Sulfur Ylides in Organic Synthesis and Transition Metal Catalysis

  • Rik Oost
  • James D. Neuhaus
  • Jérémy Merad
  • Nuno Maulide
Part of the Structure and Bonding book series (STRUCTURE, volume 177)


Sulfur-based ylides have long been used for a number of classical transformations, in particular for the synthesis of small ring systems and various rearrangement reactions. By combining the unorthodox reactivity of such ylides with the strength and flexibility of transition-metal catalysis, a growing number of groups have in recent years looked to expand their application in organic synthesis. This chapter aims to summarise recent developments in transition-metal-catalysed sulfonium/sulfoxonium ylide reactions as well as to offer historical perspective. In overviewing the successes in this area, the authors hope to encourage others into this growing field.


Asymmetric catalysis One-carbon synthon Sulfonium ylides Sulfoxonium ylides Transition-metal catalysis 


  1. 1.
    Bravo P, Fronza G, Ticozzi C, Gaudiano G (1974) J Organomet Chem 74:143–154Google Scholar
  2. 2.
    Weber L (1983) Angew Chem Int Ed 22:516–528Google Scholar
  3. 3.
    Koezuka H, Matsubayashi G, Tanaka T (1974) Inorg Chem 13:443–446Google Scholar
  4. 4.
    Sabounchei SJ, Akhlaghi Bagherjeri F, Hosseinzadeh M, Boskovic C, Gable RW (2014) C R Chim 17:1257–1263Google Scholar
  5. 5.
    Sabounchei SJ, Akhlaghi Bagherjeri F, Boskovic C, Gable RW (2013) J Mol Struct 1046:39–43Google Scholar
  6. 6.
    Sabounchei SJ, Akhlaghi Bagherjeri F, Mozafari Z, Boskovic C, Gable RW, Karamian R, Asadbegy M (2013) Dalton Trans 42:2520–2529PubMedGoogle Scholar
  7. 7.
    Kawafune I, Matsubayashi G-E (1983) Inorg Chim Acta 70:1–5Google Scholar
  8. 8.
    Sabounchei SJ, Hashemi A (2014) Inorg Chem Commun 47:123–127Google Scholar
  9. 9.
    Sabounchei SJ, Yousefi A, Ahmadianpoor M, Hashemi A, Bayat M, Sedghi A, Akhlaghi Bagherjeri F, Gable RW (2016) Polyhedron 117:273–282Google Scholar
  10. 10.
    Sabounchei SJ, Hashemi A, Sedghi A, Bayat M, Akhlaghi Bagherjeri F, Gable RW (2017) J Mol Struct 1135:174–185Google Scholar
  11. 11.
    Sabounchei SJ, Ahmadianpoor M, Yousefi A, Hashemi A, Bayat M, Sedghi A, Akhlaghi Bagherjeri F, Gable RW (2016) RSC Adv 6:28308–28315Google Scholar
  12. 12.
    Clagett M, Gooch A, Graham P, Holy N, Mains B, Strunk J (1976) J Org Chem 41:4033–4035Google Scholar
  13. 13.
    Lu L-Q, Chen J-R, Xiao W-J (2012) Acc Chem Res 45:1278–1293PubMedGoogle Scholar
  14. 14.
    Chen J-R, Dong W-R, Candy M, Pan F-F, Jörres M, Bolm C (2012) J Am Chem Soc 134:6924–6927PubMedGoogle Scholar
  15. 15.
    Hatcher JM, Coltart DM (2010) J Am Chem Soc 132:4546–4547PubMedGoogle Scholar
  16. 16.
    Li T-R, Tan F, Lu L-Q, Wei Y, Wang Y-N, Liu Y-Y, Yang Q-Q, Chen J-R, Shi D-Q, Xiao W-J (2014) Nat Commun 5:5500PubMedGoogle Scholar
  17. 17.
    Wang Q, Qi X, Lu L-Q, Li T-R, Yuan Z-G, Zhang K, Li B-J, Lan Y, Xiao W-J (2016) Angew Chem Int Ed 55:2840–2844Google Scholar
  18. 18.
    Plietker B (2008) Iron catalysis in organic chemistry: reactions and applications. Wiley-VCH, WeinheimGoogle Scholar
  19. 19.
    Wang Q, Li T-R, Lu L-Q, Li M-M, Zheng K, Xiao W-J (2016) J Am Chem Soc 138:8360–8363PubMedGoogle Scholar
  20. 20.
    Detz RJ (2009) Triazole-based P,N ligands: discovery of an enantioselective copper catalysed propargylic amination reaction. PhD thesisGoogle Scholar
  21. 21.
    Nishibayashi Y, Uemura S (2008) Metal vinylidenes and allenylidenes in catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 217–250Google Scholar
  22. 22.
    Xu X, Doyle MP (2014) Acc Chem Res 47:1396–1405PubMedPubMedCentralGoogle Scholar
  23. 23.
    Deng Y, Massey LA, Zavalij PY, Doyle MP (2017) Angew Chem Int Ed 56:7479–7483Google Scholar
  24. 24.
    Kramer S, Skrydstrup T (2012) Angew Chem Int Ed 51:4681–4684Google Scholar
  25. 25.
    Huang X, Goddard R, Maulide N (2010) Angew Chem Int Ed 49:8979–8983Google Scholar
  26. 26.
    Huang X, Peng B, Luparia M, Gomes LFR, Veiros LF, Maulide N (2012) Angew Chem Int Ed 51:8886–8890Google Scholar
  27. 27.
    Klimczyk S, Huang X, Kählig H, Veiros LF, Maulide N (2015) J Org Chem 80:5719–5729PubMedGoogle Scholar
  28. 28.
    Klimczyk S, Misale A, Huang X, Maulide N (2015) Angew Chem Int Ed 54:10365–10369Google Scholar
  29. 29.
    Sabbatani J, Huang X, Veiros LF, Maulide N (2014) Chem Eur J 20:10636–10639PubMedGoogle Scholar
  30. 30.
    Unthank MG, Hussain N, Aggarwal VK (2006) Angew Chem Int Ed 45:7066–7069Google Scholar
  31. 31.
    Yar M, McGarrigle EM, Aggarwal VK (2008) Angew Chem Int Ed 47:3784–3786Google Scholar
  32. 32.
    Unthank MG, Tavassoli B, Aggarwal VK (2008) Org Lett 10:1501–1504PubMedGoogle Scholar
  33. 33.
    Matlock JV, Svejstrup TD, Songara P, Overington S, McGarrigle EM, Aggarwal VK (2015) Org Lett 17:5044–5047PubMedGoogle Scholar
  34. 34.
    Klose I, Misale A, Maulide N (2016) J Org Chem 81:7201–7210PubMedGoogle Scholar
  35. 35.
    Huang X, Goddard R, Maulide N (2013) Chem Commun 49:4292–4294Google Scholar
  36. 36.
    Liu Y-Y, Yang X-H, Huang X-C, Wei W-T, Song R-J, Li J-H (2013) J Org Chem 78:10421–10426PubMedGoogle Scholar
  37. 37.
    Wang L, He W, Yu Z (2013) Chem Soc Rev 42:599–621PubMedGoogle Scholar
  38. 38.
    Srogl J, Allred GD, Liebeskind LS (1997) J Am Chem Soc 119:12376–12377Google Scholar
  39. 39.
    Hooper JF, Chaplin AB, González-Rodríguez C, Thompson AL, Weller AS, Willis MC (2012) J Am Chem Soc 134:2906–2909PubMedGoogle Scholar
  40. 40.
    Prier CK, Rankic DA, MacMillan DWC (2013) Chem Rev 113:5322–5363PubMedPubMedCentralGoogle Scholar
  41. 41.
    Shaw MH, Twilton J, MacMillan DWC (2016) J Org Chem 81:6898–6926PubMedPubMedCentralGoogle Scholar
  42. 42.
    Xia X-D, Lu L-Q, Liu W-Q, Chen D-Z, Zheng Y-H, Wu L-Z, Xiao W-J (2016) Chem Eur J 22:8432–8437PubMedGoogle Scholar
  43. 43.
    Trost BM (1966) J Am Chem Soc 88:1587–1588Google Scholar
  44. 44.
    Burtoloso ACB, Dias RMP, Leonarczyk IA (2013) Eur J Org Chem 2013:5005–5016Google Scholar
  45. 45.
    Zhang Z, Wang J (2008) Tetrahedron 64:6577–6605Google Scholar
  46. 46.
    Deng Y, Qiu H, Srinivas HD, Doyle MP (2016) Curr Org Chem 20:61–81Google Scholar
  47. 47.
    Doyle MP, Duffy R, Ratnikov M, Zhou L (2010) Chem Rev 110:704–724PubMedGoogle Scholar
  48. 48.
    Peña-López M, Beller M (2017) Angew Chem Int Ed 56:46–48Google Scholar
  49. 49.
    Moody CJ (2007) Angew Chem Int Ed 46:9148–9150Google Scholar
  50. 50.
    Cohen T, Herman G, Chapman TM, Kuhn D (1974) J Am Chem Soc 96:5627–5628Google Scholar
  51. 51.
    Cimetière B, Julia M (1991) Synlett 1991:271–272Google Scholar
  52. 52.
    Müller P, Fernandez D, Nury P, Rossier J-C (1999) Helv Chim Acta 82:935–945Google Scholar
  53. 53.
    Duan Y, Lin J-H, Xiao J-C, Gu Y-C (2016) Org Lett 18:2471–2474PubMedGoogle Scholar
  54. 54.
    Duan Y, Lin J-H, Xiao J-C, Gu Y-C (2017) Chem Commun 53:3870–3873Google Scholar
  55. 55.
    Baldwin JE, Adlington RM, Godfrey CRA, Gollins DW, Vaughan JG (1993) J Chem Soc Chem Commun:1434–1435Google Scholar
  56. 56.
    Mangion IK, Nwamba IK, Shevlin M, Huffman MA (2009) Org Lett 11:3566–3569PubMedGoogle Scholar
  57. 57.
    Mangion IK, Weisel M (2010) Tetrahedron Lett 51:5490–5492Google Scholar
  58. 58.
    Molinaro C, Bulger PG, Lee EE, Kosjek B, Lau S, Gauvreau D, Howard ME, Wallace DJ, O’Shea PD (2012) J Org Chem 77:2299–2309PubMedGoogle Scholar
  59. 59.
    Mangion IK, Ruck RT, Rivera N, Huffman MA, Shevlin M (2011) Org Lett 13:5480–5483PubMedGoogle Scholar
  60. 60.
    Phelps AM, Chan VS, Napolitano JG, Krabbe SW, Schomaker JM, Shekhar S (2016) J Org Chem 81:4158–4169PubMedGoogle Scholar
  61. 61.
    Vaitla J, Bayer A, Hopmann KH (2017) Angew Chem Int Ed 56:4277–4281Google Scholar
  62. 62.
    Gandelman M, Rybtchinski B, Ashkenazi N, Gauvin RM, Milstein D (2001) J Am Chem Soc 123:5372–5373PubMedGoogle Scholar
  63. 63.
    Gandelman M, Naing KM, Rybtchinski B, Poverenov E, Ben-David Y, Ashkenazi N, Gauvin RM, Milstein D (2005) J Am Chem Soc 127:15265–15272PubMedGoogle Scholar
  64. 64.
    Suarez AIO, del Río MP, Remerie K, Reek JNH, de Bruin B (2012) ACS Catal 2:2046–2059Google Scholar
  65. 65.
    Padwa A, Hornbuckle SF (1991) Chem Rev 91:263–309Google Scholar
  66. 66.
    Diekmann J (1965) J Org Chem 30:2272–2275Google Scholar
  67. 67.
    Ando W, Yagihara T, Tozune S, Nakaido S, Migita T (1969) Tetrahedron Lett 10:1979–1982Google Scholar
  68. 68.
    Ando W, Yagihara T, Tozune S, Imai I, Suzuki J, Toyama T, Nakaido S, Migita T (1972) J Org Chem 37:1721–1727Google Scholar
  69. 69.
    Gillespie RJ, Porter AEA, Willmott WE (1978) J Chem Soc Chem Commun:83–84Google Scholar
  70. 70.
    Zhang Y, Wang J (2010) Coord Chem Rev 254:941–953Google Scholar
  71. 71.
    Jones AC, May JA, Sarpong R, Stoltz BM (2014) Angew Chem Int Ed 53:2556–2591Google Scholar
  72. 72.
    Sheng Z, Zhang Z, Chu C, Zhang Y, Wang J (2016) Tetrahedron 73:4011–4022Google Scholar
  73. 73.
    Kirmse W, Kapps M (1968) Chem Ber 101:994–1003Google Scholar
  74. 74.
    Doyle MP, Griffin JH, Chinn MS, Van Leusen D (1984) J Org Chem 49:1917–1925Google Scholar
  75. 75.
    Fukuda T, Katsuki T (1997) Tetrahedron Lett 38:3435–3438Google Scholar
  76. 76.
    Davies PW, Albrecht SJC, Assanelli G (2009) Org Biomol Chem 7:1276–1279PubMedGoogle Scholar
  77. 77.
    Greenman KL, Carter DS, Van Vranken DL (2001) Tetrahedron 57:5219–5225Google Scholar
  78. 78.
    Zhou C-Y, Yu W-Y, Chan PWH, Che C-M (2004) J Org Chem 69:7072–7082PubMedGoogle Scholar
  79. 79.
    Peng L, Zhang X, Ma M, Wang J (2007) Angew Chem Int Ed 46:1905–1908Google Scholar
  80. 80.
    Xiao Q, Wang J-B (2007) Acta Chim Sin 65:1733–1735Google Scholar
  81. 81.
    Zhu S-F, Zhou Q-L (2014) Nat Sci Rev 1:580–603Google Scholar
  82. 82.
    Carter DS, Van Vranken DL (2000) Org Lett 2:1303–1305PubMedGoogle Scholar
  83. 83.
    Prabharasuth R, Van Vranken DL (2001) J Org Chem 66:5256–5258PubMedGoogle Scholar
  84. 84.
    Xu X, Li C, Tao Z, Pan Y (2017) Green Chem 19:1245–1249Google Scholar
  85. 85.
    Aviv I, Gross Z (2008) Chem Eur J 14:3995–4005PubMedGoogle Scholar
  86. 86.
    Holzwarth MS, Alt I, Plietker B (2012) Angew Chem Int Ed 51:5351–5354Google Scholar
  87. 87.
    Liao M, Peng L, Wang J (2008) Org Lett 10:693–696PubMedGoogle Scholar
  88. 88.
    Li Y, Shi Y, Huang Z, Wu X, Xu P, Wang J, Zhang Y (2011) Org Lett 13:1210–1213PubMedGoogle Scholar
  89. 89.
    Nishibayashi Y, Ohe K, Uemura S (1995) J Chem Soc Chem Commun:1245–1246Google Scholar
  90. 90.
    Kitagaki S, Yanamoto Y, Okubo H, Nakajima M, Hashimoto S (2001) Heterocycles 54:623–628Google Scholar
  91. 91.
    Aggarwal VK, Ferrara M, Hainz R, Spey SE (1999) Tetrahedron Lett 40:8923–8927Google Scholar
  92. 92.
    Zhang X, Qu Z, Ma Z, Shi W, Jin X, Wang J (2002) J Org Chem 67:5621–5625PubMedGoogle Scholar
  93. 93.
    Ma M, Peng L, Li C, Zhang X, Wang J (2005) J Am Chem Soc 127:15016–15017PubMedGoogle Scholar
  94. 94.
    Trost BM, Hammen RF (1973) J Am Chem Soc 95:962–964Google Scholar
  95. 95.
    Zhang Z, Sheng Z, Yu W, Wu G, Zhang R, Chu W-D, Zhang Y, Wang J (2017) Nat Chem 9:970–976PubMedGoogle Scholar
  96. 96.
    Li Y, Huang Z, Wu X, Xu P-F, Jin J, Zhang Y, Wang J (2012) Tetrahedron 68:5234–5240Google Scholar
  97. 97.
    Miura T, Tanaka T, Yada A, Murakami M (2013) Chem Lett 42:1308–1310Google Scholar
  98. 98.
    Yadagiri D, Anbarasan P (2013) Chem Eur J 19:15115–15119PubMedGoogle Scholar
  99. 99.
    Miki K, Nishino F, Ohe K, Uemura S (2002) J Am Chem Soc 124:5260–5261PubMedGoogle Scholar
  100. 100.
    Kato Y, Miki K, Nishino F, Ohe K, Uemura S (2003) Org Lett 5:2619–2621PubMedGoogle Scholar
  101. 101.
    Davies PW, Albrecht SJC (2008) Chem Commun:238–240Google Scholar
  102. 102.
    Davies PW, Albrecht SJC (2009) Angew Chem Int Ed 48:8372–8375Google Scholar
  103. 103.
    Shapiro ND, Toste FD (2007) J Am Chem Soc 129:4160–4161PubMedGoogle Scholar
  104. 104.
    Li G, Zhang L (2007) Angew Chem Int Ed 46:5156–5159Google Scholar
  105. 105.
    Santos MD, Davies PW (2014) Chem Commun 50:6001–6004Google Scholar
  106. 106.
    Li J, Ji K, Zheng R, Nelson J, Zhang L (2014) Chem Commun 50:4130–4133Google Scholar
  107. 107.
    Zhang H, Wang B, Yi H, Zhang Y, Wang J (2015) Org Lett 17:3322–3325PubMedGoogle Scholar
  108. 108.
    Song Z, Wu Y, Xin T, Jin C, Wen X, Sun H, Xu Q-L (2016) Chem Commun 52:6079–6082Google Scholar
  109. 109.
    Ellis-Holder KK, Peppers BP, Kovalevsky AY, Diver ST (2006) Org Lett 8:2511–2514PubMedGoogle Scholar
  110. 110.
    Nair V, Nair SM, Mathai S, Liebscher J, Ziemer B, Narsimulu K (2004) Tetrahedron Lett 45:5759–5762Google Scholar
  111. 111.
    Lu P, Herrmann AT, Zakarian A (2015) J Org Chem 80:7581–7589PubMedPubMedCentralGoogle Scholar
  112. 112.
    Lin R, Cao L, West FG (2017) Org Lett 19:552–555PubMedGoogle Scholar
  113. 113.
    Qu J-P, Xu Z-H, Zhou J, Cao C-L, Sun X-L, Dai L-X, Tang Y (2009) Adv Synth Catal 351:308–312Google Scholar
  114. 114.
    Xu X, Li C, Xiong M, Tao Z, Pan Y (2017) Chem Commun 53:6219–6222Google Scholar
  115. 115.
    Aggarwal VK, Winn CL (2004) Acc Chem Res 37:611–620PubMedGoogle Scholar
  116. 116.
    McGarrigle EM, Aggarwal VK (2007) Enantioselective organocatalysis: reactions and experimental procedures. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 357–389Google Scholar
  117. 117.
    Aggarwal VK, Abdel-Rahman H, Jones RVH, Lee HY, Reid BD (1994) J Am Chem Soc 116:5973–5974Google Scholar
  118. 118.
    Aggarwal VK, Abdel-Rahman H, Jones RVH, Standen MCH (1995) Tetrahedron Lett 36:1731–1732Google Scholar
  119. 119.
    Aggarwal VK, Thompson A, Jones RVH, Standen M (1995) Tetrahedron Asymmetry 6:2557–2564Google Scholar
  120. 120.
    Aggarwal VK, Abdel-Rahman H, Fan L, Jones RVH, Standen MCH (1996) Chem Eur J 2:1024–1030Google Scholar
  121. 121.
    Aggarwal VK, Alonso E, Hynd G, Lydon KM, Palmer MJ, Porcelloni M, Studley JR (2001) Angew Chem Int Ed 40:1430–1433Google Scholar
  122. 122.
    Aggarwal VK, Alonso E, Bae I, Hynd G, Lydon KM, Palmer MJ, Patel M, Porcelloni M, Richardson J, Stenson RA, Studley JR, Vasse J-L, Winn CL (2003) J Am Chem Soc 125:10926–10940PubMedGoogle Scholar
  123. 123.
    Aggarwal VK, Thompson A, Jones RVH, Standen MCH (1996) J Org Chem 61:8368–8369Google Scholar
  124. 124.
    Aggarwal VK, Alonso E, Fang G, Ferrara M, Hynd G, Porcelloni M (2001) Angew Chem Int Ed 40:1433–1436Google Scholar
  125. 125.
    Fulton JR, Aggarwal VK, de Vicente J (2005) Eur J Org Chem 2005:1479–1492Google Scholar
  126. 126.
    Aggarwal VK, Smith HW, Hynd G, Jones RVH, Fieldhouse R, Spey SE (2000) J Chem Soc Perkin Trans 1:3267–3276Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Rik Oost
    • 1
  • James D. Neuhaus
    • 1
  • Jérémy Merad
    • 1
  • Nuno Maulide
    • 1
  1. 1.Institute of Organic Chemistry of the University of ViennaViennaAustria

Personalised recommendations