Role of Supramolecular Chemistry During Templating Phenomenon in Zeolite Synthesis

Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 175)

Abstract

In the last years, there is an increasing interest in the use of organic molecules with the appropriate functionalities to interact with other organic molecules and/or inorganic cations through non-covalent supramolecular interactions, as very specific organic structure-directing agents (OSDAs) for zeolite synthesis. These assembled molecular subunits allow directing the crystallization of zeolite structures with particular physico-chemical properties, such as novel framework topologies, crystal size, chemical compositions, acid-base properties, or metal incorporation, which otherwise would not be achieved using “classical” amine or ammonium-based OSDA molecules. Along the present chapter, different zeolite synthesis strategies employing assembled molecular subunits will be presented, including the use of crown ether-based supramolecular templates, metal-organic complexes, aromatic molecules able to interact through π–π interactions, or supramolecular assembled amphiphilic molecules, among others. The most relevant results described in the literature using these supramolecular-based templating routes will be discussed, together with the current challenges and perspectives.

Keywords

Advanced functional materials Heterogeneous catalysis Organic structure-directing agents (OSDAs) Supramolecular chemistry Zeolite synthesis 

Notes

Acknowledgements

This work has been supported by the Spanish Government-MINECO through “Severo Ochoa” (SEV-2016-0683) and MAT2015-71261-R and by the Fundación Ramón Areces through a research contract of the “Life and Materials Science” program.

References

  1. 1.
    Lobo RF, Zones SI, Davis ME (1995) Structure-direction in zeolite synthesis. J Incl Phenom Mol Recognit Chem 21:47–78Google Scholar
  2. 2.
    Moliner M, Rey F, Corma A (2013) Towards the rational design of efficient organic structure-directing agents for zeolite synthesis. Angew Chem Int Ed 52:13880–13889CrossRefGoogle Scholar
  3. 3.
    Barrer RM, Denny PJ (1961) Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates. J Chem Soc 971–982.  https://doi.org/10.1039/JR9610000971
  4. 4.
    Burton AW, Zones SI (2007) Organic molecules in zeolite synthesis: their preparation and structure-directing effects. Stud Surf Sci Catal 168:137–179CrossRefGoogle Scholar
  5. 5.
    Dorset DL, Kennedy GJ, Strohmaier KG, Diaz-Cabañas MJ, Rey F, Corma A (2006) P-derived organic cations as structure-directing agents: synthesis of a high-silica zeolite (ITQ-27) with a two-dimensional 12-ring channel system. J Am Chem Soc 128:8862–8867CrossRefGoogle Scholar
  6. 6.
    Simancas R, Dari D, Velamazan N, Navarro MT, Cantin A, Jorda JL, Sastre G, Corma A, Rey F (2010) Modular organic structure-directing agents for the synthesis of zeolites. Science 330:1219–1222CrossRefGoogle Scholar
  7. 7.
    Burkett SL, Davis ME (1994) Mechanism of structure direction in the synthesis of Si-ZSM-5: an investigation by intermolecular 1H-29Si CP MAS NMR. J Phys Chem 98:4647–4653CrossRefGoogle Scholar
  8. 8.
    Jiang J, Yu J, Corma A (2010) Extra-large-pore zeolites: bridging the gap between micro and mesoporous structures. Angew Chem Int Ed 49:3120–3145CrossRefGoogle Scholar
  9. 9.
    Moliner M, Martinez C, Corma A (2014) Synthesis strategies for preparing useful small pore zeolites and zeotypes for gas separations and catalysis. Chem Mater 26:246–258CrossRefGoogle Scholar
  10. 10.
    Zones SI (2011) Translating new materials discoveries in zeolite research to commercial manufacture. Microporous Mater 144:1–8CrossRefGoogle Scholar
  11. 11.
    De Vos DE, Jacobs PA (2001) Zeolite-based supramolecular assemblies. Stud Surf Sci Catal 137:957–985CrossRefGoogle Scholar
  12. 12.
    Corma A, Rey F, Rius J, Sabater MJ, Valencia S (2004) Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature 431:287–290CrossRefGoogle Scholar
  13. 13.
    Moliner M (2015) Design of zeolites with specific architectures using self-assembled aromatic organic structure directing agents. Top Catal 58:502–512CrossRefGoogle Scholar
  14. 14.
    Ozin GA, Steele MR (1994) The zeolite ligand; zeolite encapsulated semiconductor nanomaterials. Macromol Symp 80:45–61CrossRefGoogle Scholar
  15. 15.
    Delprato F, Delmotte L, Guth JL, Huve L (1990) Synthesis of new silica-rich cubic and hexagonal faujasites using crown-ether based supramolecules as templates. Zeolites 10:546–552CrossRefGoogle Scholar
  16. 16.
    Balkus Jr KJ, Shepelev S (1993) Synthesis of nonasil molecular sieves in the presence of cobalticinium hydroxide. Microporous Mater 1:383–391CrossRefGoogle Scholar
  17. 17.
    Freyhardt CC, Tsapatsis M, Lobo RF, Balkus Jr KJ, Davis ME (1996) A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature 381:295–298CrossRefGoogle Scholar
  18. 18.
    Garcia R, Philp EF, Slawin AMZ, Wright PA, Cox PA (2001) Nickel complexed within an azamacrocycle as a structure directing agent in the crystallization of the framework metalloaluminophosphates STA-6 and STA-7. J Mater Chem 11:1421–1427CrossRefGoogle Scholar
  19. 19.
    Martinez-Franco R, Moliner M, Thogersen JR, Corma A (2013) Efficient one-pot preparation of Cu-SSZ-13 materials using cooperative OSDAs for their catalytic application in the SCR of NOx. ChemCatChem 5:3316–3323CrossRefGoogle Scholar
  20. 20.
    Gomez-Hortigüela L, Perez-Pariente J, Cora F, Catlow RA, Blasco T (2005) Structure-directing role of molecules containing benzyl rings in the synthesis of a large-pore aluminophosphate molecular sieve: an experimental and computational study. J Phys Chem B 109:21539–21548CrossRefGoogle Scholar
  21. 21.
    Beck JS, Vartuli JC, Kennedy GJ, Kresge CT, Roth WJ, Schrammt SE (1994) Molecular or supramolecular templating: defining the role of surfactant chemistry in the formation of microporous and mesoporous molecular sieves. Chem Mater 6:1816–1821CrossRefGoogle Scholar
  22. 22.
    Choi M, Na K, Kim J, Sakamoyo Y, Terasaki O, Ryoo R (2009) Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461:246–249CrossRefGoogle Scholar
  23. 23.
    Sherman J (2003) Molecules that can’t resist templation. Chem Commun 14:1617–1623CrossRefGoogle Scholar
  24. 24.
    Burkett SL, Davis ME (1993) Structure-directing effects in the crown ether-mediated syntheses of FAU and EMT zeolites. Microporous Mater 1:265–282CrossRefGoogle Scholar
  25. 25.
    Parise JB, Corbin DR, Abrams L, Cox DE (1984) Structure of dealuminated Linde Y-zeolite; Si139.7Al52.3O384 and Si173.1Al18.9O384: presence of non-framework Al species. Acta Cryst C40:1493–1497Google Scholar
  26. 26.
    Vogt ETC, Weckhuysen BM (2015) Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem Soc Rev 44:7342–7370CrossRefGoogle Scholar
  27. 27.
    Woltermann GM, Magee JS, Griffith SD (1993) Commercial preparation and characterization of FCC catalysts. Stud Surf Sci Catal 76:105–144CrossRefGoogle Scholar
  28. 28.
    Anderson MW, Pachis KS, Prebin F, Carr SW, Terasaki O, Ohsuna T, Alfreddson V (1991) Intergrowths of cubic and hexagonal polytypes of faujasitic zeolites. J Chem Soc Chem Commun 23:1660–1664CrossRefGoogle Scholar
  29. 29.
    Dougnier F, Patarin J, Guth JL, Anglerot D (1992) Synthesis, characterization, and catalytic properties of silica-rich faujasite-type zeolite (FAU) and its hexagonal analog (EMT) prepared by using crown-ethers as templates. Zeolites 12:160–166CrossRefGoogle Scholar
  30. 30.
    Dwyer J, Karim K (1992) Synthesis of ZSM-20 using crown ethers. Zeolites 12:412–414CrossRefGoogle Scholar
  31. 31.
    Gonzalez G, Soraya-Gonzalez C, Stracke W, Reichelt R, Garcia L (2007) New zeolite topologies based on intergrowths of FAU/EMT systems. Microporous Mesoporous Mater 101:30–42CrossRefGoogle Scholar
  32. 32.
    Feijen EJP, De Vadder K, Bosschaerts MH, Lievens JL, Martens JA, Crobet PJ, Jacobs PA (1994) Role of 18-crown-6 and 15-crown-5 ethers in the crystallization of polytype faujasite zeolites. J Am Chem Soc 116:2950–2957CrossRefGoogle Scholar
  33. 33.
    Baerlocher C, McCusker L, Chiappetta R (1994) Location of the 18crown-6 template in EMC-2 (EMT) Rietveld refinement of the calcined and as-synthesized forms. Microporous Mater 2:269–280CrossRefGoogle Scholar
  34. 34.
    Balkus Jr KJ, Shi J (1997) Synthesis of hexagonal Y type zeolites in the presence of Gd(III) complexes of 18-crown-6. Microporous Mater 11:325–333CrossRefGoogle Scholar
  35. 35.
    Chatelain T, Patarin J, Fousson E, Soulard M, Guth JL, Schulz P (1995) Synthesis and characterization of high-silica zeolite RHO prepared in the presence of 18-crown-6 ether as organic template. Microporous Mater 4:231–238CrossRefGoogle Scholar
  36. 36.
    Araki S, Kiyohara Y, Tanaka S, Miyake Y (2012) Crystallization process of zeolite rho prepared by hydrothermal synthesis using 18-crown-6 ether as organic template. J Colloid Interface Sci 376:28–33CrossRefGoogle Scholar
  37. 37.
    Ke Q, Sun T, Cheng H, Chen H, Liu X, Wei X, Wang S (2017) Targeted synthesis of ultrastable high-silica RHO zeolite through alkali metal-crown ether interaction. Chem Asian J 12(10):1043–1047.  https://doi.org/10.1002/asia.201700303 CrossRefGoogle Scholar
  38. 38.
    Chatelain T, Patarin J, Farre R, Petigny O, Schulz P (1996) Synthesis and characterization of 18-crown-6 ether-containing KFI-type zeolite. Zeolites 17:328–333CrossRefGoogle Scholar
  39. 39.
    Shantz DF, Burton A, Lobo RF (1999) Synthesis, structure solution, and characterization of the aluminosilicate MCM-61: the first aluminosilicate clathrate with 18-membered rings. Microporous Mesoporous Mater 31:61–73CrossRefGoogle Scholar
  40. 40.
    Robson HE, Shoemaker DP, Ogilvie RA, Manor PC (1973) Synthesis and crystal structure of zeolite rho – a new zeolite related to linde type A. Adv Chem Ser 121:106–115CrossRefGoogle Scholar
  41. 41.
    Barrer RM (1948) Synthesis of a zeolitic mineral with chabazite-like sorptive properties. J Chem Soc 2:127–132CrossRefGoogle Scholar
  42. 42.
    Barrer RM, Hinds L, White EA (1953) The hydrothermal chemistry of silicates. Part III. Reactions of analcite and leucite. J Chem Soc 2:1466–1475CrossRefGoogle Scholar
  43. 43.
    Valyocsik EW (1997) US Patent 5,670,131Google Scholar
  44. 44.
    Valyocsik EW (1986) US Patent 4,568,654Google Scholar
  45. 45.
    van de Goor G, Lindlar B, Felsche J, Behrens P (1995) Solvent-free synthesis of clathrasils using metal-organic complexes as structure-directing agents. J Chem Soc Chem Commun 24:2559–2561CrossRefGoogle Scholar
  46. 46.
    Lobo RF, Tsapatsis M, Freyhardt CC, Khodabandeh S, Wagner P, Chen CY, Balkus Jr KJ, Zones SI, Davis ME (1997) Characterization of the extra-large-pore zeolite UTD-1. J Am Chem Soc 119:8474–8484CrossRefGoogle Scholar
  47. 47.
    Balkus Jr KJ, Gabrielov AG, Shepelev S (1995) Synthesis of aluminum phosphate molecular sieves using cobalticinium hydroxide. Microporous Mater 3:489–495CrossRefGoogle Scholar
  48. 48.
    Corma A, Garcia H (2004) Supramolecular host-guest systems in zeolites prepared by ship-in-a-bottle synthesis. Eur J Inorg Chem 6:1143–1164CrossRefGoogle Scholar
  49. 49.
    Balkus Jr KJ, Kowalak S, Ly KT, Hargis DC (1991) Zeolite synthesis with metal chelate complexes. Stud Surf Sci Catal 69:93–99CrossRefGoogle Scholar
  50. 50.
    Zhan BZ, Li XY (1998) A novel ‘build-bottle-around-ship’ method to encapsulate metalloporphyrins in zeolite-Y. An efficient biomimetic catalyst. Chem Commun 3:349–350CrossRefGoogle Scholar
  51. 51.
    Garcia R, Shannon IJ, Slawin AMZ, Zhou W, Cox PA, Wright PA (2003) Synthesis, structure and thermal transformations of aluminophosphates containing the nickel complex [Ni(diethylenetriamine)2]2+ as a structure directing agent. Microporous Mesoporous Mater 58:91–104CrossRefGoogle Scholar
  52. 52.
    Garcia R, Coombsa TD, Shannon IJ, Wright PA, Cox PA (2003) Nickel amine complexes as structure-directing agents for aluminophosphate molecular sieves: a new route to supported nickel catalysts. Top Catal 24:115–124CrossRefGoogle Scholar
  53. 53.
    Cui Y, Tong X, Li Y, Chen M, Zhou W, Ren S, Li L, Yan Z, Zhu L (2017) One-pot synthesis of Ni-SSZ-13 zeolite using a nickel-amine complex as an efficient organic template. J Mater Sci 52(17):10156–10162.  https://doi.org/10.1007/s10853-017-1171-x CrossRefGoogle Scholar
  54. 54.
    Finiels A, Fajula F, Hulea V (2014) Nickel-based solid catalysts for ethylene oligomerization – a review. Cat Sci Technol 4:2412–2426CrossRefGoogle Scholar
  55. 55.
    Ren L, Zhu L, Yang C, Chen Y, Sun Q, Zhang H, Li C, Nawaz F, Meng X, Xiao FS (2011) Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3. Chem Commun 47:9789–9791CrossRefGoogle Scholar
  56. 56.
    Xie L, Liu F, Ren L, Shi X, Xiao FS, He H (2014) Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3. Environ Sci Technol 48:566–572CrossRefGoogle Scholar
  57. 57.
    Picone AL, Warrender SJ, Slawin AMZ, Dawson DM, Ashbrook SE, Wright PA, Thompson SP, Gaberova L, Llewellyn PL, Moulin B, Vimont A, Daturi M, Park MB, Soung SK, Name IS, Hong SB (2011) A co-templating route to the synthesis of Cu SAPO STA-7, giving an active catalyst for the selective catalytic reduction of NO. Microporous Mesoporous Mater 146:36–47CrossRefGoogle Scholar
  58. 58.
    Martinez-Franco R, Moliner M, Concepcion P, Thogersen JR, Corma A (2014) Synthesis, characterization and reactivity of high hydrothermally stable Cu-SAPO-34 materials prepared by “one-pot” processes. J Catal 314:73–82CrossRefGoogle Scholar
  59. 59.
    Martin N, Moliner M, Corma A (2015) High yield synthesis of high-silica chabazite by combining the role of zeolite precursors and tetraethylammonium: SCR of NOx. Chem Commun 51:9965–9968CrossRefGoogle Scholar
  60. 60.
    Martinez-Franco R, Moliner M, Franch C, Kustov A, Corma A (2012) Rational direct synthesis methodology of very active and hydrothermally stable CuSAPO34 molecular sieves for the SCR of NOx. Appl Catal B 127:273–280CrossRefGoogle Scholar
  61. 61.
    Martinez-Franco R, Moliner M, Corma A (2014) Direct synthesis design of Cu-SAPO-18, a very efficient catalyst for the SCR of NOx. J Catal 319:36–43CrossRefGoogle Scholar
  62. 62.
    Zheng N, Stucky GD (2006) A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J Am Chem Soc 128:14278–14280CrossRefGoogle Scholar
  63. 63.
    Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C (1995) Synthesis and reactions of functionalised gold nanoparticles. J Chem Soc Chem Commun 16:1655–1656CrossRefGoogle Scholar
  64. 64.
    Choi M, Wu Z, Iglesia E (2010) Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J Am Chem Soc 132:9129–9137CrossRefGoogle Scholar
  65. 65.
    Moliner M, Gabay JE, Kliewer CE, Carr RT, Guzman J, Casty GL, Serna P, Corma A (2016) Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J Am Chem Soc 138:15743–15750CrossRefGoogle Scholar
  66. 66.
    Otto T, Zones SI, Iglesia E (2016) Challenges and strategies in the encapsulation and stabilization of monodisperse Au clusters within zeolites. J Catal 339:195–208CrossRefGoogle Scholar
  67. 67.
    Wu Z, Goel S, Choi M, Iglesia E (2014) Hydrothermal synthesis of LTA-encapsulated metal clusters and consequences for catalyst stability, reactivity, and selectivity. J Catal 311:458–468CrossRefGoogle Scholar
  68. 68.
    Abate S, Barbera K, Centi G, Lanzafame P, Perathoner S (2016) Disruptive catalysis by zeolites. Cat Sci Technol 6:2485–2501CrossRefGoogle Scholar
  69. 69.
    Kerr GT (1966) Chemistry of crystalline aluminosilicates II. The synthesis and properties of zeolite ZK-4. Inorg Chem 5:1537–1539CrossRefGoogle Scholar
  70. 70.
    Hunt HK, Lew CM, Sun M, Yan Y, Davis ME (2010) Pure-silica zeolite thin films by vapor phase transport of fluoride for low-k applications. Microporous Mesoporous Mater 128:12–18CrossRefGoogle Scholar
  71. 71.
    Hunt HK, Lew CM, Sun M, Yan Y, Davis ME (2010) Pure-silica LTA, CHA, STT, ITW and SVR thin films and powders for low-k applications. Microporous Mesoporous Mater 130:49–55CrossRefGoogle Scholar
  72. 72.
    Martinez-Franco R, Cantin A, Moliner M, Corma A (2014) Synthesis of the small pore silicoaluminophosphate STA-6 by using supramolecular self-assembled organic structure directing agents. Chem Mater 26:4346–4353CrossRefGoogle Scholar
  73. 73.
    Martinez-Franco R, Cantin A, Vidal-Moya A, Moliner M, Corma A (2015) Self-assembled aromatic molecules as efficient organic structure directing agents to synthesize the silicoaluminophosphate SAPO-42 with isolated Si species. Chem Mater 27:2981–2989CrossRefGoogle Scholar
  74. 74.
    Tian P, Wei Y, Ye M, Liu Z (2015) Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal 5:1922–1938CrossRefGoogle Scholar
  75. 75.
    Beale AM, Gao F, Lezcano-Gonzalez I, Peden CH, Szanyi J (2015) Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem Soc Rev 44:7371–7405CrossRefGoogle Scholar
  76. 76.
    Martinez-Franco R, Li Z, Martinez-Triguero J, Moliner M, Corma A (2016) Improving the catalytic performance of SAPO-18 for the methanol-to-olefins (MTO) reaction by controlling the Si distribution and crystal size. Cat Sci Technol 6:2796–2806CrossRefGoogle Scholar
  77. 77.
    Gomez-Hortigüela L, Blasco T, Perez-Pariente J (2007) (S)-( )-N-benzylpyrrolidine-2-methanol: a new and efficient structure directing agent for the synthesis of crystalline microporous aluminophosphates with AFI-type structure. Microporous Mesoporous Mater 100:55–62CrossRefGoogle Scholar
  78. 78.
    Gomez-Hortigüela L, Alvaro-Muñoz T, Bernardo-Maestro B, Perez-Pariente J (2015) Towards chiral distributions of dopants in microporous frameworks: helicoidal supramolecular arrangement of (1R,2S)-ephedrine and transfer of chirality. Phys Chem Chem Phys 17:348–357CrossRefGoogle Scholar
  79. 79.
    Gomez-Hortigüela L, Lopez-Arbeloa F, Cora F, Perez-Pariente J (2008) Supramolecular chemistry in the structure direction of microporous materials from aromatic structure-directing agents. J Am Chem Soc 130:13274–13284CrossRefGoogle Scholar
  80. 80.
    Gomez-Hortigüela L, Hamad S, Lopez-Arbeloa F, Pinar AB, Perez-Pariente J, Cora F (2009) Molecular insights into the self-aggregation of aromatic molecules in the synthesis of nanoporous aluminophosphates: a multilevel approach. J Am Chem Soc 131:16509–16524CrossRefGoogle Scholar
  81. 81.
    Gomez-Hortigüela L, Garcia R, Lopez-Arbeloa F, Cora F, Perez-Pariente J (2010) Structure directing effect of (1S,2S)-2-hydroxymethyl-1-benzyl-1-methylpyrrolidinium in the synthesis of AlPO-5. J Phys Chem C 114:8320–8327CrossRefGoogle Scholar
  82. 82.
    Bernardo-Maestro B, Lopez-Arbeloa F, Perez-Pariente J, Gomez-Hortigüela L (2015) Supramolecular chemistry controlled by conformational space during structure direction of nanoporous materials: self-assembly of ephedrine and pseudoephedrine. J Phys Chem C 119:28214–28225CrossRefGoogle Scholar
  83. 83.
    Bernardo-Maestro B, Roca-MOreno MD, Lopez-Arbeloa F, Perez-Pariente J, Gomez-Hortigüela L (2016) Supramolecular chemistry of chiral (1R,2S)-ephedrine confined within the AFI framework as a function of the synthesis conditions. Catal Today 277:9–20CrossRefGoogle Scholar
  84. 84.
    Alvaro-Muñoz T, Lopez-Arbeloa F, Perez-Pariente J, Gomez-Hortigüela L (2014) (1R,2S)-ephedrine: a new self-assembling chiral template for the synthesis of aluminophosphate frameworks. J Phys Chem C 118:3069–3077CrossRefGoogle Scholar
  85. 85.
    Corma A, Díaz-Cabañas MJ, Jorda JL, Martínez C, Moliner M (2006) High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature 443:842–845CrossRefGoogle Scholar
  86. 86.
    Sun J, Bonneau C, Cantin A, Corma A, Diaz-Cabañas MJ, Moliner M, Zhang D, Li M, Zou X (2009) The ITQ-37 mesoporous chiral zeolite. Nature 458:1154–1157CrossRefGoogle Scholar
  87. 87.
    Corma A, Diaz-Cabañas MJ, Jiang J, Afeworki M, Dorset DL, Soled SL, Strohmaier KG (2010) Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four- and double three-rings. Proc Natl Acad Sci U S A 107:13997–14002CrossRefGoogle Scholar
  88. 88.
    Jiang J, Jorda JL, Yu J, Baumes LA, Mugnaioli E, Diaz-Cabañas MJ, Kolb U, Corma A (2011) Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science 333:1131–1134CrossRefGoogle Scholar
  89. 89.
    Jiang J, Yun Y, Zou X, Jorda JL, Corma A (2015) ITQ-54: a multi-dimensional extra-large pore zeolite with 20 × 14 × 12-ring channels. Chem Sci 6:480–485CrossRefGoogle Scholar
  90. 90.
    Brunner GO, Meier WM (1989) Framework density distribution of zeolite-type tetrahedral nets. Nature 337:146–147CrossRefGoogle Scholar
  91. 91.
    Chen FJ, Xu Y, Du HB (2014) An extra-large-pore zeolite with intersecting 18-, 12-, and 10-membered ring channels. Angew Chem Int Ed 53:9592–9596CrossRefGoogle Scholar
  92. 92.
    Gao ZH, Chen FJ, Xu L, Sun L, Xu Y, Du HB (2016) A stable extra-large-pore zeolite with intersecting 14- and 10-membered-ring channels. Chem Eur J 22:14367–14372CrossRefGoogle Scholar
  93. 93.
    Chen FJ, Gao ZH, Liang LL, Zhang J, Du HB (2016) Facile preparation of extra-large pore zeolite ITQ-37 based on supramolecular assemblies as structure-directing agents. CrystEngComm 18:2735–2741CrossRefGoogle Scholar
  94. 94.
    Eliášová P, Opanasenko M, Wheatley PS, Shamzhy M, Mazur M, Nachtigall P, Roth WJ, Morris RE, Cejka J (2015) The ADOR mechanism for the synthesis of new zeolites. Chem Soc Rev 44:7177–7206CrossRefGoogle Scholar
  95. 95.
    Martinez-Franco R, Sun J, Sastre G, Yun Y, Zou X, Moliner M, Corma A (2014) Supra-molecular assembly of aromatic proton sponges to direct the crystallization of extra-large-pore zeotypes. Proc Math Phys Eng Sci 470(2166):20140107CrossRefGoogle Scholar
  96. 96.
    Staab HA, Saupe T (1988) “Proton sponges” and the geometry of hydrogen bonds: aromatic nitrogen bases with exceptional basicities. Angew Chem Int Ed 27:865–879CrossRefGoogle Scholar
  97. 97.
    Martinez-Franco R, Moliner M, Yun Y, Sun J, Wan W, Zou X, Corma A (2013) Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents. Proc Natl Acad Sci U S A 110:3749–3754CrossRefGoogle Scholar
  98. 98.
    Martínez-Franco R, Paris C, Moliner M, Corma A (2016) Synthesis of highly stable metal-containing extra-large-pore molecular sieves. Phil Trans R Soc A 374:20150075CrossRefGoogle Scholar
  99. 99.
    Shinoda K, Hato M, Hayashi T (1972) Physicochemical properties of aqueous solutions of fluorinated surfactants. J Phys Chem 72:909–914CrossRefGoogle Scholar
  100. 100.
    Milioto S, Crisantino R, De Lisi R, Inglese A (1995) Apparent molar volumes of some hydrogenated and fluorinated alcohols in sodium dodecanoate and sodium perfluorooctanoate aqueous solutions. Langmuir 11:718–724CrossRefGoogle Scholar
  101. 101.
    Gomez-Hortigüela L, Cora F, Perez-Pariente J (2008) Supramolecular assemblies of fluoro-aromatic organic molecules as structure directing agents of microporous materials: different effects of fluorine. Microporous Mesoporous Mater 109:494–504CrossRefGoogle Scholar
  102. 102.
    Gomez-Hortigüela L, Perez-Pariente J, Blasco T (2005) Fluorine-containing organic molecules as structure directing agents in the synthesis of crystalline microporous materials. Part I: Synthesis of AlPO4-5 and SAPO-5 from fluorobenzyl-pyrrolidine. Microporous Mesoporous Mater 78:189–197CrossRefGoogle Scholar
  103. 103.
    Gomez-Hortigüela L, Marquez-Alvarez C, Cora F, Lopez-Arbeloa F, Perez-Pariente J (2008) Cooperative effect of hydroxide and fluorinated organic ions as structure directing agent in the synthesis of crystalline microporous aluminophosphates. Chem Mater 20:987–995CrossRefGoogle Scholar
  104. 104.
    Gomez-Hortigüela L, Marquez-Alvarez C, Sastre E, Cora F, Perez-Pariente J (2006) Effect of fluorine-containing chiral templates on Mg distribution in the structure of MgAPO-5 and its influence on catalytic activity. Catal Today 114:174–182CrossRefGoogle Scholar
  105. 105.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712CrossRefGoogle Scholar
  106. 106.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843CrossRefGoogle Scholar
  107. 107.
    Chal R, Gerardin C, Bulut M, van Donk S (2011) Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem 3:67–81CrossRefGoogle Scholar
  108. 108.
    Vartuli JC, Shih SS, Kresge CT, Beck JS (1998) Potential applications for M41S type mesoporous molecular sieves. Stud Surf Sci Catal 117:13–21CrossRefGoogle Scholar
  109. 109.
    Kloetstra KR, Zandbergen HW, Jansen JC, van Bekkum H (1996) Overgrowth of mesoporous MCM-41 on faujasite. Microporous Mater 6:287–293CrossRefGoogle Scholar
  110. 110.
    Karlsson A, Stöcker M, Schmidt R (1999) Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach. Microporous Mesoporous Mater 27:181–192CrossRefGoogle Scholar
  111. 111.
    Huang L, Guo W, Deng P, Xue Z, Li Q (2000) Investigation of synthesizing MCM-41/ZSM-5 composites. J Phys Chem B 104:2817–2823CrossRefGoogle Scholar
  112. 112.
    Vernimmen J, Meynen V, Herregods SJF, Mertens M, Lebedev OI, Van Tendeloo G, Cool P (2011) New insights in the formation of combined zeolitic/mesoporous materials by using a one-pot templating synthesis. Eur J Inorg Chem 27:4234–4240CrossRefGoogle Scholar
  113. 113.
    Choi M, Cho HS, Srivastava R, Venkatesan C, Choi DH, Ryoo R (2006) Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat Mater 5:718–723CrossRefGoogle Scholar
  114. 114.
    Srivastava R, Choi M, Ryoo R (2006) Mesoporous materials with zeolite framework: remarkable effect of the hierarchical structure for retardation of catalyst deactivation. Chem Commun 43:4489–4491CrossRefGoogle Scholar
  115. 115.
    Choi M, Srivastava R, Ryoo R (2006) Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks. Chem Commun 42:4380–4382CrossRefGoogle Scholar
  116. 116.
    Inayat A, Knoke I, Spiecker E, Schwieger W (2012) Assemblies of mesoporous FAU-type zeolite nanosheets. Angew Chem Int Ed 51:1962–1965CrossRefGoogle Scholar
  117. 117.
    Garcia-Martinez J, Johnson M, Valla J, Li K, Ying JY (2012) Mesostructured zeolite Y – high hydrothermal stability and superior FCC catalytic performance. Cat Sci Technol 2:987–994CrossRefGoogle Scholar
  118. 118.
    Prasomsri T, Jiao W, Weng SZ, Garcia-Martinez J (2015) Mesostructured zeolites: bridging the gap between zeolites and MCM-41. Chem Commun 51:8900–8911CrossRefGoogle Scholar
  119. 119.
    Garcia-Martinez J, Li K, Krishnaiah G (2012) A mesostructured Y zeolite as a superior FCC catalyst – from lab to refinery. Chem Commun 48:11841–11843CrossRefGoogle Scholar
  120. 120.
    Mintova S, Grand J, Valtchev V (2016) Nanosized zeolites: quo vadis? C R Chim 19:183–191CrossRefGoogle Scholar
  121. 121.
    Corma A, Fornes V, Pergher SB, Maesen TLM, Buglass JG (1998) Delaminated zeolite precursors as selective acidic catalysts. Nature 396:353–356CrossRefGoogle Scholar
  122. 122.
    Corma A, Diaz U, Domine ME, Fornes V (2000) AlITQ-6 and TiITQ-6: synthesis, characterization, and catalytic activity. Angew Chem Int Ed 39:1499–1501CrossRefGoogle Scholar
  123. 123.
    Rothw WJ, Cejka J (2011) Two-dimensional zeolites: dream or reality? Cat Sci Technol 1:43–53CrossRefGoogle Scholar
  124. 124.
    Diaz U (2012) Layered materials with catalytic applications: pillared and delaminated zeolites from MWW precursors. ISRN Chem Eng 2012:35. Article ID 537164CrossRefGoogle Scholar
  125. 125.
    Kim J, Park W, Ryoo R (2011) Surfactant-directed zeolite nanosheets: a high-performance catalyst for gas-phase Beckmann rearrangement. ACS Catal 1:337–341CrossRefGoogle Scholar
  126. 126.
    Na K, Jo C, Kim J, Ahn WS, Ryoo R (2011) MFI titanosilicate nanosheets with single-unit-cell thickness as an oxidation catalyst using peroxides. ACS Catal 1:901–907CrossRefGoogle Scholar
  127. 127.
    Wang J, Xu L, Peng H, Wu H, Jiang J, Liu Y, Wu P (2012) Multilayer structured MFI-type titanosilicate: synthesis and catalytic properties in selective epoxidation of bulky molecules. J Catal 288:16–23CrossRefGoogle Scholar
  128. 128.
    Luo HY, Bui L, Gunther WR, Min E, Román-Leshkov Y (2012) Synthesis and catalytic activity of Sn-MFI nanosheets for the Baeyer-Villiger oxidation of cyclic ketones. ACS Catal 2:2695–2699CrossRefGoogle Scholar
  129. 129.
    Kim W, Kim JC, Kim J, Seo Y, Ryoo R (2013) External surface catalytic sites of surfactant-tailored nanomorphic zeolites for benzene isopropylation to cumene. ACS Catal 3:192–195CrossRefGoogle Scholar
  130. 130.
    Luo HY, Michaelis VK, Hodges S, Griffin RG, Román-Leshkov Y (2015) One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chem Sci 6:6320–6324CrossRefGoogle Scholar
  131. 131.
    Margarit VJ, Martinez-Armero M, Navarro MT, Martinez C, Corma A (2015) Direct dual-template synthesis of MWW zeolite monolayers. Angew Chem Int Ed 54:13724–13728CrossRefGoogle Scholar
  132. 132.
    Seo Y, Lee S, Jo C, Ryoo R (2013) Microporous aluminophosphate nanosheets and their nanomorphic zeolite analogues tailored by hierarchical structure-directing amines. J Am Chem Soc 135:8806–8809CrossRefGoogle Scholar
  133. 133.
    Gallego EM, Portilla MT, Paris C, León-Escamilla A, Boronat M, Moliner M, Corma A (2017) “Ab initio” synthesis of zeolites for preestablished catalytic reactions. Science 355:1051–1054CrossRefGoogle Scholar
  134. 134.
    Diaz-Cabañas MJ, Camblor MA, Corell C, Corma A (2000) US Patent 6,077,498Google Scholar
  135. 135.
    Sastre G, Catlow RA, Corma A (1999) Diffusion of benzene and propylene in MCM-22 zeolite. A molecular dynamics study. J Phys Chem B 103:5187–5196CrossRefGoogle Scholar
  136. 136.
    Xu D, Ma Y, Jing Z, Han L, Singh B, Feng J, Shen X, Cao F, Oleynikov P, Sun H, Terasaki O, Che S (2014) π–π interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets. Nat Commun 5:4262Google Scholar
  137. 137.
    Xu D, Jing Z, Cao F, Sun H, Che S (2014) Surfactants with aromatic-group tail and single quaternary ammonium head for directing single-crystalline mesostructured zeolite nanosheets. Chem Mater 26:4612–4619CrossRefGoogle Scholar
  138. 138.
    Schmidt JE, Deem MW, Davis ME (2014) Synthesis of a specified, silica molecular sieve by using computationally predicted organic structure-directing agents. Angew Chem Int Ed 53:8372–8374CrossRefGoogle Scholar
  139. 139.
    Moliner M, Serna P, Cantín A, Sastre G, Díaz-Cabañas MJ, Corma A (2008) Synthesis of the Ti-silicate form of BEC polymorph of B-zeolite assisted by molecular modeling. J Phys Chem C 112:19547–19554CrossRefGoogle Scholar
  140. 140.
    Brand SK, Schmidt JE, Deem MW, Daeyaert F, Ma Y, Terasaki O, Orazov M, Davis ME (2017) Enantiomerically enriched, polycrystalline molecular sieves. Proc Natl Acad Sci U S A 114:5101–5106CrossRefGoogle Scholar
  141. 141.
    Li D, Yu J (2016) AIEgens-functionalized inorganic-organic hybrid materials: fabrications and applications. Small 12:6478–6494CrossRefGoogle Scholar
  142. 142.
    Gigli L, Arletti R, Tabacchi G, Fois E, Vitillo JG, Martra G, Agostini G, Quartieri S, Vezzalini G (2014) Close-packed dye molecules in zeolite channels self-assemble into supramolecular nanoladders. J Phys Chem C 118:15732–15743CrossRefGoogle Scholar
  143. 143.
    Sola-Llano R, Martínez-Martínez V, Fujita Y, Gomez-Hortigüela L, Alfayate A, Uji-i H, Perez-Pariente J, Lopez-Arbeloa I (2016) Formation of a nonlinear optical host-guest hybrid material by tight confinement of LDS 722 into aluminophosphate 1D nanochannels. Chem Eur J 22:15700–15711CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones CientíficasValenciaSpain

Personalised recommendations