Metal Complexes as Structure-Directing Agents for Zeolites and Related Microporous Materials

  • Abigail E. Watts
  • Alessandro Turrina
  • Paul A. Wright
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 175)

Abstract

Metal complexes can act as structure-directing agents (SDAs) for zeolites and zeotypes, either alone or together with additional SDAs in dual-templating approaches. Such complexes include organometallic cobaltocenium ions, alkali metal crown ether complexes, first-row transition-metal (Fe, Co, Ni, Cu) polyamines and thiol-complexed second- and third-row transition metals (Pd, Pt). Their inclusion has been demonstrated in some cases by crystallographic methods but more commonly by spectroscopy (UV-visible, X-ray absorption, Mössbauer). The unique feature of this class of template is that they can not only direct crystallisation but also give solids with homogeneously distributed metal cations or metal oxide species upon calcination, precluding the need for an additional post-synthesis modification step. Materials prepared via this ‘one-pot’ synthetic route have been shown to give shape-selective catalysts for reactions such as the selective catalytic reduction of NO x with ammonia and the hydrogenation, dehydration and oxidative dehydrogenation of small hydrocarbons and oxygenates.

Keywords

Catalysts Metal complexes One-pot synthesis Structure-directing agents Templates Zeolites Zeotypes 

References

  1. 1.
    Wright PA (2007) Microporous framework solids. RSC Publishing, CambridgeGoogle Scholar
  2. 2.
    Herron N (1988) The selective partial oxidation of alkanes using zeolite-based catalysts – phthalocyanine ship-in-bottle species. J Coord Chem 19:25–38CrossRefGoogle Scholar
  3. 3.
    De Vos DE, Meinershagen JL, Bein T (1996) Highly selective epoxidation catalysts derived from intrazeolite trimethyltriazacyclononane-manganese complexes. Angew Chem Int Ed 35:2211–2213CrossRefGoogle Scholar
  4. 4.
    Notari B (1996) Microporous crystalline titanium silicates. Adv Catal 41:253–334. (Elly DD, Haag WO, Gates B, eds)Google Scholar
  5. 5.
    Mambrim JST, Pastore HO, Davanzo CU et al (1993) Synthesis and characterization of chromium silicalite. Chem Mater 5:166–173CrossRefGoogle Scholar
  6. 6.
    Duke CVA, Latham K, Williams CD (1995) Isomorphous substitution of Fe3+ in LTL framework using potassium ferrate (VI). Zeolites 15:213–218CrossRefGoogle Scholar
  7. 7.
    Camblor MA, Lobo RF, Koller H et al (1994) Synthesis and characterization of zincosilicates with the SOD topology. Chem Mater 6:2193–2199CrossRefGoogle Scholar
  8. 8.
    Camblor MA, Villaescusa LA, Diaz-Cabanas MJ (1999) Synthesis of all-silica and high-silica molecular sieves in fluoride media. Top Catal 9:59–76CrossRefGoogle Scholar
  9. 9.
    Wilson ST, Lok BM, Messina CA et al (1982) Aluminophosphate molecular sieves – a new class of microporous crystalline inorganic solids. J Am Chem Soc 104:1146–1147CrossRefGoogle Scholar
  10. 10.
    Flanigen EM, Lok BM, Patton RL et al (1986) Aluminophosphate molecular sieves and the periodic table. Pure Appl Chem 58:1351–1358CrossRefGoogle Scholar
  11. 11.
    Cora F, Alfredsson M, Barker CM et al (2003) Modeling the framework stability and catalytic activity of pure and transition metal-doped zeotypes. J Solid State Chem 176:496–529CrossRefGoogle Scholar
  12. 12.
    Hartmann M, Kevan L (1999) Transition-metal ions in aluminophosphate and silicoaluminophosphate molecular sieves: location, interaction with adsorbates and catalytic properties. Chem Rev 99:635–664CrossRefGoogle Scholar
  13. 13.
    Hartmann M, Kevan L (2002) Substitution of transition metal ions into aluminophosphates and silicoaluminophosphates: characterization and relation to catalysis. Res Chem Intermed 28:625–695CrossRefGoogle Scholar
  14. 14.
    van de Goor G, Freyhardt CC, Behrens P (1995) The cobaltocenium cation [CoIII5-C5H5)2]+: a metal-organic complex as a novel template for the synthesis of clathrasils. Z Anorg Allg Chem 621:311–322CrossRefGoogle Scholar
  15. 15.
    Baerlocher C, McCusker LB, Olson DH (2007) Atlas of zeolite framework types, 6th edn. Elsevier, AmsterdamGoogle Scholar
  16. 16.
    Behrens P, Panz C, Hufnagel V et al (1997) Structure-directed materials syntheses: metal complexes as structure-directing agents for zeolite-type solids. Solid State Ionics 101:229–234CrossRefGoogle Scholar
  17. 17.
    Valyocsik EW (1985) A process for making zeolite ZSM-45. EP0143642 A2Google Scholar
  18. 18.
    Balkus KJ, Biscotto M, Gabrielov AG (1997) The synthesis and characterization of UTD-1: the first large pore zeolite based on a 14 membered ring system. Stud Surf Sci Catal 105:415–421CrossRefGoogle Scholar
  19. 19.
    Lobo RF, Tsapatsis M, Freyhardt CC et al (1997) Characterization of the extra-large-pore zeolite UTD-1. J Am Chem Soc 119:8474–8484CrossRefGoogle Scholar
  20. 20.
    Wessels T, Baerlocher C, McCusker LB et al (1999) An ordered form of the extra-large-pore zeolite UTD-1: synthesis and structure analysis from powder diffraction data. J Am Chem Soc 121:6242–6247CrossRefGoogle Scholar
  21. 21.
    Jiang JX, Yu JH, Corma A (2010) Extra-large-pore zeolites: bridging the gap between micro and mesoporous structures. Angew Chem Int Ed 49:3120–3145CrossRefGoogle Scholar
  22. 22.
    Balkus KJ, Gabrielov AG, Shepelev S (1995) Synthesis of aluminum phosphate molecular sieves using cobalticinium hydroxide. Microporous Mater 3:489–495CrossRefGoogle Scholar
  23. 23.
    Schreyeck L, Caullet P, Mougenel JC et al (1997) Synthesis of AlPO4-16 from fluoride-containing media in the presence of various organic templates. Microporous Mater 11:161–169CrossRefGoogle Scholar
  24. 24.
    Warrender SJ (2007) Structure direction in the formation of zeolitic materials. PhD thesis, University of St AndrewsGoogle Scholar
  25. 25.
    Cotton FA, Wilkinson G, Murillo CA et al (1999) Advanced inorganic chemistry, 6th edn. Wiley, LondonGoogle Scholar
  26. 26.
    Delprato F, Delmotte L, Guth JL et al (1990) Synthesis of new silica-rich cubic and hexagonal faujasites using crown ether-based supramolecules as templates. Zeolites 10:546–552CrossRefGoogle Scholar
  27. 27.
    Burkett SL, Davis ME (1993) Structure-directing effects in the crown ether-mediated syntheses of FAU and EMT zeolites. Microporous Mater 1:265–282CrossRefGoogle Scholar
  28. 28.
    Baerlocher C, McCusker LB, Chiappetta R (1994) Location of the 18-crown-6 template in EMC-2 (EMT) Rietveld refinement of the calcined and as-synthesized forms. Microporous Mater 2:269–280CrossRefGoogle Scholar
  29. 29.
    Dougnier F, Patarin J, Guth J et al (1992) Synthesis, characterization, and catalytic properties of silica-rich faujasite-type zeolite (FAU) and its hexagonal analog (EMT) prepared by using crown-ethers as templates. Zeolites 12:160–166CrossRefGoogle Scholar
  30. 30.
    Anderson MW, Agger JR, Hanif N et al (2001) Crystal growth in framework materials. Solid State Sci 3:809–819CrossRefGoogle Scholar
  31. 31.
    Alfredsson V, Ohsuna T, Terasaki O et al (1993) Investigation of the surface structure of the zeolites FAU and EMT by high-resolution transmission electron microscopy. Angew Chem Int Ed Engl 32:1210–1213CrossRefGoogle Scholar
  32. 32.
    Anderson MW, Pachis KS, Prébin F et al (1991) Intergrowths of cubic and hexagonal polytypes of faujasitic zeolites. J Chem Soc Chem Commun:1660–1664Google Scholar
  33. 33.
    Arhancet JP, Davis ME (1991) Systematic synthesis of zeolites that contain cubic and hexagonal stackings of faujasite sheets. Chem Mater 3:567–569CrossRefGoogle Scholar
  34. 34.
    Newsam JM, Treacy MMJ, Vaughan DEW et al (1989) The structure of zeolite ZSM-20: mixed cubic and hexagonal stackings of faujasite sheets. J Chem Soc Chem Commun:493–495Google Scholar
  35. 35.
    Chatelain T, Patarin J, Fousson E et al (1995) Synthesis and characterization of high-silica zeolite RHO prepared in the presence of 18-crown-6 ether as organic template. Microporous Mater 4:231–238CrossRefGoogle Scholar
  36. 36.
    Ke Q, Sun T, Cheng H et al (2017) Targeted Synthesis of ultrastable high-silica RHO zeolite through alkali metal–crown ether interaction. Chem Asian J 12:1043–1047CrossRefGoogle Scholar
  37. 37.
    Chatelain T, Patarin J, Farré R et al (1996) Synthesis and characterization of 18-crown-6 ether-containing KFI-type zeolite. Zeolites 17:328–333CrossRefGoogle Scholar
  38. 38.
    Robson HE, Shoemaker DP, Ogilvie RA et al (1973) Synthesis and crystal structure of zeolite Rho – a new zeolite related to linde type A. Adv Chem Ser 121:106–115CrossRefGoogle Scholar
  39. 39.
    Kerr GT (1963) Zeolite ZK-5: a new molecular sieve. Science 140:1412CrossRefGoogle Scholar
  40. 40.
    Wright PA, Maple MJ, Slawin AMZ et al (2000) Cation-directed syntheses of novel zeolite-like metalloaluminophosphates STA-6 and STA-7 in the presence of azamacrocycle templates. J Chem Soc Dalton Trans:1243–1248Google Scholar
  41. 41.
    Castro M, Warrender SJ, Wright PA et al (2009) Silicoaluminophosphate molecular sieves STA-7 and STA-14 and their structure-dependent catalytic performance in the conversion of methanol to olefins. J Phys Chem C 113:15731–15741CrossRefGoogle Scholar
  42. 42.
    Maple MJ, Philp EF, Slawin AMZ et al (2001) Azamacrocycles and the azaoxacryptand 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane as structure-directing agents in the synthesis of microporous metalloaluminophosphates. J Mater Chem 11:98–104CrossRefGoogle Scholar
  43. 43.
    Wheatley PS, Morris RE (2006) Calcination of a layered aluminofluorophosphate precursor to form the zeolitic AFO framework. J Mater Chem 16:1035–1037CrossRefGoogle Scholar
  44. 44.
    Bianchi A, Micheloni M, Paoletti P (1991) Thermodynamic aspects of the polyazacycloalkane complexes with cations and anions. Coord Chem Rev 110:17–113CrossRefGoogle Scholar
  45. 45.
    Garcia R, Philp EF, Slawin AMZ et al (2001) Nickel complexed within an azamacrocycle as a structure directing agent in the crystallization of the framework metalloaluminophosphates STA-6 and STA-7. J Mater Chem 11:1421–1427CrossRefGoogle Scholar
  46. 46.
    Garcia R, Coombs TD, Shannon IJ et al (2003) Nickel amine complexes as structure-directing agents for aluminophosphate molecular sieves: a new route to supported nickel catalysts. Top Catal 24:115–124CrossRefGoogle Scholar
  47. 47.
    Deka U, Lezcano-Gonzalez I, Warrender SJ et al (2013) Changing active sites in Cu–CHA catalysts: deNOx selectivity as a function of the preparation method. Microporous Mesoporous Mater 166:144–152CrossRefGoogle Scholar
  48. 48.
    Martínez-Franco R, Moliner M, Franch C et al (2012) Rational direct synthesis methodology of very active and hydrothermally stable Cu-SAPO-34 molecular sieves for the SCR of NOx. Appl Catal B Environ 127:273–280CrossRefGoogle Scholar
  49. 49.
    Martínez-Franco R, Moliner M, Corma A (2014) Direct synthesis design of Cu-SAPO-18, a very efficient catalyst for the SCR of NOx. J Catal 319:36–43CrossRefGoogle Scholar
  50. 50.
    Turrina A, Eschenroeder ECV, Bode BE et al (2015) Understanding the structure directing action of copper–polyamine complexes in the direct synthesis of Cu-SAPO-34 and Cu-SAPO-18 catalysts for the selective catalytic reduction of NO with NH3. Microporous Mesoporous Mater 215:154–167CrossRefGoogle Scholar
  51. 51.
    Picone AL, Warrender SJ, Slawin AMZ et al (2011) A co-templating route to the synthesis of Cu SAPO STA-7, giving an active catalyst for the selective catalytic reduction of NO. Microporous Mesoporous Mater 146:36–47CrossRefGoogle Scholar
  52. 52.
    Eschenroeder ECV, Turrina A, Picone AL et al (2014) Monitoring the activation of copper-containing zeotype catalysts prepared by direct synthesis using in situ Synchrotron infrared microcrystal spectroscopy and complementary techniques. Chem Mater 26:1434–1441CrossRefGoogle Scholar
  53. 53.
    Göltl F, Sautet P, Hermans I (2015) Can dynamics be responsible for the complex multipeak Infrared spectra of NO adsorbed to copper(II) sites in zeolites? Angew Chem Int Ed 54:7799–7804CrossRefGoogle Scholar
  54. 54.
    Wheatley PS, Morris RE (2002) Cyclam as a structure-directing agent in the crystallization of aluminophosphate open framework materials from fluoride media. J Solid State Chem 167:267–273CrossRefGoogle Scholar
  55. 55.
    Irving H, Williams RJP (1953) The stability of transition-metal complexes. J Chem Soc 637:3192–3210CrossRefGoogle Scholar
  56. 56.
    Varadwaj PR, Varadwaj A, Jin B-Y (2015) Ligand(s)-to-metal charge transfer as a factor controlling the equilibrium constants of late first-row transition metal complexes: revealing the Irving–Williams thermodynamical series. Phys Chem Chem Phys 17:805–811CrossRefGoogle Scholar
  57. 57.
    Smith RM, Martell AE (1975) Critical stability constants Vol. 2: Amines. Plenum Press, New YorkCrossRefGoogle Scholar
  58. 58.
    Garcia R, Shannon IJ, Slawin AMZ et al (2003) Synthesis, structure and thermal transformations of aluminophosphates containing the nickel complex [Ni(diethylenetriamine) 2]2+ as a structure directing agent. Microporous Mesoporous Mater 58:91–104; Oliver S, Kuperman A, Lough A et al (1997) Synthesis and characterisation of a fluorinated anionic aluminophosphate UT-6 and its high temperature dehydrofluorination to AlPO4-CHA. J Mater Chem 7:807–812Google Scholar
  59. 59.
    Cui Y, Tong X, Li Y et al (2017) One-pot synthesis of Ni-SSZ-13 zeolite using a nickel amine complex as an efficient organic template. J Mater Sci 52:10156–10162CrossRefGoogle Scholar
  60. 60.
    Xu Y-H, Yu Z, Chen X-F et al (1999) Hydrothermal synthesis and characterization of chabazite-type cobaltoaluminophosphate with an encapsulated cobalt complex: Co3Al3(PO4)6Co(DETA)2·(H2O)3. J Solid State Chem 146:157–162CrossRefGoogle Scholar
  61. 61.
    Ren L, Zhu L, Yang C et al (2011) Designed copper–amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3. Chem Commun 47:9789–9791CrossRefGoogle Scholar
  62. 62.
    Martínez-Franco R, Moliner M, Thogersen JR et al (2013) Efficient one-pot preparation of Cu-SSZ-13 materials using cooperative OSDAs for their catalytic application in the SCR of NOx. ChemCatChem 5:3316–3323CrossRefGoogle Scholar
  63. 63.
    Turrina A, Dugulan AI, Collier JE et al (2017) Synthesis and activation for catalysis of Fe-SAPO-34 prepared using iron polyamine complexes as structure directing agents. Cat Sci Technol 7:4366–4374Google Scholar
  64. 64.
    Kecht J, Mintova S, Bein T (2007) Nanosized zeolites templated by metal-amine complexes. Chem Mater 19:1203–1205CrossRefGoogle Scholar
  65. 65.
    Kecht J, Mintova S, Bein T (2008) Exceptionally small colloidal zeolites templated by Pd and Pt amines. Langmuir 24:4310–4315CrossRefGoogle Scholar
  66. 66.
    Gomez-Lor B, Iglesias M, Cascales C et al (2001) A diamine copper(I) complex stabilized in situ within the ferrierite framework. Catalytic properties. Chem Mater 13:1364–1368CrossRefGoogle Scholar
  67. 67.
    Garcia R (2003) Synthesis and characterisation of aluminophosphate-based materials prepared with nickel complexes as structure directing agents. PhD thesis, University of St AndrewsGoogle Scholar
  68. 68.
    Choi M, Wu Z, Iglesia E (2010) Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J Am Chem Soc 132:9129–9137CrossRefGoogle Scholar
  69. 69.
    Moliner M, Gabay JE, Kliewer CE et al (2016) Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J Am Chem Soc 138:15743–15750CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Abigail E. Watts
    • 1
  • Alessandro Turrina
    • 2
  • Paul A. Wright
    • 1
  1. 1.EaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsUK
  2. 2.Johnson Matthey Technology CentreBillinghamUK

Personalised recommendations