pp 1-17 | Cite as

Structure and Bonding in Molecular Vanadium Oxides: From Templates via Host–Guest Chemistry to Applications

Chapter
Part of the Structure and Bonding book series

Abstract

Molecular vanadium oxides are a structurally and chemically versatile sub-class of polyoxometalates. Fundamental concepts of their formation, templating mechanism and aggregation under aqueous and non-aqueous conditions are presented. Details about different template classes and their consequences on the vanadate reactivity are discussed together with concepts of linking vanadates into supramolecular architectures using various linkages. The final section briefly describes major applications of vanadium oxide clusters in (photo)catalysis, magnetism and molecular nanostructure design.

Keywords

Catalysis Magnetism Polyoxometalate Polyoxovanadate Self-assembly Vanadium oxide 

References

  1. 1.
    Johnson GK, Murman RK, Bowman B (1985) Isotopic oxygen exchange rates between [V18O42]12− and water. Transit Met Chem 10(5):181–184CrossRefGoogle Scholar
  2. 2.
    Casey WH, Rustad JR (2016) Pathways for oxygen-isotope exchange in two model oxide clusters. New J Chem 40(2):898–905. The Royal Society of ChemistryCrossRefGoogle Scholar
  3. 3.
    Keggin JF (1934) The structure and formula of 12-phosphotungstic acid. Proc R Soc A Math Phys Eng Sci 144(851):75–100ADSCrossRefGoogle Scholar
  4. 4.
    Pope MT (1983) Heteropoly and isopoly oxometalates. Springer, Heidelberg, 180 ppCrossRefGoogle Scholar
  5. 5.
    Pope MT, Müller A (1991) Polyoxometalate chemistry: an old field with new dimensions in several disciplines. Angew Chem Int Ed 30(1):34–48CrossRefGoogle Scholar
  6. 6.
    Grabau M, Forster J, Heussner K, Streb C (2011) Synthesis and theoretical Hirshfeld analysis of a supramolecular heteropolyoxovanadate architecture. Eur J Inorg Chem 2011(11):1719–1724CrossRefGoogle Scholar
  7. 7.
    Aureliano M, Ohlin CA, Vieira MO, Marques MPM, Casey WH, Batista de Carvalho LAE (2016) Characterization of decavanadate and decaniobate solutions by Raman spectroscopy. Dalt Trans 45(17):7391–7399. The Royal Society of ChemistryCrossRefGoogle Scholar
  8. 8.
    Forster J, Rösner B, Fink RH, Nye LC, Ivanovic-Burmazovic I, Kastner K, et al. (2013) Oxidation-driven self-assembly gives access to high-nuclearity molecular copper vanadium oxide clusters. Chem Sci 4(1):418–424CrossRefGoogle Scholar
  9. 9.
    Müller A, Sessoli R, Krickemeyer E, Bögge H, Meyer J, Gatteschi D, et al. (1997) Polyoxovanadates: high-nuclearity spin clusters with interesting host-guest systems and different electron populations. synthesis, spin organization, magnetochemistry, and spectroscopic studies. Inorg Chem 36(23):5239–5250CrossRefGoogle Scholar
  10. 10.
    Wutkowski A, Niefind F, Näther C, Bensch W (2011) A new mixed-valent high nuclearity polyoxovanadate cluster based on the {V18O42} archetype. Zeitschrift fur Anorg und Allg Chemie 637(14-15):2198–2204CrossRefGoogle Scholar
  11. 11.
    Hasenknopf B, Delmont R, Herson P, Gouzerh P (2002) Anderson-type heteropolymolybdates containing tris(alkoxo) ligands: synthesis and structural characterization. Eur J Inorg Chem 5:1081–1087CrossRefGoogle Scholar
  12. 12.
    Long D-L, Song Y-F, Wilson EF, Kögerler P, Guo S-X, Bond AM, et al. (2008) Capture of periodate in a {W18O54} cluster cage yielding a catalytically active polyoxometalate [H3W18O56(IO6)]6− embedded with high-valent iodine. Angew Chem Int Ed 47(23):4384–4387. WILEY-VCHCrossRefGoogle Scholar
  13. 13.
    Yan J, Long D-L, Wilson EF, Cronin L (2009) Discovery of heteroatom-“Embedded” Te⊂{W18O54} nanofunctional polyoxometalates by use of cryospray mass spectrometry. Angew Chem Int Ed 48(24):4376–4380. WILEY-VCHCrossRefGoogle Scholar
  14. 14.
    Ichida H, Nagai K, Sasaki Y, Pope MT (1989) Heteropolyvanadates containing two and three manganese(IV) ions: unusual structural features of Mn2V22O6410- and Mn3V12O40H35. J Am Chem Soc 111(2):586–591CrossRefGoogle Scholar
  15. 15.
    Inami S, Nishio M, Hayashi Y, Isobe K, Kameda H, Shimoda T (2009) Dinuclear manganese and cobalt complexes with cyclic polyoxovanadate ligands: synthesis and characterization of [Mn2V10O30]6– and [Co2(H2O)2V10O30]6–. Eur J Inorg Chem 2009(34):5253–5258Google Scholar
  16. 16.
    Kurata T, Uehara A, Hayashi Y, Isobe K (2005) Cyclic polyvanadates incorporating template transition metal cationic species: synthesis and structures of hexavanadate [PdV6O18]4−, octavanadate [Cu2V8O24]4−, and decavanadate [Ni4V10O30(OH)2(H2O)6]4−. Inorg Chem 44(7):2524–2530CrossRefPubMedGoogle Scholar
  17. 17.
    Nishio M, Inami S, Hayashi Y (2013) Early-lanthanide complexes with all-inorganic macrocyclic polyoxovanadate ligands. Eur J Inorg Chem 10–11:1876–1881CrossRefGoogle Scholar
  18. 18.
    Nishio M, Inami S, Katayama M, Ozutsumi K, Hayashi Y (2012) Lanthanide complexes of macrocyclic polyoxovanadates by VO4 units: synthesis, characterization, and structure elucidation by X-ray crystallography and EXAFS spectroscopy. Inorg Chem 51(2):784–793CrossRefPubMedGoogle Scholar
  19. 19.
    Klemperer WG, Marquart TA, Yaghi OM (1992) New directions in polyvanadate chemistry: from cages and clusters to baskets, belts, bowls, and barrels. Angew Chem Int Ed Engl 31(1):49–51. Hüthig & WepfCrossRefGoogle Scholar
  20. 20.
    Müller A, Reuter H, Dillinger S (1995) Supramolecular inorganic chemistry: small guests in small and large hosts. Angew Chem Int Ed Engl 34(21):2328–2361CrossRefGoogle Scholar
  21. 21.
    Müller A, Krickemeyer E, Penk M, Walberg H-J, Bögge H (1987) Spherical mixed-valence[V15O36]5⊖, an example from an unusual cluster family. Angew Chem Int Ed Engl 26(10):1045–1046. Hüthig & WepfCrossRefGoogle Scholar
  22. 22.
    Kastner K, Margraf JT, Clark T, Streb C (2014) A molecular placeholder strategy to access a family of transition-metal-functionalized vanadium oxide clusters. Chemistry 20(38):12269–12273CrossRefPubMedGoogle Scholar
  23. 23.
    Kastner K, Forster J, Ida H, Newton GN, Oshio H, Streb C (2015) Controlled reactivity tuning of metal-functionalized vanadium oxide clusters. Chemistry 21(21):7686–7689CrossRefPubMedGoogle Scholar
  24. 24.
    Chen L, Jiang F, Lin Z, Zhou Y, Yue C, Hong M (2005) A basket tetradecavanadate cluster with blue luminescence. Am Chem Soc 127(24):8588–8589CrossRefGoogle Scholar
  25. 25.
    Zhang C-D, Liu S-X, Gao B, Sun C-Y, Xie L-H, Yu M, et al. (2007) Hybrid materials based on metal–organic coordination complexes and cage-like polyoxovanadate clusters: synthesis, characterization and magnetic properties. Polyhedron 26(7):1514–1522CrossRefGoogle Scholar
  26. 26.
    Pan C-L, Xu J-Q, Li G-H, Chu D-Q, Wang T-G (2003) A three-dimensional framework of novel vanadium clusters bridged by [Ni(en)2]2+: Ni(en)3{VIV 11VV 5O38Cl [Ni(en)2]3}·8.5H2O. Eur J Inorg Chem 2003(8):1514–1517. WILEY-VCHCrossRefGoogle Scholar
  27. 27.
    Zhang L, Schmitt W (2011) From platonic templates to Archimedean solids: successive construction of nanoscopic {V16As8}, {V16As10}, {V20As8}, and {V24As8} polyoxovanadate cages. J Am Chem Soc 133(29):11240–11248CrossRefPubMedGoogle Scholar
  28. 28.
    Breen JM, Schmitt W (2008) Hybrid organic-inorganic polyoxometalates: functionalization of VIV/VV nanosized clusters to produce molecular capsules. Angew Chem 120(36):7010–7014CrossRefGoogle Scholar
  29. 29.
    Tucher J, Peuntinger K, Margraf JT, Clark T, Guldi DM, Streb C (2015) Template-dependent photochemical reactivity of molecular metal oxides. Chemistry 21(24):8716–8719CrossRefPubMedGoogle Scholar
  30. 30.
    Tucher J, Nye LC, Ivanovic-Burmazovic I, Notarnicola A, Streb C (2012) Chemical and photochemical functionality of the first molecular bismuth vanadium oxide. Chemistry 18(35):10949–10953CrossRefPubMedGoogle Scholar
  31. 31.
    Tucher J, Streb C (2014) Visible light photooxidative performance of a high-nuclearity molecular bismuth vanadium oxide cluster. Beilstein J Nanotechnol 5:711–716CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Streb C (2012) New trends in polyoxometalate photoredox chemistry: from photosensitisation to water oxidation catalysis. Dalt Trans 41(6):1651–1659CrossRefGoogle Scholar
  33. 33.
    Nishiyama Y, Nakagawa Y, Mizuno N (2001) High turnover numbers for the catalytic selective epoxidation of alkenes with 1 atm of molecular oxygen. Angew Chem Int Ed Engl 40(19):3639–3641CrossRefPubMedGoogle Scholar
  34. 34.
    Neumann R (2010) Activation of molecular oxygen, polyoxometalates, and liquid-phase catalytic oxidation. Inorg Chem 49(8):3594–3601CrossRefPubMedGoogle Scholar
  35. 35.
    Sartorel A, Carraro M, Scorrano G, Bonchio M (2011) Water oxidation catalysis by molecular metal-oxides. Energy Procedia 22:78–87CrossRefGoogle Scholar
  36. 36.
    Lv H, Geletii YV, Zhao C, Vickers JW, Zhu G, Luo Z, et al. (2012) Polyoxometalate water oxidation catalysts and the production of green fuel. Chem Soc Rev 41(22):7572–7589CrossRefPubMedGoogle Scholar
  37. 37.
    Forster J, Rosner B, Khusniyarov MM, Streb C, Rösner B, Khusniyarov MM, et al. (2011) Tuning the light absorption of a molecular vanadium oxide system for enhanced photooxidation performance. Chem Commun 47(11):3114–3116CrossRefGoogle Scholar
  38. 38.
    Seliverstov A, Streb C (2014) A new class of homogeneous visible-light photocatalysts: molecular cerium vanadium oxide clusters. Chemistry 20(31):9733–9738CrossRefPubMedGoogle Scholar
  39. 39.
    Seliverstov A, Streb C (2014) Chirality meets visible-light photocatalysis in a molecular cerium vanadium oxide cluster. Chem Commun 50(15):1827–1829CrossRefGoogle Scholar
  40. 40.
    Schwarz B, Forster J, Goetz MK, Yücel D, Berger C, Jacob T, et al. (2016) Visible-light-driven water oxidation by a molecular manganese vanadium oxide cluster. Angew Chem Int Ed 55(21):6329–6333CrossRefGoogle Scholar
  41. 41.
    Tucher J, Nye LC, Ivanovic-Burmazovic I, Notarnicola A, Streb C (2012) Chemical and photochemical functionality of the first molecular bismuth vanadium oxide. Chem Eur J 18(35):10949–10953CrossRefPubMedGoogle Scholar
  42. 42.
    Daniel C, Hartl H (2009) A mixed-valence VIV/VV alkoxo-polyoxovanadium cluster series [V6O8(OCH3)11]n+/−: exploring the influence of a μ-oxo ligand in a spin frustrated structure. J Am Chem Soc 131(14):5101–1514Google Scholar
  43. 43.
    Mu A, Peters F, Pope MT, Gatteschi D (1998) Polyoxometalates: very large clusters-nanoscale magnets. Chem Rev 2665(98):239–271Google Scholar
  44. 44.
    Monakhov KY, Bensch W, Kogerler P (2015) Semimetal-functionalised polyoxovanadates. Chem Soc Rev 44(23):8443–8483. The Royal Society of ChemistryCrossRefPubMedGoogle Scholar
  45. 45.
    Monakhov KY, Linnenberg O, Kozłowski P, van Leusen J, Besson C, Secker T, et al. (2015) Supramolecular recognition influences magnetism in [X@HVIV 8 VV 14O54]6− self-assemblies with symmetry-breaking guest anions. Chemistry 21(6):2387–2397CrossRefPubMedGoogle Scholar
  46. 46.
    Bassil BS, Dickman MH, Römer I, Von Der Kammer B, Kortz U (2007) The tungstogermanate [Ce20Ge10W100O 376(OH)4(H2O)30]56-: a polyoxometalate containing 20 cerium(III) atoms. Angew Chem Int Ed Engl 46(32):6192–6195CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Inorganic Chemistry IUlm UniversityUlmGermany

Personalised recommendations