the superconducting chevrel phases: syntheses and structures of [Mo6X8(PEt3)6] and [PPN][Mo6X8(PEt3)6] (X = S, Se; PPN = (Ph3P)2N). Inorg Chem 29:764–770CrossRefGoogle Scholar
  14. 14.
    Le Beuze L, Makyoun MA, Lissilour R, Chermette H (1982) Electronic structure and chemical bonding in metallic clusters of binary and ternary transition metal chalcogenides. I. SCF MS Xα study including relativistic effect of PbMo6S8. J Chem Phys 76:6060–6066CrossRefGoogle Scholar
  15. 15.
    Woolley RG (1985) Bonding in transition-metal cluster compounds. 1. The M63-X)8 cluster. Inorg Chem 24:3519–3525CrossRefGoogle Scholar
  16. 16.
    Arratia-Perez R (1993) The M6S8L6 clusters: an example in cluster and condensed phase chemistry. Chem Phys Lett 213:547–553CrossRefGoogle Scholar
  17. 17.
    Ihara H, Kimura Y (1978) Photoelectron spectra of ternary molybdenum sulphides. Jpn J Appl Phys 17:281–283CrossRefGoogle Scholar
  18. 18.
    Kurmaev EZ, Yarmoshenko YM, Nyholm R, Martenson N, Jarlborg T (1981) Investigation of electronic structure of ternary molybdenum sulphides by means of x-ray emission and photoelectron spectroscopy. Solid State Commun 37:647–651CrossRefGoogle Scholar
  19. 19.
    Yabonath S, Hedge MS, Serode PR, Rao CN, Umarji KM, Subba Rao GV (1981) Charge transfer in Chevrel phases. Solid State Commun 37:325Google Scholar
  20. 20.
    Corbett JD (1992) Coordination chemistry in the solid state: cluster and condensed cluster halides of the early transition metals. Pure Appl Chem 64:1395–1408CrossRefGoogle Scholar
  21. 21.
    Arratia-Perez R, Hernández Acevedo L (1997) A Dirac molecular orbital study for hexanuclear tungsten cluster structures. Chem Phys Lett 277:223–226CrossRefGoogle Scholar
  22. 22.
    Zietlow TC, Hopskin MD, Gray HB (1985) Electronic spectroscopy and photophysics of d4 clusters. J Solid State Chem 57:112–119CrossRefGoogle Scholar
  23. 23.
    Zietlow TC, Schaefer WP, Sadeghi B, Hua N, Gray HB (1986) Hexanuclear tungsten cluster structures: tetradecachlorohexatungstate(2-), tetradecabromohexatungstate(2-), and tetradecaiodohexatungstate(2-) relevance to unusual emissive behavior. Inorg Chem 25:2195–2198CrossRefGoogle Scholar
  24. 24.
    Maverick AW, Nadzionek JS, Mackenzie D, Nocera D, Gray HB (1983) Spectroscopic, electrochemical, and photochemical properties of molybdenum(II) and tungsten(II) halide clusters. J Am Chem Soc 105:1878–1882CrossRefGoogle Scholar
  25. 25.
    Gray HB, Maverick AW (1981) Solar chemistry of metal complexes. Science 214:1201–1205CrossRefGoogle Scholar
  26. 26.
    Schoonover JR, Zietlow TC, Clark DL, Heppert JA, Chisholm MH, Gray HB, Sattelberger AP, Woodruff WH (1996) Resonance Raman spectra of [M6X8Y6]2− cluster complexes (M = Mo, W; X, Y = Cl, Br, I). Inorg Chem 35:6606–6613CrossRefGoogle Scholar
  27. 27.
    Long JR, McCarty LS, Holm RH (1996) A solid-state route to molecular clusters: access to the solution chemistry of [Re6Q8]2+ (Q = S, Se) core-containing clusters via dimensional reduction. J Am Chem Soc 118:4603–4616CrossRefGoogle Scholar
  28. 28.
    Zheng Z, Holm RH (1997) Cluster condensation by thermolysis: synthesis of a rhomb-linked Re12Se16 dicluster and factors relevant to the formation of the Re24Se32 tetracluster. Inorg Chem 36:5173–5178CrossRefGoogle Scholar
  29. 29.
    Zheng Z, Long JR, Holm RH (1997) A basis set of Re6Se8 cluster building blocks and demonstration of their linking capability: directed synthesis of an Re12Se16 dicluster. J Am Chem Soc 119:2163–2171CrossRefGoogle Scholar
  30. 30.
    Mironov YV, Cody JA, Albretch-Schmith T, Ibers JT (1997) Cocrystallized mixtures and multiple geometries: syntheses, structures, and NMR spectroscopy of the Re6 clusters [NMe4]4[Re6(Te8-nSen)(CN)6] (n = 0−8). J Am Chem Soc 119:493–498CrossRefGoogle Scholar
  31. 31.
    Emirdag-Eanes M, Ibers JA (2002) Conversion of a Re(IV) tetrahedral cluster to a Re(III) octahedral cluster: synthesis of [(CH3)C(NH2)2]4[Re6Se8(CN)6] by a solvothermal route. Inorg Chem 41:6170–6171CrossRefGoogle Scholar
  32. 32.
    Miller W, Long JR, McLauchlan C, Holm RH (1998) Ligand substitution reactions of [Re6S8Br6]4−: a basis set of Re6S8 clusters for building multicluster assemblies. Inorg Chem 37:328–333CrossRefGoogle Scholar
  33. 33.
    Beauvais L, Schores MP, Long JR (1998) Cyano-bridged Re6Q8 (Q = S, Se) cluster-metal framework solids: a new class of porous materials. Chem Mater 10:3783–3786CrossRefGoogle Scholar
  34. 34.
    Arratia-Perez R, Hernandez-Acevedo L (1999) The hexanuclear rhenium cluster ions Re6S8X6 4− (X=Cl, Br, I): are these clusters luminescent? J Chem Phys 110:2529–2532CrossRefGoogle Scholar
  35. 35.
    Arratia-Perez R, Hernandez-Acevedo L (1999) The Re6Se8Cl6 4− and Re6Se8l6 4− cluster ions: another example of luminescent clusters? J Chem Phys 111:168–172CrossRefGoogle Scholar
  36. 36.
    Guilbaud C, Deluzet A, Domercq B, Molinie P, Coulon C, Boubekeur K, Batail P (1999) (NBun4 +)3[Re6S8Cl6]3−·: synthesis and luminescence of the paramagnetic, open shell member of a hexanuclear chalcohalide cluster redox system. J Chem Soc Chem Commun 18:1867–1868CrossRefGoogle Scholar
  37. 37.
    Gray TG, Rudzinski CM, Nocera DG, Holm RH (1999) Highly emissive hexanuclear rhenium(III) clusters containing the cubic cores [Re6S8]2+ and [Re6Se8]2+. Inorg Chem 38:5932–5933CrossRefGoogle Scholar
  38. 38.
    Zheng Z, Gray TG, Holm RH (1999) Synthesis and structures of solvated monoclusters and bridged di- and triclusters based on the cubic building block [Re63-Se)8]2+. Inorg Chem 38:4888–4895CrossRefGoogle Scholar
  39. 39.
    Yoshimura T, Ishizaka S, Umakosh K, Sasaki Y, Kim HB, Kitamura N (1999) Hexarhenium(III) clusters [Re63-S)8X6]4− (X− = Cl−, Br−, I−) are luminescent at room temperature. Chem Lett 28:697–698CrossRefGoogle Scholar
  40. 40.
    Wang R, Zheng Z (1999) Dendrimers supported by the [Re6Se8]2+ metal cluster core. J Am Chem Soc 121:3549–3550CrossRefGoogle Scholar
  41. 41.
    Yoshimura T, Ishizaka S, Sasaki Y, Kim HB, Kitamura N, Naumov NG, Sokolov MN, Fedorov VE (1999) Unusual capping chalcogenide dependence of the luminescence quantum yield of the hexarhenium (III) cyano complexes [Re6E8(CN)6]4−, E2− = Se2− > S2− > Te2−. Chem Lett 28:1121–1122CrossRefGoogle Scholar
  42. 42.
    Yoshimura T, Umakoshi K, Sasaki Y, Sykes AG (1999) Synthesis, structures, and redox properties of octa(μ3-sulfido)hexarhenium(III) complexes having terminal pyridine ligands. Inorg Chem 38:5557–5564CrossRefGoogle Scholar
  43. 43.
    Schores MP, Beauvais L, Long R (1999) [Cd2(H2O)4][Re6S8(CN)6]·14H2O: a cyano-bridged cluster−cluster framework solid with accessible cubelike cavities. Inorg Chem 38:1648–1649CrossRefGoogle Scholar
  44. 44.
    Schores MP, Beauvais L, Long JR (1999) Cluster-expanded Prussian blue analogues. J Am Chem Soc 121:775–779CrossRefGoogle Scholar
  45. 45.
    Yoshimura YN, Umakoshi T, Sasaki K, Ishizaka Y, Kim S, Kitamura HB (2000) Emission and metal- and ligand-centered-redox characteristics of the hexarhenium(III) clusters trans- and cis-[Re63-S)8Cl4(L)2]2−, where L is a pyridine derivative or pyrazine. Inorg Chem 39:1765–1772CrossRefGoogle Scholar
  46. 46.
    Kobayashi N, Ishizaka S, Yoshimura T, Kim HB, Sasak Y, Kitamura N (2000) Photoredox ability of a Hexarhenium cluster [Re6S8(Cl)6]4−. Chem Lett 29:234–235CrossRefGoogle Scholar
  47. 47.
    Beauvais L, Schores M, Long JR (2000) Cyano-bridged Re6Q8 (Q = S, Se) cluster-cobalt(II) framework materials: versatile solid chemical sensors. J Am Chem Soc 122:2763–2772CrossRefGoogle Scholar
  48. 48.
    Chen ZN, Yoshimura T, Abe M, Sasaki Y, Ishizaka S, Kim HB, Kitamura N (2000) Chelate formation around a hexarhenium cluster core by the diphosphane ligand Ph2P(CH2)6PPh2. Angew Chem Int Ed Engl 40:239–242CrossRefGoogle Scholar
  49. 49.
    Selby HD, Zheng Z, Gray TG, Holm RH (2001) Bridged multiclusters derived from the face-capped octahedral [Re6III(μ3-Se)8]2+ cluster core. Inorg Chim Acta 312:205–209CrossRefGoogle Scholar
  50. 50.
    Selby HD, Orto P, Carducci MD, Zheng Z (2002) Novel concentration-driven structural interconversion in shape-specific solids supported by the octahedral [Re63-Se)8]2+ cluster core. Inorg Chem 41:6175–6177CrossRefGoogle Scholar
  51. 51.
    Gabriel JP, Boubekeu K, Uriel S, Batail P (2001) Chemistry of hexanuclear rhenium chalcohalide clusters. Chem Rev 101:2037–2066CrossRefGoogle Scholar
  52. 52.
    Tulsky E, Long JR (2001) Heterometal substitution in the dimensional reduction of cluster frameworks: synthesis of soluble [Re6-nOsnSe8Cl6](4-n)- (n = 1−3) cluster-containing solids. Inorg Chem 40:6990–7002CrossRefGoogle Scholar
  53. 53.
    Bennett MV, Beauvais LG, Shores MP, Long JR (2001) Expanded Prussian blue analogues incorporating [Re6Se8(CN)6]3−/4- clusters: adjusting porosity via charge balance. J Am Chem Soc 123:8022–8032CrossRefGoogle Scholar
  54. 54.
    Alvarez-Thon L, Hernandez-Acevedo L, Arratia-Perez R (2001) Calculated paramagnetic resonance parameters of the luminescent Re6S8Cl6 3− cluster ion. J Chem Phys 115:726CrossRefGoogle Scholar
  55. 55.
    Arratia-Perez R, Hernandez-Acevedo L (2003) Calculated paramagnetic resonance parameters (g,Ahfi) of the Re6S8Br6 3−, Re6S8I6 3−, and Re6Se8I6 3− cluster ions. J Chem Phys 118:7425CrossRefGoogle Scholar
  56. 56.
    Roland BK, Carter C, Zheng Z (2002) Routes to metallodendrimers of the [Re63-Se)8]2+ core-containing clusters. J Am Chem Soc 124:6234–6235CrossRefGoogle Scholar
  57. 57.
    Gray TG, Holm RH (2002) Site-differentiated hexanuclear rhenium(III) cyanide clusters [Re6Se8(PEt3)n(CN)6-n]n-4 (n = 4, 5) and kinetics of solvate ligand exchange on the cubic [Re6Se8]2+ core. Inorg Chem 41:4211–4216CrossRefGoogle Scholar
  58. 58.
    Yu SB, Watson AD (1999) Metal-based X-ray contrast media. Chem Rev 99:2353–2378CrossRefGoogle Scholar
  59. 59.
    Kozlova SG, Gabuda SP, Brylev KA, Mironov YV, Fedorov VE (2004) Electronic spectra and DFT calculations of hexanuclear chalcocyanide rhenium clusters. J Phys Chem A 108:10565–10567CrossRefGoogle Scholar
  60. 60.
    Opalovskii AA, Fedorov VE, Lobkov EU (1971). Russ J Inorg Chem 16:790Google Scholar
  61. 61.
    Opalovskii AA, Fedorov VE, Lobkov EU, Erenburg BG (1971). Russ J Inorg Chem 16:1685Google Scholar
  62. 62.
    Leduc L, Perrin A, Sergent M (1983) Chalcohalogénures et Chalcogénures à Clusters Octaédriques dans la Chimie de Basse Valence du Rhéium. C R Acad Sci Paris Ser II 296:961Google Scholar
  63. 63.
    Baudron SA, Deluzet A, Boubekeur K, Batail P (2002) Jahn–Teller distortion of the open-shell 23-electron chalcogenide rhenium cluster cores in crystals of the series, {[Re6Q8]3+(X)6}3− (Q = S, Se; X = Cl, CN). Chem Commun 18:2124–2125CrossRefGoogle Scholar
  64. 64.
    Mironov YV, Brylev KA, Kim S-J, Kozlova SG, Kitamura N, Fedorov VE (2011) Octahedral cyanohydroxo cluster complex trans-[Re6Se8(CN)4(OH)2]4−: synthesis, crystal structure, and properties. Inorg Chim Acta 370:363–368CrossRefGoogle Scholar
  65. 65.
    Brylev KA, Mironov YV, Kozlova SG, Fedorov VE, Kim SJ, Pietzsch HJ, Stephan H, Ito A, Ishizaka S, Kitamura N (2009) The first octahedral cluster complexes with terminal formate ligands: synthesis, structure, and properties of K4[Re6S8(HCOO)6] and Cs4[Re6S8(HCOO)6]. Inorg Chem 48:2309–2315CrossRefGoogle Scholar
  66. 66.
    Gancheff JS, Denis PA (2011) Time-dependent density functional theory investigation of the electronic spectra of hexanuclear chalcohalide rhenium(III) clusters. J Phys Chem A 115:211–218CrossRefGoogle Scholar
  67. 67.
    Deluzet A, Duclusaud H, Sautet P, Borshch SA (2002) Electronic structure of diamagnetic and paramagnetic hexanuclear chalcohalide clusters of rhenium. Inorg Chem 41:2537–2542CrossRefGoogle Scholar
  68. 68.
    Yarovoi SS, Mironov YV, Naumov DY, Gatilov YV, Kozlova SG, Kim S-J, Fedorov VE (2005) Octahedral hexahydroxo rhenium cluster complexes [Re6Q8(OH)6]4−·(Q = S, Se): synthesis, structure, and properties. Eur J Inorg Chem 19:3945–3949CrossRefGoogle Scholar
  69. 69.
    Yoshimura T, Ikai T, Takayama T, Sekine T, Kino Y, Shinohara A (2010) Synthesis, spectroscopic and electrochemical properties, and electronic structures of octahedral hexatechnetium(III) clusters [Tc6Q8(CN)6]4− (Q = S, Se). Inorg Chem 49:5876–5882CrossRefGoogle Scholar
  70. 70.
    Orto PJ, Nichol GS, Okumura N, Evans DH, Arratia-Pérez R, Ramirez-Tagle R, Wang R, Zheng Z (2008) Cluster carbonyls of the [Re63-Se)8]2+ core: synthesis, structural characterization, and computational analysis. Dalton Trans 32:4247–4253CrossRefGoogle Scholar
  71. 71.
    Echeverría C, Becerra A, Nuñez-Villena F, Muñoz-Castro A, Stehberg J, Zheng Z, Arratia-Perez R, Simon F, Ramírez-Tagle R (2012) The paramagnetic and luminescent [Re6Se8I6]3− cluster. Its potential use as an antitumoral and biomarker agent. New J Chem 36:927–932CrossRefGoogle Scholar
  72. 72.
    Rabanal-León WA, Murillo-López JA, Páez-Hernández D, Arratia-Pérez R (2014) Understanding the influence of terminal ligands on the electronic structure and bonding nature in [Re63-Q8)]2+ clusters. J Phys Chem A 118:11083–11089CrossRefGoogle Scholar
  73. 73.
    Rabanal-León WA, Murillo-López JA, Páez-Hernández D, Arratia-Pérez R (2015) Exploring the nature of the excitation energies in [Re63-Q8)X6]4− clusters: a relativistic approach. Phys Chem Chem Phys 17:17611–17617CrossRefGoogle Scholar
  74. 74.
    Rojas-Poblete M, Carreño A, Gacitúa M, Páez-Hernández D, Rabanal-León WA, Arratia-Pérez R (2018) Electrochemical behaviors and relativistic DFT calculations to understand the terminal ligand influence on the [Re6(μ3-Q)8X6]4− clusters. New J Chem 42:5471–5478CrossRefGoogle Scholar
  75. 75.
    Szczepura LF, Edwards JA, Cedeño DL (2009) Luminescent properties of hexanuclear molybdenum(II) chloride clusters containing thiolate ligands. J Clust Sci 20:105–112CrossRefGoogle Scholar
  76. 76.
    Yoshimura T, Chen Z-N, Itasaka A, Abe M, Sasaki Y, Ishizaka S, Kitamura N, Yarovoi SS, Solodovnikov SF, Fedorov VE (2003) Preparation, structures, and redox and emission characteristics of the isothiocyanate complexes of hexarhenium(III) clusters [Re63-E)8(NCS)6]4− (E = S, Se). Inorg Chem 42:4857–4863CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alvaro Muñoz-Castro
    • 1
  • Dayan Paez-Hernandez
    • 2
  • Ramiro Arratia-Perez
    • 2
  1. 1.Centro de Química Inorgánica y Materiales Moleculares, Facultad de IngenieríaUniversidad Autónoma de ChileSantiagoChile
  2. 2.Center for Applied Nanosciences (CANS)Universidad Andres BelloSantiagoChile

Personalised recommendations