Advertisement

Reactivity and Applications of α-Metalated Ylides

  • Viktoria H. Gessner
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 177)

Abstract

α-Metalated ylides, the so-called yldiides, represent a unique class of carbon-centered donor ligands. With two lone pairs of electrons at the central ylidic carbon atom, they are closely related to important organometallic ligand systems, above all bisylides and methandiides, and thus have attracted considerable research interest both from experimental and theoretical points of view. Although the number of isolated and structurally characterized yldiides is still limited, reactivity studies have demonstrated their exciting chemistry. Nowadays applications range from their use as powerful, highly nucleophilic reagents in organic synthesis such as in cascade reactions to their use as strong σ- and π-donor ligands in main group element and transition metal chemistry. The unique reactivity and donor capacity of α-metalated ylides is thereby strongly connected with the availability of the two lone pairs at the ylidic carbon atom, which makes yldiides to a special class of ylidic compounds. This review summarizes the chemistry of yldiides, particularly highlighting recent developments in their isolation and applications, also emphasizing structural and electronic properties of these compounds.

Keywords

Carbanions Catalysis Coordination chemistry Electronic structure Ylide chemistry 

References

  1. 1.
    Michaelis A, Gimborn HV (1894) Chem Ber 27:272–277CrossRefGoogle Scholar
  2. 2.
    Cristau H-J (1994) Chem Rev 94:1299–1313CrossRefGoogle Scholar
  3. 3.
    Wittig G, Rieber M (1949) Justus Liebigs Ann Chem 562:177–187CrossRefGoogle Scholar
  4. 4.
    Schröder FG, Sundermeyer J (2015) Organometallics 34:1017–1020CrossRefGoogle Scholar
  5. 5.
    Cramer RE, Bruck MA, Gilje JW (1986) Organometallics 5:1496–1499CrossRefGoogle Scholar
  6. 6.
    Less RJ, Naseri V, Wright DS (2009) Organometallics 28:3594–3596CrossRefGoogle Scholar
  7. 7.
    Cristau HJ, Ribeil Y (1988) J Organomet Chem 352:C51–C53CrossRefGoogle Scholar
  8. 8.
    Cristau HJ, Ribeil Y, Chiche L, Plénat F (1988) J Organomet Chem 352:C47–C50CrossRefGoogle Scholar
  9. 9.
    McKenna EG, Walker BJ (1988) Tetrahedron Lett 29:485–488CrossRefGoogle Scholar
  10. 10.
    McKenna EG, Walker BJ (1989) J Chem Soc Chem Commun 568–569. doi:  https://doi.org/10.1039/C39890000568
  11. 11.
    Taillefer M, Cristau HJ, Fruchier A, Vicente V (2001) J Organomet Chem 624:307–315CrossRefGoogle Scholar
  12. 12.
    Usón R, Laguna A, Laguna M, Jiménez J, Jones PG (1991) Angew Chem 103:190–191CrossRefGoogle Scholar
  13. 13.
    Schmidbaur H, Hartmann C, Reber G, Müller G (1987) Angew Chem 99:1189–1191CrossRefGoogle Scholar
  14. 14.
    Basil JD, Murray HH, Fackler JP, Tocher J, Mazany AM, Trzcinska-Bancroft B, Knachel H, Dudis D, Delord TJ, Marler D (1985) J Am Chem Soc 107:6908–6915CrossRefGoogle Scholar
  15. 15.
    Mohr F, Sanz S, Tiekink ERT, Laguna M (2006) Organometallics 25:3084–3087CrossRefGoogle Scholar
  16. 16.
    Méndez LA, Jiménez J, Cerrada E, Mohr F, Laguna M (2005) J Am Chem Soc 127:852–853PubMedCrossRefGoogle Scholar
  17. 17.
    Navarro R, Urriolabeitia EP (1999) Dalton Trans 4111–4122Google Scholar
  18. 18.
    Urriolabeitia EP (2008) Dalton Trans 5673–5686Google Scholar
  19. 19.
    Scharf LT, Gessner VG (2017) Inorg Chem 56:8599–8607PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Corey EJ, Kang J (1982) J Am Chem Soc 104:4724–4725CrossRefGoogle Scholar
  21. 21.
    Baumgarnter T, Schinkels B, Gudat D, Nieger M, Niecke E (1997) J Am Chem Soc 119:12410–12411CrossRefGoogle Scholar
  22. 22.
    Dyker CA, Bertrand G (2009) Nat Chem 1:265–266PubMedCrossRefGoogle Scholar
  23. 23.
    Schmidbaur H, Schier A (2012) Angew Chem Int Ed 52:176–186CrossRefGoogle Scholar
  24. 24.
    Zhao L, Hermann M, Holzmann N, Frenking G (2017) Coord Chem Rev 344:163–204CrossRefGoogle Scholar
  25. 25.
    Harder S (2011) Coord Chem Rev 255:1252–1267CrossRefGoogle Scholar
  26. 26.
    Marek I (2000) Chem Rev 100:2887–2900PubMedCrossRefGoogle Scholar
  27. 27.
    Green MLH (1995) J Organomet Chem 500:127–148CrossRefGoogle Scholar
  28. 28.
    Jones ND, Cavell RG (2005) J Organomet Chem 690:5485–5496CrossRefGoogle Scholar
  29. 29.
    Cantat T, Mézailles N, Auffrant A, Le Floch P (2008) Dalton Trans 1957–1972Google Scholar
  30. 30.
    Liddle ST, Mills DP, Wooles AJ (2011) Chem Soc Rev 40:2164–2176PubMedCrossRefGoogle Scholar
  31. 31.
    Gessner VH, Becker J, Feichtner K-S (2015) Eur J Inorg Chem 1841–1859Google Scholar
  32. 32.
    Petz W (2015) Coord Chem Rev 291:1–27CrossRefGoogle Scholar
  33. 33.
    Alcarazo M (2011) Dalton Trans 40:1839–1845PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Alcarazo M (2017) Synthesis, structure, and reactivity of carbodiphosphoranes, carbodicarbenes, and related species. Struct Bond.  https://doi.org/10.1007/430_2017_19 (this volume)
  35. 35.
    Liu S, Chen W-C, Ong T-G (2017) Synthesis and structure of carbodicarbenes and their application in catalysis. Struct Bond.  https://doi.org/10.1007/430_2017_20 (this volume)
  36. 36.
    Bestmann HJ, Besold R, Sandmeier D (1975) Tetrahedron Lett 16:2293–2294CrossRefGoogle Scholar
  37. 37.
    Bestmann HJ, Sandmeier D (1975) Angew Chem 87:630CrossRefGoogle Scholar
  38. 38.
    Corey EJ, Kang J, Kyler K (1985) Tetrahedron Lett 26:555–558CrossRefGoogle Scholar
  39. 39.
    Schaub B, Jenny T, Schlosser M (1984) Tetrahedron Lett 25:4097–4100CrossRefGoogle Scholar
  40. 40.
    Schaub B, Schlosser M (1985) Tetrahedron Lett 26:1623–1626CrossRefGoogle Scholar
  41. 41.
    Bestmann HJ, Schmidt M (1987) Angew Chem Int Ed Eng 26:79–81CrossRefGoogle Scholar
  42. 42.
    Goumri-Magnet S, Gornitzka H, Baceiredo A, Bertrand G (1999) Angew Chem Int Ed 38:678–680CrossRefGoogle Scholar
  43. 43.
    Scherpf T, Wirth R, Molitor S, Feichtner K-S, Gessner VH (2015) Angew Chem Int Ed 54:8542–8546CrossRefGoogle Scholar
  44. 44.
    Hardy GE, Zink JI, Kaska WC, Baldwin JC (1978) J Am Chem Soc 100:8001–8002CrossRefGoogle Scholar
  45. 45.
    Garduno-Alvia A, Lenk R, Escudié Y, González ML, Bousquet L, Saffon-Merceron N, Toledano CA, Bagan X, Branchadell V, Maerten E, Baceiredo A (2017) Eur J Inorg Chem 3494–3497Google Scholar
  46. 46.
    McDowell RS, Streitwieser A Jr (1984) J Am Chem Soc 106:4047–4048CrossRefGoogle Scholar
  47. 47.
    Himmel D, Krossing I, Schnepf A (2014) Angew Chem Int Ed 53:370–374CrossRefGoogle Scholar
  48. 48.
    Frenking G (2014) Angew Chem Int Ed 53:6040–6046CrossRefGoogle Scholar
  49. 49.
    Himmel D, Krossing I, Schnepf A (2014) Angew Chem Int Ed 53:6047–6048CrossRefGoogle Scholar
  50. 50.
    Lischka H (1977) J Am Chem Soc 99:353–360CrossRefGoogle Scholar
  51. 51.
    Tonner R, Öxler F, Neumüller B, Petz W, Frenking G (2006) Angew Chem Int Ed 45:8038–8042CrossRefGoogle Scholar
  52. 52.
    Tonner R, Frenking G (2008) Chem Eur J 14:3260–3272CrossRefPubMedGoogle Scholar
  53. 53.
    Tonner R, Frenking G (2008) Chem Eur J 14:3273–3289CrossRefPubMedGoogle Scholar
  54. 54.
    Tonner R, Frenking G (2009) Pure Appl Chem 81:597–614CrossRefGoogle Scholar
  55. 55.
    Dewar M (1951) Bull Soc Chim Fr 18:C79Google Scholar
  56. 56.
    Chatt J, Duncanson LA (1953) J Chem Soc 2939–2947Google Scholar
  57. 57.
    Alcarazo M, Lehman CW, Anoop A, Thiel W, Fürstner A (2009) Nat Chem 1:295–301CrossRefPubMedGoogle Scholar
  58. 58.
    Tonner R, Frenking G (2007) Angew Chem Int Ed 46:8695–8698CrossRefGoogle Scholar
  59. 59.
    Klein S, Tonner R, Frenking G (2010) Chem Eur J 16:10160–10170CrossRefPubMedGoogle Scholar
  60. 60.
    Takagi N, Tonner R, Frenking G (2012) Chem Eur J 18:1772–1780PubMedCrossRefGoogle Scholar
  61. 61.
    Scharf LT, Andrada DM, Frenking G, Gessner VH (2017) Chem Eur J 23:4432–4434CrossRefGoogle Scholar
  62. 62.
    Kolodiazhnyi OI (1999) Phosphorus ylides; chemistry and application in organic synthesis. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  63. 63.
    Maryanoff BE, Reitz AB (1989) Chem Rev 89:863–927CrossRefGoogle Scholar
  64. 64.
    Byrne PA, Gilheany DG (2013) Chem Soc Rev 42:6670–6696PubMedCrossRefGoogle Scholar
  65. 65.
    Bestmann HJ, Schmidt M (1987) Tetrahedron Lett 28:2111–2114CrossRefGoogle Scholar
  66. 66.
    Igau A, Grützmacher H, Baceiredo A, Bertrand G (1988) J Am Chem Soc 110:6463–6466CrossRefGoogle Scholar
  67. 67.
    Arduengo AJ, Harlow LM, Kine M (1991) J Am Chem Soc 113:361–363CrossRefGoogle Scholar
  68. 68.
    Vignolle J, Cattoën X, Bourissou D (2009) Chem Rev 109:3333–3384PubMedCrossRefGoogle Scholar
  69. 69.
    Soleilhavoup M, Bertrand G (2014) Acc Chem Res 48:256–266PubMedCrossRefGoogle Scholar
  70. 70.
    Melaimi M, Soleilhavoup M, Bertrand G (2010) Angew Chem Int Ed 49:8810–8849CrossRefGoogle Scholar
  71. 71.
    Rovis T, Nolan SP (2013) Synlett 24:1188–1189CrossRefGoogle Scholar
  72. 72.
    Arduengo AJ, Bertrand G (2009) Chem Rev 109:3209–3210PubMedCrossRefGoogle Scholar
  73. 73.
    Schuster O, Yang L, Raubenheimer HG, Albrecht M (2009) Chem Rev 109:3445–3478PubMedCrossRefGoogle Scholar
  74. 74.
    Dötz KH, Stendel J (2009) Chem Rev 109:3227–3274PubMedCrossRefGoogle Scholar
  75. 75.
    Wang Y, Robinson GH (2011) Inorg Chem 50:12326–12337PubMedCrossRefGoogle Scholar
  76. 76.
    Bugaut X, Glorius F (2012) Chem Soc Rev 41:3511–3522PubMedCrossRefGoogle Scholar
  77. 77.
    Ender D, Niemeier O, Henseler A (2007) Chem Rev 107:5606–5655CrossRefGoogle Scholar
  78. 78.
    Frey GD, Lavalla V, Donnadieu B, Schoeller WW, Bertrand G (2007) Science 316:439–441CrossRefPubMedGoogle Scholar
  79. 79.
    Back O, Kuchenbeiser G, Donnadieu B, Bertrand G (2009) Angew Chem Int Ed 48:5530–5533CrossRefGoogle Scholar
  80. 80.
    Schmidt D, Bertel JHJ, Pietsch S, Radius U (2012) Angew Chem Int Ed 51:8881–8885CrossRefGoogle Scholar
  81. 81.
    Lavigne F, Maerten E, Alcaraz G, Branchadell V, Saffon-Merceron N, Baceiredo A (2012) Angew Chem Int Ed 51:2489–2492CrossRefGoogle Scholar
  82. 82.
    Facchin G, Campostrini R, Michelin RA (1985) J Organomet Chem 294:C21–C25CrossRefGoogle Scholar
  83. 83.
    Michelin RA, Facchin G, Braga D, Sabatino P (1986) Organometallics 5:2265–2274CrossRefGoogle Scholar
  84. 84.
    Michelin RA, Mozzon M, Facchin G, Braga D, Sabatino P (1988) J Chem Soc Dalton Trans 1803–1811Google Scholar
  85. 85.
    Facchin G, Mozzon M, Michelin RA, Ribeiro MTA, Pombeiro AJL (1992) J Chem Soc Dalton Trans 2827–2835Google Scholar
  86. 86.
    Pombeiro AJL (2005) J Organomet Chem 690:6021–6040CrossRefGoogle Scholar
  87. 87.
    Nakafuji S, Kobayashi J, Kawashima T (2008) Angew Chem Int Ed 47:1141–1144CrossRefGoogle Scholar
  88. 88.
    Kobayashi J, Nakafuji S, Yatabe A, Kawashima T (2008) Chem Commun 6233–6235Google Scholar
  89. 89.
    Fürstner A, Alcarazo M, Radkowski K, Lehmann CW (2008) Angew Chem Int Ed 47:8302–8306CrossRefGoogle Scholar
  90. 90.
    Nelson DJ, Nolan SP (2013) Chem Soc Rev 42:6723–6753PubMedCrossRefGoogle Scholar
  91. 91.
    Wolf S, Plenio J (2009) J Organomet Chem 694:1487–1492CrossRefGoogle Scholar
  92. 92.
    Xu C, Wang Z-Q, Li Z, Wang W-Z, Hao X-Q, Fu W-J, Gong J-F, Ji B-M, Song M-P (2012) Organometallics 31:798–801CrossRefGoogle Scholar
  93. 93.
    Asay M, Inoue S, Driess M (2011) Angew Chem Int Ed 50:9589–9592CrossRefGoogle Scholar
  94. 94.
    Asay M, Jones C, Driess M (2011) Chem Rev 111:354–396PubMedCrossRefGoogle Scholar
  95. 95.
    Schleyer PR, Maerker C, Dransfeld A, Jiao H, Hommes NJRE (1996) J Am Chem Soc 118:6317–6318PubMedCrossRefGoogle Scholar
  96. 96.
    Chen Z, Wannere CS, Corminboeuf C, Puchta R, Schleyer PR (2005) Chem Rev 105:3842–3888PubMedCrossRefGoogle Scholar
  97. 97.
    Schleyer PR, Jiao H, Hommes NJRE, Malkin VG, Malkina O (1997) J Am Chem Soc 119:12669–12670CrossRefGoogle Scholar
  98. 98.
    Alvarado-Beltran I, Baceiredo A, Saffon-Merceron N, Branchadell V, Kato T (2016) Angew Chem Int Ed 55:16141–16144CrossRefGoogle Scholar
  99. 99.
    Tolman CA (1977) Chem Rev 77:313–348CrossRefGoogle Scholar
  100. 100.
    Crabtree RH (2005) The organometallic chemistry of the transition metals. Wiley, HobokenCrossRefGoogle Scholar
  101. 101.
    Guha AK, Gogoi U, Phukan AK (2013) Int J Quantum Chem 113:2471–2477Google Scholar
  102. 102.
    Esterhuysen C, Frenking G (2011) Chem Eur J 17:9944–9956CrossRefPubMedGoogle Scholar
  103. 103.
    Fürstner A, Alcarazo M, Goddard R, Lehmann CW (2008) Angew Chem Int Ed 47:3210–3215CrossRefGoogle Scholar
  104. 104.
    Alcarazo M, Suárez RM, Goddard R, Fürstner A (2010) Chem Eur J 16:9746–9749PubMedCrossRefGoogle Scholar
  105. 105.
    Karni M, Apeloig Y (2012) Organometallics 31:2403–2415CrossRefGoogle Scholar
  106. 106.
    Borthakur B, Silvi B, Dewhurst RD, Phukan AK (2016) J Comput Chem 37:1484–1490CrossRefPubMedGoogle Scholar
  107. 107.
    Borthakur B, Phukan AK (2015) Chem Eur J 21:11603–11609PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Bharadwaz P, Chetia P, Phukan AK (2017) Chem Eur J 23:9926–9936PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Haerizade BN, Kassaee MZ, Zandi H, Koohi M, Ahmadi AA (2014) J Phys Org Chem 27:902–908CrossRefGoogle Scholar
  110. 110.
    Melaimi M, Jazzar R, Soleilhavoup M, Bertrand G (2017) Angew Chem Int Ed 56:10046–10068CrossRefGoogle Scholar
  111. 111.
    Bestmann HJ, Röder T, Bremer M, Löw D (1991) Chem Ber 124:199–202CrossRefGoogle Scholar
  112. 112.
    Köster E, Rickborn B (1967) J Am Chem Soc 89:2782–2784CrossRefGoogle Scholar
  113. 113.
    Piers WE, Bourke SC, Conroy KD (2005) Angew Chem Int Ed 44:5016–5036CrossRefGoogle Scholar
  114. 114.
    Scherpf T, Feichtner K-S, Gessner VH (2017) Angew Chem Int Ed 56:3275–3279CrossRefGoogle Scholar
  115. 115.
    Heckmann G, Plass W, Fluck E (1991) Z Anorg Allg Chem 596:139–148CrossRefGoogle Scholar
  116. 116.
    Schmidbaur H, Tronich W (1968) Chem Ber 101:3545–3555CrossRefGoogle Scholar
  117. 117.
    Schmidbaur H (1975) Acc Chem Res 8:62–70CrossRefGoogle Scholar
  118. 118.
    Schmidbaur H, Malisch W (1970) Angew Chem Int Ed Eng 9:70–71CrossRefGoogle Scholar
  119. 119.
    Schmidbaur H, Malisch W (1971) Chem Ber 104:150–159CrossRefGoogle Scholar
  120. 120.
    Schmidpeter A, Jochem G (1992) Tetrahedron Lett 33:471–474CrossRefGoogle Scholar
  121. 121.
    Schmidpeter A, Nöth H, Jochem G, Schrödel H-P, Karaghiosoff K (1995) Chem Ber 128:379–393CrossRefGoogle Scholar
  122. 122.
    Schmidpeter A, Jochem G, Robl C, Nöth H (1997) J Organomet Chem 529:87–102CrossRefGoogle Scholar
  123. 123.
    Schrödel H-P, Schmidpeter A, Nöth H (1996) Heteroat Chem 7:355–358CrossRefGoogle Scholar
  124. 124.
    Jochem G, Breitsameter F, Schier A, Schmidpeter A (1996) Heteroat Chem 7:239–247CrossRefGoogle Scholar
  125. 125.
    Schuhmann H, Reiher F-W (1984) J Organomet Chem 269:21–27CrossRefGoogle Scholar
  126. 126.
    Rufanov KA, Müller BH, Spannenberg A, Rosenthal U (2005) New J Chem 30:29–31CrossRefGoogle Scholar
  127. 127.
    Schmidbaur H, Gasser O (1976) Angew Chem Int Ed Eng 15:502–503CrossRefGoogle Scholar
  128. 128.
    Smyslova EI, Perevalova EG, Dyadchenko VP, Grandberg KI, Slovokhotov YL, Struchkov YT (1981) J Organomet Chem 215:269–279CrossRefGoogle Scholar
  129. 129.
    Gimeno MC, Laguna A, Laguna M, Sanmartin F, Jones PG (1993) Organometallics 12:3984–3991CrossRefGoogle Scholar
  130. 130.
    Vicente J, Chicote M-T, Saura-Llamas I, Jones PG, Meyer-Bäse K, Erdbrügger CF (1988) Organometallics 7:997–1006CrossRefGoogle Scholar
  131. 131.
    Vicente J, Chicote M-T, Lagunas M-C, Jones PG, Ahrens B (1997) Inorg Chem 36:4938–4944CrossRefGoogle Scholar
  132. 132.
    Vicente J, Chicote M-T, Cayuelas JA, Fernandez-Baeza J, Jones PG, Sheldrick GM, Espinet P (1985) J Chem Soc Dalton Trans 1163–1168Google Scholar
  133. 133.
    Schmidbaur H, Schier A (2012) Chem Soc Rev 41:370–412PubMedCrossRefGoogle Scholar
  134. 134.
    Vicente J, Singhal AR, Jones PG (2002) Organometallics 21:5887–5900CrossRefGoogle Scholar
  135. 135.
    Schmidbaur H, Scherbaum F, Huber B, Müller G (1988) Angew Chem Int Ed Eng 27:419–421CrossRefGoogle Scholar
  136. 136.
    Alcarazo M, Radkowski K, Mehler G, Goddard R, Fürstner A (2013) Chem Commun 49:3140–3142CrossRefGoogle Scholar
  137. 137.
    Vicente J, Chicote MT (1999) Coord Chem Rev 193–195:1143–1161CrossRefGoogle Scholar
  138. 138.
    Vicente J, Chicote MT, Lagumas M-C (1999) Helv Chim Acta 82:1202–1210CrossRefGoogle Scholar
  139. 139.
    Vicente J, Chicote M-T, Guerrero R, Jones PG (1996) J Am Chem Soc 118:699–700CrossRefGoogle Scholar
  140. 140.
    Sundermeyer J, Weber K, Nürnberg O (1992) J Chem Soc Chem Commun 1631–1633Google Scholar
  141. 141.
    Sundermeyer J, Putterlik J, Pritzkow H (1993) Chem Ber 126:289–296CrossRefGoogle Scholar
  142. 142.
    Sundermeyer J, Weber K, Pritzkow H (1993) Angew Chem 105:751–753CrossRefGoogle Scholar
  143. 143.
    Li X, Wang A, Wang L, Sun H, Harms K, Sundermeyer J (2007) Organometallics 27:1411–1413CrossRefGoogle Scholar
  144. 144.
    Schrock RR, Hoveyda AH (2003) Angew Chem Int Ed 42:4592–4633CrossRefGoogle Scholar
  145. 145.
    Li X, Schopf M, Stephan J, Harms K, Sundermeyer J (2002) Organometallics 21:2356–2358CrossRefGoogle Scholar
  146. 146.
    Kreissl FR, Stueckler P (1976) J Organomet Chem 110:C9–C11CrossRefGoogle Scholar
  147. 147.
    Valyaev DA, Lugan N, Lavigne G, Ustynyuk NA (2008) Organometallics 27:5180–5183CrossRefGoogle Scholar
  148. 148.
    Kreissl FR, Stueckler P, Meineke EW (1977) Chem Ber 110:3040–3045CrossRefGoogle Scholar
  149. 149.
    Filippou AC, Wössner D, Kociok-Köhn G, Hinz I (1997) J Organomet Chem 541:333–343CrossRefGoogle Scholar
  150. 150.
    Zurawinski R, Lepetit C, Canac Y, Mikolajczyk M, Chauvin R (2009) Inorg Chem 48:2147–2155PubMedCrossRefGoogle Scholar
  151. 151.
    Romero PE, Piers WE, McDonald R (2004) Angew Chem Int Ed 43:6161–6165CrossRefGoogle Scholar
  152. 152.
    Romero PE, Piers WE (2005) J Am Chem Soc 127:5032–5033PubMedCrossRefGoogle Scholar
  153. 153.
    Wenzel AG, Grubbs RH (2006) J Am Chem Soc 128:16048–16049PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Van der Eide EF, Romero PE, Piers WE (2008) J Am Chem Soc 130:4485–4491PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Lehrstuhl für Anorganische Chemie IIFakultät für Chemie und BiochemieBochumGermany

Personalised recommendations