Advertisement

Recent Advances in Phthalocyanine-Based Functional Molecular Materials

  • Yongzhong Bian
  • Jianzhuang JiangEmail author
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 172)

Abstract

In this chapter, we wish to review the recent progress in the application of phthalocyanines as functional molecular materials including (1) semiconducting materials for organic photovoltaic cells and organic field effect transistors, (2) functional organic dyes as photosensitizers for photodynamic therapy and dye-sensitized solar cells, and (3) single-molecule magnets. The structure–function relationship has been highlighted on the bases of selected examples since 2010, which hopefully will be informative for the future developments of phthalocyanine chemistry and related materials science.

Keywords

Dye-sensitized solar cell (DSSC) Organic field effect transistor (OFET) Organic photovoltaic cell (OPVC) Photodynamic therapy (PDT) Phthalocyanine Single-molecule magnet (SMM) 

Notes

Acknowledgement

Financial support from the Natural Science Foundation of China, National Key Basic Research Program of China (Grant Nos. 2012CB224801 and 2013CB933400), Beijing Natural Science Foundation, and Fundamental Research Funds for the Central Universities is gratefully acknowledged.

References

  1. 1.
    Leznoff CC, Lever ABP (eds) (1989) Phthalocyanines: properties and applications. VCH, CambridgeGoogle Scholar
  2. 2.
    McKeown NB (1998) Phthalocyanine materials: structure, synthesis and function. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Kadish KM, Smith KM, Guilard R (eds) (2003) Phthalocyanines: synthesis, vol 15, The porphyrin handbook. Academic, San DiegoGoogle Scholar
  4. 4.
    Kadish KM, Smith KM, Guilard R (eds) (2003) Phthalocyanines: structural characterization, vol 20, The porphyrin handbook. Academic, San DiegoGoogle Scholar
  5. 5.
    Kadish KM, Smith KM, Guiland R (eds) (2003) Phthalocyanines: spectroscopic and electrochemical characterization, vol 16, The porphyrin handbook. Academic, San DiegoGoogle Scholar
  6. 6.
    Peumans P, Uchida S, Forrest SR (2003) Nature 425(6954):158–162CrossRefGoogle Scholar
  7. 7.
    Horowitz G (1998) Adv Mater 10(5):365–377CrossRefGoogle Scholar
  8. 8.
    Huang Q, Evmenenko GA, Dutta P, Lee P, Armstrong NR, Marks TJ (2005) J Am Chem Soc 127(29):10227–10242CrossRefGoogle Scholar
  9. 9.
    Bonnett R (1995) Chem Soc Rev 24(1):19–33CrossRefGoogle Scholar
  10. 10.
    He J, Benkoe G, Korodi F, Polivka T, Lomoth R, Kermark B, Sun L, Hagfeldt A, Sundstroem V (2002) J Am Chem Soc 124(17):4922–4932CrossRefGoogle Scholar
  11. 11.
    Ishikawa N, Sugita M, Ishikawa T, Koshihara S, Kaizu Y (2003) J Am Chem Soc 125(29):8694–8695CrossRefGoogle Scholar
  12. 12.
    de la Torre G, Vazquez P, Agullo-Lopez F, Torres T (2004) Chem Rev 104(9):3723–3750CrossRefGoogle Scholar
  13. 13.
    Sorokin AB (2013) Chem Rev 113(10):8152–8191CrossRefGoogle Scholar
  14. 14.
    Mele G, Del Sole R, Vasapollo G, Garcia-Lopez E, Palmisano L, Schiavello M (2003) J Catal 217(2):334–342CrossRefGoogle Scholar
  15. 15.
    Reetz MT, Jiao N (2006) Angew Chem Int Ed 45(15):2416–2419CrossRefGoogle Scholar
  16. 16.
    Zhang QM, Li H, Poh M, Xia F, Cheng ZY, Xu H, Huang C (2002) Nature 419(6904):284–287CrossRefGoogle Scholar
  17. 17.
    Somani PR, Radhakrishnan S (2003) Mater Chem Phys 77(1):117–133CrossRefGoogle Scholar
  18. 18.
    Gryko D, Li J, Diers JR, Roth KM, Bocian DF, Kuhr WG, Lindsey JS (2001) J Mater Chem 11(4):1162–1180CrossRefGoogle Scholar
  19. 19.
    van Nostrum CF, Picken SJ, Schouten A, Nolte RJM (1995) J Am Chem Soc 117(40):9957–9965CrossRefGoogle Scholar
  20. 20.
    Matsushita O, Derkacheva VM, Muranaka A, Shimizu S, Uchiyama M, Luk’Yanets EA, Kobayashi N (2012) J Am Chem Soc 134(7):3411–3418CrossRefGoogle Scholar
  21. 21.
    Wang H, Qi D, Xie Z, Cao W, Wang K, Shang H, Jiang J (2013) Chem Commun 49(9):889–891CrossRefGoogle Scholar
  22. 22.
    Bottari G, de la Torre G, Guldi DM, Torres T (2010) Chem Rev 110(11):6768–6816CrossRefGoogle Scholar
  23. 23.
    Bottari G, de la Torre G, Torres T (2015) Acc Chem Res 48(4):900–910CrossRefGoogle Scholar
  24. 24.
    Spitler EL, Dichtel WR (2010) Nat Chem 2(8):672–677CrossRefGoogle Scholar
  25. 25.
    Imahori H, Umeyama T, Kurotobi K, Takano Y (2012) Chem Commun 48(34):4032–4045CrossRefGoogle Scholar
  26. 26.
    de la Torre G, Claessens CG, Torres T (2007) Chem Commun 43(20):2000–2015CrossRefGoogle Scholar
  27. 27.
    Abel M, Clair S, Ourdjini O, Mossoyan M, Porte L (2011) J Am Chem Soc 133(5):1203–1205CrossRefGoogle Scholar
  28. 28.
    Baeg K, Binda M, Natali D, Caironi M, Noh Y (2013) Adv Mater 25(31):4267–4295CrossRefGoogle Scholar
  29. 29.
    Urdampilleta M, Klyatskaya S, Cleuziou JP, Ruben M, Wernsdorfer W (2011) Nat Mater 10(7):502–506CrossRefGoogle Scholar
  30. 30.
    Martinez-Diaz MV, de la Torre G, Torres T (2010) Chem Commun 46(38):7090–7108CrossRefGoogle Scholar
  31. 31.
    Walter MG, Rudine AB, Wamser CC (2010) J Porphyrins Phthalocyanines 14(9):759–792CrossRefGoogle Scholar
  32. 32.
    Wang X, Tamiaki H (2010) Energy Environ Sci 3(1):94–106CrossRefGoogle Scholar
  33. 33.
    Bottari G, Trukhina O, Ince M, Torres T (2012) Coord Chem Rev 256(21–22):2453–2477CrossRefGoogle Scholar
  34. 34.
    Ragoussi M, Ince M, Torres T (2013) Eur J Org Chem 2013(29):6475–6489CrossRefGoogle Scholar
  35. 35.
    Singh VK, Kanaparthi RK, Giribabu L (2014) RSC Adv 4(14):6970–6984CrossRefGoogle Scholar
  36. 36.
    Martin-Gomis L, Fernandez-Lazaro F, Sastre-Santos A (2014) J Mater Chem A 2(38):15672–15682CrossRefGoogle Scholar
  37. 37.
    Imahori H, Kurotobi K, Walter MG, Rudine AB, Wamser CC (2012) Porphyrin and phthalocyanine based solar cells. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science, vol 18. World Scientific, Singapore, pp 57–121Google Scholar
  38. 38.
    Kesters J, Verstappen P, Kelchtermans M, Lutsen L, Vanderzande D, Maes W (2015) Adv Energy Mater. doi: 10.1002/aenm.201500218 Google Scholar
  39. 39.
    Trogler WC (2012) Struct Bond 142:91–118CrossRefGoogle Scholar
  40. 40.
    Bill NL, Trukhina O, Sessler JL, Torres T (2015) Chem Commun 51(37):7781–7794CrossRefGoogle Scholar
  41. 41.
    Rodriguez-Mendez ML, Apetrei C, Medina-Plaza C, Munoz R, de Saja JA (2014) Sensor arrays based on phthalocyanines: new developments on nanostructured and biomimetic electrochemical sensors. In: Lvova L, Kirsanov D, Di Natale C, Legin A (eds) Multisensor systems for chemical analysis. Pan Stanford, Singapore, pp 139–179. doi: 10.1201/b15491-5 CrossRefGoogle Scholar
  42. 42.
    Josefsen LB, Boyle RW (2012) Theranostics 2(9):916–966CrossRefGoogle Scholar
  43. 43.
    Ishii K (2012) Coord Chem Rev 256(15–16):1556–1568CrossRefGoogle Scholar
  44. 44.
    Sekkat N, van den Bergh H, Nyokong T, Lange N (2012) Molecules 17:98–144CrossRefGoogle Scholar
  45. 45.
    Ali H, van Lier JE (2010) Porphyrins and phthalocyanines as photosensitizers and radiosensitizers. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science, vol 4. World Scientific, Singapore, pp 1–119Google Scholar
  46. 46.
    Nyokong T (2011) Pure Appl Chem 83(9):1763–1779CrossRefGoogle Scholar
  47. 47.
    Pietrangeli D, Rosa A, Ristori S, Salvati A, Altieri S, Ricciardi G (2013) Coord Chem Rev 257(15–16):2213–2231CrossRefGoogle Scholar
  48. 48.
    Jiang Z, Shao J, Yang T, Wang J, Jia L (2014) J Pharm Biomed 87:98–104CrossRefGoogle Scholar
  49. 49.
    Sergeeva NN, Senge MO (2012) Photochemical transformations involving porphyrins and phthalocyanines. In: Griesbeck A, Oelgemoller M, Ghetti F (eds) CRC handbook of organic photochemistry and photobiology, vol 1, 3rd edn. CRC, Boca Raton, pp 831–879. doi: 10.1201/b12252-35 Google Scholar
  50. 50.
    Ding L, Luan L, Shi J, Liu W (2013) Wuji Huaxue Xuebao 29(8):1591–1598, In ChineseGoogle Scholar
  51. 51.
    Komeda T, Katoh K, Yamashita M (2014) Prog Surf Sci 89(2):127–160CrossRefGoogle Scholar
  52. 52.
    Chen J, Wang S, Yang G (2015) Wuli Huaxue Xuebao 31(4):595–611, In ChineseGoogle Scholar
  53. 53.
    Venugopal Rao S (2012) Proc SPIE 8434(Nonlinear Optics and Applications VI):84341BCrossRefGoogle Scholar
  54. 54.
    Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F (2010) Coord Chem Rev 254(23–24):2755–2791CrossRefGoogle Scholar
  55. 55.
    Sorokin AB, Kudrik EV (2010) Catal Today 159(1):37–46CrossRefGoogle Scholar
  56. 56.
    Kadish KM, Smith KM, Guilard R (eds) (2010) Electronic absorption spectra-phthalocyanines, vol 9, Handbook of porphyrin science. World Scientific, SingaporeGoogle Scholar
  57. 57.
    Bian Y, Zhang Y, Ou Z, Jiang J (2011) Chemistry of sandwich tetrapyrrole rare earth complexes. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science, vol 14. World Scientific, Singapore, pp 249–460Google Scholar
  58. 58.
    Ragoussi M, Torres T (2014) Chem Asian J 9(10):2676–2707CrossRefGoogle Scholar
  59. 59.
    Mack J, Kobayashi N (2011) Chem Rev 111(2):281–321CrossRefGoogle Scholar
  60. 60.
    Dumoulin F, Ahsen V (2011) J Porphyrins Phthalocyanines 15(7–8):481–504CrossRefGoogle Scholar
  61. 61.
    Cook MJ, Chambrier I (2011) J Porphyrins Phthalocyanines 15(3):149–173CrossRefGoogle Scholar
  62. 62.
    Gorbunova YG, Martynov AG, Tsivadze AY (2012) Crown-substituted phthalocyanines. From synthesis towards materials. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science, vol 24. World Scientific, Singapore, pp 271–388Google Scholar
  63. 63.
    Figueira F, Pereira PMR, Silva S, Cavaleiro JAS, Tome JPC (2014) Curr Org Synth 11(1):110–126CrossRefGoogle Scholar
  64. 64.
    Kobayashi N (2012) Synthesis and characterization of chiral phthalocyanines. In: Kadish KM, Smith KM, Guilard R (eds) Handbook of porphyrin science, vol 23. World Scientific, Singapore, pp 373–440Google Scholar
  65. 65.
    Jiang J (2010) Functional phthalocyanine molecular materials. In: Mingos M (ed) Structure bonding, vol 135. Springer, Berlin. doi: 10.1007/978-3-642-04752-7 Google Scholar
  66. 66.
    Nyokong T (2010) Struct Bond 135:45–88CrossRefGoogle Scholar
  67. 67.
    Luo Q, Liu Y, Tian H (2010) Struct Bond 135:89–104CrossRefGoogle Scholar
  68. 68.
    Bekaroglu O (2010) Struct Bond 135:105–136CrossRefGoogle Scholar
  69. 69.
    Liu J, Lo P, Ng DKP (2010) Struct Bond 135:169–210CrossRefGoogle Scholar
  70. 70.
    de la Torre G, Bottari G, Hahn U, Torres T (2010) Struct Bond 135:1–44CrossRefGoogle Scholar
  71. 71.
    Yoshimoto S, Kobayashi N (2010) Struct Bond 135:137–168CrossRefGoogle Scholar
  72. 72.
    Zhang Y, Cai X, Bian Y, Jiang J (2010) Struct Bond 135:275–322CrossRefGoogle Scholar
  73. 73.
    Li X, Wang H, Wu H (2010) Struct Bond 135:229–274CrossRefGoogle Scholar
  74. 74.
    Ishikawa N (2010) Struct Bond 135:211–228CrossRefGoogle Scholar
  75. 75.
    Tang CW (1986) Appl Phys Lett 48(2):183–185CrossRefGoogle Scholar
  76. 76.
    Osedach TP, Andrew TL, Bulović V (2013) Energy Environ Sci 6(3):711–718CrossRefGoogle Scholar
  77. 77.
    Xu Z, Roy VAL, Low K, Che C (2011) Chem Commun 47(34):9654–9656CrossRefGoogle Scholar
  78. 78.
    Qu D, Guo R, Yue S, Wu Y, Yan P, Cheng G (2014) J Phys D 47(41):415104CrossRefGoogle Scholar
  79. 79.
    Meiss J, Merten A, Hein M, Schuenemann C, Schäfer S, Tietze M, Uhrich C, Pfeiffer M, Leo K, Riede M (2012) Adv Funct Mater 22(2):405–414CrossRefGoogle Scholar
  80. 80.
    Brendel M, Krause S, Steindamm A, Topczak AK, Sundarraj S, Erk P, Höhla S, Fruehauf N, Koch N, Pflaum J (2015) Adv Funct Mater 25(10):1565–1573CrossRefGoogle Scholar
  81. 81.
    Beaumont N, Hancox I, Sullivan P, Hatton RA, Jones TS (2011) Energy Environ Sci 4(5):1708–1711CrossRefGoogle Scholar
  82. 82.
    Zhong S, Zhong JQ, Wang XZ, Huang MY, Qi DC, Chen ZK, Chen W (2012) J Phys Chem C 116(3):2521–2526CrossRefGoogle Scholar
  83. 83.
    Verreet B, Müller R, Rand BP, Vasseur K, Heremans P (2011) Org Electron 12(12):2131–2139CrossRefGoogle Scholar
  84. 84.
    Vasseur K, Rand BP, Cheyns D, Froyen L, Heremans P (2011) Chem Mater 23(3):886–895CrossRefGoogle Scholar
  85. 85.
    Vasseur K, Rand BP, Cheyns D, Temst K, Froyen L, Heremans P (2012) J Phys Chem Lett 3(17):2395–2400CrossRefGoogle Scholar
  86. 86.
    Suzuki A, Furukawa R, Akiyama T, Oku T (2015) AIP Conf Proc 1649(1, Irago Conference 2014):107–112Google Scholar
  87. 87.
    Hori T, Fukuoka N, Masuda T, Miyake Y, Yoshida H, Fujii A, Shimizu Y, Ozaki M (2011) Sol Energy Mater Sol Cells 95(11):3087–3092Google Scholar
  88. 88.
    Varotto A, Nam C, Radivojevic I, Tomé JPC, Cavaleiro JAS, Black CT, Drain CM (2010) J Am Chem Soc 132(8):2552–2554CrossRefGoogle Scholar
  89. 89.
    Jurow MJ, Hageman BA, DiMasi E, Nam C, Pabon C, Black CT, Drain CM (2013) J Mater Chem A 1(5):1557–1565CrossRefGoogle Scholar
  90. 90.
    Fischer MKR, López-Duarte I, Wienk MM, Martínez-Díaz MV, Janssen RAJ, Bäuerle P, Torres T (2009) J Am Chem Soc 131(24):8669–8676CrossRefGoogle Scholar
  91. 91.
    Schumann S, Hatton RA, Jones TS (2011) J Phys Chem C 115(11):4916–4921CrossRefGoogle Scholar
  92. 92.
    Ryan JW, Anaya-Plaza E, Escosura ADL, Torres T, Palomares E (2012) Chem Commun 48(49):6094–6096CrossRefGoogle Scholar
  93. 93.
    Jiang J, Ng DKP (2009) Acc Chem Res 42(1):79–88CrossRefGoogle Scholar
  94. 94.
    Videlot C, Fichou D, Garnier F (1998) Mol Cryst Liq Cryst Sci Technol Sect A 322(1):319–328CrossRefGoogle Scholar
  95. 95.
    Liu L, Hu AT (2003) J Porphyrins Phthalocyanines 7(8):565–571CrossRefGoogle Scholar
  96. 96.
    Liu MO, Hu AT (2004) J Organomet Chem 689(15):2450–2455CrossRefGoogle Scholar
  97. 97.
    Wang Q, Li Y, Yan X, Rathi M, Ropp M, Galipeau D, Jiang J (2008) Appl Phys Lett 93(7):73303CrossRefGoogle Scholar
  98. 98.
    Li Y, Bian Y, Yan M, Thapaliya PS, Johns D, Yan X, Galipeau D, Jiang J (2011) J Mater Chem 21(30):11131–11141CrossRefGoogle Scholar
  99. 99.
    Tsumura A, Koezuka H, Ando T (1986) Appl Phys Lett 49(18):1210CrossRefGoogle Scholar
  100. 100.
    Gao X, Zhao Z (2015) Sci China Chem 58(6):947–968CrossRefGoogle Scholar
  101. 101.
    Mei J, Diao Y, Appleton AL, Fang L, Bao Z (2013) J Am Chem Soc 135(18):6724–6746CrossRefGoogle Scholar
  102. 102.
    Wang C, Dong H, Hu W, Liu Y, Zhu D (2012) Chem Rev 112(4):2208–2267CrossRefGoogle Scholar
  103. 103.
    Murphy AR, Fréchet JMJ (2007) Chem Rev 107(4):1066–1096CrossRefGoogle Scholar
  104. 104.
    Melville OA, Lessard BH, Bender TP (2015) ACS Appl Mater Interfaces 7(24):13105–13118CrossRefGoogle Scholar
  105. 105.
    Li L, Tang Q, Li H, Hu W, Yang X, Shuai Z, Liu Y, Zhu D (2008) Pure Appl Chem 80(11):2231–2240Google Scholar
  106. 106.
    Guillaud G, Madru R, Sadoun MA, Maitrot M (1989) J Appl Phys 66(9):4554CrossRefGoogle Scholar
  107. 107.
    Li L, Tang Q, Li H, Yang X, Hu W, Song Y, Shuai Z, Xu W, Liu Y, Zhu D (2007) Adv Mater 19(18):2613–2617CrossRefGoogle Scholar
  108. 108.
    Shaymurat T, Tang Q, Tong Y, Dong L, Liu Y (2013) Adv Mater 25(16):2269–2273CrossRefGoogle Scholar
  109. 109.
    Huang W, Sinha J, Yeh M, Hardigree JFM, LeCover R, Besar K, Rule AM, Breysse PN, Katz HE (2013) Adv Funct Mater 23(33):4094–4104CrossRefGoogle Scholar
  110. 110.
    Fernandes EGR, Vieira NCS, de Queiroz AAA, Guimarães FEG, Zucolotto V (2010) J Phys Chem C 114(14):6478–6483CrossRefGoogle Scholar
  111. 111.
    Sun L, Zhang J, Zhao F, Luo X, Lv W, Li Y, Ren Q, Wen Z, Peng Y, Liu X (2015) Nanotechnology 26(18):185501CrossRefGoogle Scholar
  112. 112.
    Zhang L, Wang H, Zhao Y, Guo Y, Hu W, Yu G, Liu Y (2013) Adv Mater 25(38):5455–5460CrossRefGoogle Scholar
  113. 113.
    Maheshwari P, Mukherjee S, Bhattacharya D, Sen S, Tokas RB, Honda Y, Basu S, Padma N, Pujari PK (2015) ACS Appl Mater Interfaces 7(19):10169–10177CrossRefGoogle Scholar
  114. 114.
    Jung JS, Lee JW, Kim K, Cho MY, Jo SG, Joo J (2010) Chem Mater 22(7):2219–2225CrossRefGoogle Scholar
  115. 115.
    Su Y, Wang C, Xie W, Xie F, Chen J, Zhao N, Xu J (2011) ACS Appl Mater Interfaces 3(12):4662–4667CrossRefGoogle Scholar
  116. 116.
    Deng W, Zhang X, Wang J, Shang Q, Gong C, Zhang X, Zhang Q, Jie J (2014) Org Electron 15(7):1317–1323CrossRefGoogle Scholar
  117. 117.
    Liu W, Jackson BL, Zhu J, Miao C, Chung C, Park YJ, Sun K, Woo J, Xie Y (2010) ACS Nano 4(7):3927–3932CrossRefGoogle Scholar
  118. 118.
    Luo X, Li Y, Lv W, Zhao F, Sun L, Peng Y, Wen Z, Zhong J, Zhang J (2015) Nanotechnology 26(3):35201CrossRefGoogle Scholar
  119. 119.
    Cao L, Chen S, Wei D, Liu Y, Fu L, Yu G, Liu H, Liu X, Wu D (2010) J Mater Chem 20(12):2305–2309CrossRefGoogle Scholar
  120. 120.
    Jiang L, Dong H, Meng Q, Tan J, Jiang W, Xu C, Wang Z, Hu W (2012) Adv Mater 24(5):694–698CrossRefGoogle Scholar
  121. 121.
    Ward JW, Lamport ZA, Jurchescu OD (2015) ChemPhysChem 16(6):1118–1132CrossRefGoogle Scholar
  122. 122.
    Cao Y, Wei Z, Liu S, Gan L, Guo X, Xu W, Steigerwald ML, Liu Z, Zhu D (2010) Angew Chem Int Ed 49(36):6319–6323CrossRefGoogle Scholar
  123. 123.
    Pan F, Tian H, Qian X, Huang L, Geng Y, Yan D (2011) Org Electron 12(8):1358–1363CrossRefGoogle Scholar
  124. 124.
    Huang L, Zhu F, Liu C, Treske U, Grobosch M, Tian H, Zhang J, Geng Y, Knupfer M, Yan D (2012) Adv Funct Mater 22(21):4598–4607CrossRefGoogle Scholar
  125. 125.
    Dong S, Tian H, Huang L, Zhang J, Yan D, Geng Y, Wang F (2011) Adv Mater 23(25):2850–2854CrossRefGoogle Scholar
  126. 126.
    Dong S, Bao C, Tian H, Yan D, Geng Y, Wang F (2013) Adv Mater 25(8):1165–1169CrossRefGoogle Scholar
  127. 127.
    Chen Y, Su W, Bai M, Jiang J, Li X, Liu Y, Wang L, Wang S (2005) J Am Chem Soc 127(45):15700–15701CrossRefGoogle Scholar
  128. 128.
    Su W, Jiang J, Xiao K, Chen Y, Zhao Q, Yu G, Liu Y (2005) Langmuir 21(14):6527–6531CrossRefGoogle Scholar
  129. 129.
    Chen Y, Li R, Wang R, Ma P, Dong S, Gao Y, Li X, Jiang J (2007) Langmuir 23(25):12549–12554CrossRefGoogle Scholar
  130. 130.
    Li R, Ma P, Dong S, Zhang X, Chen Y, Li X, Jiang J (2007) Inorg Chem 46(26):11397–11404CrossRefGoogle Scholar
  131. 131.
    Gao Y, Ma P, Chen Y, Zhang Y, Bian Y, Li X, Jiang J, Ma C (2009) Inorg Chem 48(1):45–54CrossRefGoogle Scholar
  132. 132.
    Ma P, Chen Y, Sheng N, Bian Y, Jiang J (2009) Eur J Inog Chem 2009(7):954–960CrossRefGoogle Scholar
  133. 133.
    Chaure NB, Sosa-Sanchez JL, Cammidge AN, Cook MJ, Ray AK (2010) Org Electron 11(3):434–438CrossRefGoogle Scholar
  134. 134.
    Bao Z, Lovinger AJ, Brown J (1998) J Am Chem Soc 120(1):207–208CrossRefGoogle Scholar
  135. 135.
    Keil C, Schlettwein D (2011) Org Electron 12(8):1376–1382CrossRefGoogle Scholar
  136. 136.
    Jiang H, Ye J, Hu P, Wei F, Du K, Wang N, Ba T, Feng S, Kloc C (2014) Sci Rep 4:7573CrossRefGoogle Scholar
  137. 137.
    Song D, Zhu F, Yu B, Huang L, Geng Y, Yan D (2008) Appl Phys Lett 75(14):143303CrossRefGoogle Scholar
  138. 138.
    Song D, Wang H, Zhu F, Yang J, Tian H, Geng Y, Yan D (2008) Adv Mater 20(11):2142–2144CrossRefGoogle Scholar
  139. 139.
    Md Obaidulla SK, Goswami DK, Giri PK (2014) Appl Phys Lett 104(21):213302CrossRefGoogle Scholar
  140. 140.
    Ma P, Kan J, Zhang Y, Hang C, Bian Y, Chen Y, Kobayshi N, Jiang J (2011) J Mater Chem 21(46):18552–18559CrossRefGoogle Scholar
  141. 141.
    Zaumseil J, Sirringhaus H (2007) Chem Rev 107(4):1296–1323CrossRefGoogle Scholar
  142. 142.
    Bisri SZ, Piliego C, Gao J, Loi MA (2014) Adv Mater 26(8):1176–1199CrossRefGoogle Scholar
  143. 143.
    Zhang Y, Dong H, Tang Q, Ferdous S, Liu F, Mannsfeld SCB, Hu W, Briseno AL (2010) J Am Chem Soc 132(33):11580–11584CrossRefGoogle Scholar
  144. 144.
    Fujimoto T, Matsushita MM, Awaga K (2013) J Phys Chem C 117(11):5552–5557CrossRefGoogle Scholar
  145. 145.
    Nénon S, Kanehira D, Yoshimoto N, Fages F, Videlot-Ackermann C (2011) Synth Met 161(17–18):1915–1920CrossRefGoogle Scholar
  146. 146.
    Opitz A, Bronner M, Bruetting W, Himmerlich M, Schaefer JA, Krischok S (2007) Appl Phys Lett 90(21):212111–212112CrossRefGoogle Scholar
  147. 147.
    Kraus M, Richler S, Opitz A, Brutting W, Haas S, Hasegawa T, Hinderhofer A, Schreiber F (2010) J Appl Phys 107(9):94503CrossRefGoogle Scholar
  148. 148.
    Kraus M, Haug S, Bruetting W, Opitz A (2011) Org Electron 12(5):731–735CrossRefGoogle Scholar
  149. 149.
    Opitz A, Horlet M, Kiwull M, Wagner J, Kraus M, Bruetting W (2012) Org Electron 13(9):1614–1622CrossRefGoogle Scholar
  150. 150.
    Yasuda T, Tsutsui T (2006) Jpn J Appl Phys 45(6L):L595CrossRefGoogle Scholar
  151. 151.
    Zhong A, Bian Y, Zhang Y (2010) J Phys Chem C 114(7):3248–3255CrossRefGoogle Scholar
  152. 152.
    Peng Y, Gao P, Lv W, Yao B, Fan G, Chen D, Xie J, Zhou M, Li Y, Wang Y (2013) IEEE Photon Technol Lett 25(22):2149–2152CrossRefGoogle Scholar
  153. 153.
    Hayashi H, Nihashi W, Umeyama T, Matano Y, Seki S, Shimizu Y, Imahori H (2011) J Am Chem Soc 133(28):10736–10739CrossRefGoogle Scholar
  154. 154.
    Shi Y, Li X (2014) Org Electron 15(1):286–293CrossRefGoogle Scholar
  155. 155.
    Guillaud G, Al Sadoun M, Maitrot M, Simon J, Bouvet M (1990) Chem Phys Lett 167(6):503–506CrossRefGoogle Scholar
  156. 156.
    Zhang Y, Cai X, Qi D, Bian Y, Jiang J (2008) J Phys Chem C 112(37):14579–14588CrossRefGoogle Scholar
  157. 157.
    Chen Y, Li D, Yuan N, Gao J, Gu R, Lu G, Bouvet M (2012) J Mater Chem 22(41):22142–22149CrossRefGoogle Scholar
  158. 158.
    Kong X, Jia Q, Wu F, Chen Y (2015) Dyes Pigments 115:67–72CrossRefGoogle Scholar
  159. 159.
    Kan J, Chen Y, Qi D, Liu Y, Jiang J (2012) Adv Mater 24(13):1755–1758CrossRefGoogle Scholar
  160. 160.
    Li D, Wang H, Kan J, Lu W, Chen Y, Jiang J (2013) Org Electron 14(10):2582–2589CrossRefGoogle Scholar
  161. 161.
    Kong X, Zhang X, Gao D, Qi D, Chen Y, Jiang J (2015) Chem Sci 6(3):1967–1972CrossRefGoogle Scholar
  162. 162.
    Zhang X, Chen Y (2014) Inorg Chem Commun 39:79–82CrossRefGoogle Scholar
  163. 163.
    Gao D, Zhang X, Kong X, Chen Y, Jiang J (2015) ACS Appl Mater Interfaces 7(4):2486–2493CrossRefGoogle Scholar
  164. 164.
    O’Regan B, Gratzel M (1991) Nature 353(6346):737–740CrossRefGoogle Scholar
  165. 165.
    Hardin BE, Snaith HJ, McGehee MD (2012) Nat Photonics 6(3):162–169CrossRefGoogle Scholar
  166. 166.
    Han L, Islam A, Chen H, Malapaka C, Chiranjeevi B, Zhang S, Yang X, Yanagida M (2012) Energy Environ Sci 5(3):6057–6060CrossRefGoogle Scholar
  167. 167.
    Li L, Diau EW (2013) Chem Soc Rev 42(1):291–304CrossRefGoogle Scholar
  168. 168.
    Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Nat Chem 6(3):242–247CrossRefGoogle Scholar
  169. 169.
    Nazeeruddin MK, Humphry-Baker R, Grätzel M, Wöhrle D, Schnurpfeil G, Schneider G, Hirth A, Ttombach N (1999) J Porphyrins Phthalocyanines 03(03):230–237CrossRefGoogle Scholar
  170. 170.
    Zhang L, Cole JM (2015) ACS Appl Mater Interfaces 7:3427–3455CrossRefGoogle Scholar
  171. 171.
    Sharma D, Steen G, Korterik JP, García-Iglesias M, Vázquez P, Torres T, Herek JL, Huijser A (2013) J Phys Chem C 117(48):25397–25404CrossRefGoogle Scholar
  172. 172.
    Lim B, Margulis GY, Yum J, Unger EL, Hardin BE, Grätzel M, McGehee MD, Sellinger A (2013) Org Lett 15(4):784–787CrossRefGoogle Scholar
  173. 173.
    Radivojevic I, Bazzan G, Burton-Pye BP, Ithisuphalap K, Saleh R, Durstock MF, Francesconi LC, Drain CM (2012) J Phys Chem C 116(30):15867–15877CrossRefGoogle Scholar
  174. 174.
    Hayat A, Shivashimpi GM, Nishimura T, Fujikawa N, Ogomi Y, Yamaguchi Y, Pandey SS, Ma T, Hayase S (2015) Appl Phys Express 8(4):47001. doi:10.7567/APEX.8.047001Google Scholar
  175. 175.
    Barea EM, Ortiz J, Payá FJ, Fernández-Lázaro F, Fabregat-Santiago F, Sastre-Santos A, Bisquert J (2010) Energy Environ Sci 3(12):1985–1994CrossRefGoogle Scholar
  176. 176.
    Li R, Zhang X, Zhu P, Ng DKP, Kobayashi N, Jiang J (2006) Inorg Chem 45(5):2327–2334CrossRefGoogle Scholar
  177. 177.
    Cid J, Yum J, Jang S, Nazeeruddin MK, Martínez-Ferrero E, Palomares E, Ko J, Grätzel M, Torres T (2007) Angew Chem Int Ed 46(44):8358–8362CrossRefGoogle Scholar
  178. 178.
    Cid J, García-Iglesias M, Yum J, Forneli A, Albero J, Martínez-Ferrero E, Vázquez P, Grätzel M, Nazeeruddin MK, Palomares E, Torres T (2009) Chem Eur J 15(20):5130–5137CrossRefGoogle Scholar
  179. 179.
    Garcia-Iglesias M, Cid J, Yum J, Forneli A, Vazquez P, Nazeeruddin MK, Palomares E, Gratzel M, Torres T (2011) Energy Environ Sci 4(1):189–194CrossRefGoogle Scholar
  180. 180.
    García-Iglesias M, Yum J, Humphry-Baker R, Zakeeruddin SM, Péchy P, Vázquez P, Palomares E, Grätzel M, Nazeeruddin MK, Torres T (2011) Chem Sci 2(6):1145–1150CrossRefGoogle Scholar
  181. 181.
    Ragoussi M, Cid J, Yum J, de la Torre G, Di Censo D, Grätzel M, Nazeeruddin MK, Torres T (2012) Angew Chem Int Ed 51(18):4375–4378CrossRefGoogle Scholar
  182. 182.
    Ragoussi M, Yum J, Chandiran AK, Ince M, de la Torre G, Grätzel M, Nazeeruddin MK, Torres T (2014) ChemPhysChem 15(6):1033–1036CrossRefGoogle Scholar
  183. 183.
    Mori S, Nagata M, Nakahata Y, Yasuta K, Goto R, Kimura M, Taya M (2010) J Am Chem Soc 132(12):4054–4055CrossRefGoogle Scholar
  184. 184.
    Kimura M, Nomoto H, Masaki N, Mori S (2012) Angew Chem Int Ed 51(18):4371–4374CrossRefGoogle Scholar
  185. 185.
    Kimura M, Nomoto H, Suzuki H, Ikeuchi T, Matsuzaki H, Murakami TN, Furube A, Masaki N, Griffith MJ, Mori S (2013) Chem Eur J 19(23):7496–7502CrossRefGoogle Scholar
  186. 186.
    Ikeuchi T, Nomoto H, Masaki N, Griffith MJ, Mori S, Kimura M (2014) Chem Commun 50(16):1941–1943CrossRefGoogle Scholar
  187. 187.
    Yu L, Zhou X, Yin Y, Liu Y, Li R, Peng T (2012) ChemPlusChem 77(11):1022–1027CrossRefGoogle Scholar
  188. 188.
    Yu L, Shi W, Lin L, Liu Y, Li R, Peng T, Li X (2014) Dalton Trans 43(22):8421–8430CrossRefGoogle Scholar
  189. 189.
    Lin L, Peng B, Shi W, Guo Y, Li R (2015) Dalton Trans 44(12):5867–5874CrossRefGoogle Scholar
  190. 190.
    Yu L, Shi W, Lin L, Guo Y, Li R, Peng T (2015) Dyes Pigments 114:231–238CrossRefGoogle Scholar
  191. 191.
    Yu L, Fan K, Duan T, Chen X, Li R, Peng T (2014) ACS Sustain Chem Eng 2(4):718–725CrossRefGoogle Scholar
  192. 192.
    Ince M, Medina A, Yum J, Yella A, Claessens CG, Martínez-Díaz MV, Grätzel M, Nazeeruddin MK, Torres T (2014) Chem Eur J 20(7):2016–2021CrossRefGoogle Scholar
  193. 193.
    Li Y, Lu P, Yan X, Jin L, Peng Z (2013) RSC Adv 3(2):545–558CrossRefGoogle Scholar
  194. 194.
    Yamamoto S, Mori S, Wagner P, Mozer AJ, Kimura M (2015) Isr J Chem. doi: 10.1002/ijch.201500023 Google Scholar
  195. 195.
    Ethirajan M, Chen Y, Joshi P, Pandey RK (2011) Chem Soc Rev 40(1):340–362CrossRefGoogle Scholar
  196. 196.
    Yuan A, Wu J, Tang X, Zhao L, Xu F, Hu Y (2013) J Pharm Sci 102(1):6–28CrossRefGoogle Scholar
  197. 197.
    Zorlu Y, Dumoulin F, Durmuş M, Ahsen V (2010) Tetrahedron 66(17):3248–3258CrossRefGoogle Scholar
  198. 198.
    Chen X, Li Y, Wang A, Zhou L, Lu S, Zhou J, Lin Y, Wei S (2015) Dyes Pigments 114:93–104CrossRefGoogle Scholar
  199. 199.
    Machacek M, Cidlina A, Novakova V, Svec J, Rudolf E, Miletin M, Kučera R, Simunek T, Zimcik P (2015) J Med Chem 58(4):1736–1749CrossRefGoogle Scholar
  200. 200.
    Liu W, Jensen TJ, Fronczek FR, Hammer RP, Smith KM, Vicente MGH (2005) J Med Chem 48(4):1033–1041CrossRefGoogle Scholar
  201. 201.
    Luan L, Ding L, Zhang W, Shi J, Yu X, Liu W (2013) Bioorg Med Chem Lett 23(13):3775–3779CrossRefGoogle Scholar
  202. 202.
    Lu S, Ma YJ, Xuan HY, Wang A, Zhao B, Li XD, Zhou JH, Lin Y, Zhou L, Wei SH (2014) RSC Adv 4(104):59759–59763CrossRefGoogle Scholar
  203. 203.
    Bai M, Lo P, Ye J, Wu C, Fong W, Ng DKP (2011) Org Biomol Chem 9(20):7028–7032CrossRefGoogle Scholar
  204. 204.
    Duan W, Lo P, Duan L, Fong W, Ng DKP (2010) Bioorg Med Chem 18(7):2672–2677CrossRefGoogle Scholar
  205. 205.
    He H, Lo P, Ng DKP (2014) Chem Eur J 20(21):6241–6245CrossRefGoogle Scholar
  206. 206.
    Ke M, Yeung S, Fong W, Ng DKP, Lo P (2012) Chem Eur J 18(14):4225–4233, S4221-S4225CrossRefGoogle Scholar
  207. 207.
    Ke M, Ng DKP, Lo P (2014) Chem Asian J 9(2):554–561CrossRefGoogle Scholar
  208. 208.
    Zhang FL, Huang Q, Zheng K, Li J, Liu JY, Xue JP (2013) Chem Commun 49(83):9570–9572CrossRefGoogle Scholar
  209. 209.
    Zhang F, Huang Q, Liu J, Huang M, Xue J (2015) ChemMedChem 10(2):312–320CrossRefGoogle Scholar
  210. 210.
    Lau JTF, Lo P, Fong W, Ng DKP (2012) J Med Chem 55(11):5446–5454CrossRefGoogle Scholar
  211. 211.
    Luan L, Ding L, Shi J, Fang W, Ni Y, Liu W (2014) Chem Asian J 9(12):3491–3497CrossRefGoogle Scholar
  212. 212.
    Lau JTF, Lo P, Fong W, Ng DKP (2011) Chem Eur J 17(27):7569–7577CrossRefGoogle Scholar
  213. 213.
    Lau JTF, Lo P, Tsang Y, Fong W, Ng DKP (2011) Chem Commun 47(34):9657–9659CrossRefGoogle Scholar
  214. 214.
    Chan CMH, Lo P, Yeung S, Ng DKP, Fong W (2010) Cancer Biol Ther 10(2):126–134CrossRefGoogle Scholar
  215. 215.
    Jiang X, Lo P, Tsang Y, Yeung S, Fong W, Ng DKP (2010) Chem Eur J 16(16):4777–4783CrossRefGoogle Scholar
  216. 216.
    Jiang X, Yeung S, Lo P, Fong W, Ng DKP (2011) J Med Chem 54(1):320–330CrossRefGoogle Scholar
  217. 217.
    Jiang X, Lo P, Yeung S, Fong W, Ng DKP (2010) Chem Commun 46(18):3188–3190CrossRefGoogle Scholar
  218. 218.
    Lau JTF, Lo P, Jiang X, Wang Q, Ng DKP (2014) J Med Chem 57(10):4088–4097CrossRefGoogle Scholar
  219. 219.
    Mew D, Wat CK, Towers GH, Levy JG (1983) J Immunol 130(3):1473–1477Google Scholar
  220. 220.
    Hayley P, Stamati I, Yahioglu G, Butt M, Deonarain M (2013) Antibodies 2(2):270–305CrossRefGoogle Scholar
  221. 221.
    Mitsunaga M, Ogawa M, Kosaka N, Rosenblum LT, Choyke PL, Kobayashi H (2011) Nat Med 17(12):1685–1691CrossRefGoogle Scholar
  222. 222.
    Sano K, Mitsunaga M, Nakajima T, Choyke PL, Kobayashi H (2013) J Nucl Med 54(5):770–775CrossRefGoogle Scholar
  223. 223.
    Nakajima T, Sano K, Choyke PL, Kobayashi H (2013) Theranostics 3(6):357–365CrossRefGoogle Scholar
  224. 224.
    Sato K, Nagaya T, Mitsunaga M, Choyke PL, Kobayashi H (2015) Cancer Lett 365(1):112–121CrossRefGoogle Scholar
  225. 225.
    Maawy AA, Hiroshima Y, Zhang Y, Heim R, Makings L, Garcia-Guzman M, Luiken GA, Kobayashi H, Hoffman RM, Bouvet M (2015) PLoS One 10(3):e121989CrossRefGoogle Scholar
  226. 226.
    Chen Z, Xu P, Chen J, Chen H, Hu P, Chen X, Lin L, Huang Y, Zheng K, Zhou S, Li R, Chen S, Liu J, Xue J, Huang M (2014) Acta Biomater 10(10):4257–4268CrossRefGoogle Scholar
  227. 227.
    Li R, Zheng K, Hu P, Chen Z, Zhou S, Chen J, Yuan C, Chen S, Zheng W, Ma E, Zhang F, Xue J, Chen X, Huang M (2014) Theranostics 4(6):642–659CrossRefGoogle Scholar
  228. 228.
    Zhou X, Zheng K, Li R, Chen Z, Yuan C, Hu P, Chen J, Xue J, Huang M (2015) Acta Biomater 23:116–126CrossRefGoogle Scholar
  229. 229.
    Gao D, Gao L, Zhang C, Liu H, Jia B, Zhu Z, Wang F, Liu Z (2015) Biomater 53:229–238CrossRefGoogle Scholar
  230. 230.
    Moghimi SM, Hunter AC, Murray JC (2005) FASEB J 19(3):311–330CrossRefGoogle Scholar
  231. 231.
    Kim BYS, Rutka JT, Chan WCW (2010) New Engl J Med 363(25):2434–2443CrossRefGoogle Scholar
  232. 232.
    Zhao B, Duan W, Lo P, Duan L, Wu C, Ng DKP (2013) Chem Asian J 8(1):55–59CrossRefGoogle Scholar
  233. 233.
    Hota R, Baek K, Yun G, Kim Y, Jung H, Park KM, Yoon E, Joo T, Kang J, Park CG, Bae SM, Ahn WS, Kim K (2013) Chem Sci 4(1):339–344CrossRefGoogle Scholar
  234. 234.
    Jang W, Yim D, Hwang I (2014) J Mater Chem B 2(16):2202–2211CrossRefGoogle Scholar
  235. 235.
    Master AM, Rodriguez ME, Kenney ME, Oleinick NL, Gupta AS (2010) J Pharm Sci 99(5):2386–2398CrossRefGoogle Scholar
  236. 236.
    Liang R, Ma L, Zhang L, Li C, Liu W, Wei M, Yan D, Evans DG, Duan X (2014) Chem Commun 50(95):14983–14986CrossRefGoogle Scholar
  237. 237.
    Taratula O, Schumann C, Duong T, Taylor KL, Taratula O (2015) Nanoscale 7(9):3888–3902CrossRefGoogle Scholar
  238. 238.
    Brasch M, de la Escosura A, Ma Y, Uetrecht C, Heck AJR, Torres T, Cornelissen JJLM (2011) J Am Chem Soc 133(18):6878–6881CrossRefGoogle Scholar
  239. 239.
    Nyokong T, Antunes E (2013) Coord Chem Rev 257(15–16):2401–2418CrossRefGoogle Scholar
  240. 240.
    Camerin M, Magaraggia M, Soncin M, Jori G, Moreno M, Chambrier I, Cook MJ, Russell DA (2010) Eur J Cancer 46(10):1910–1918CrossRefGoogle Scholar
  241. 241.
    Jang B, Park J, Tung C, Kim I, Choi Y (2011) ACS Nano 5(2):1086–1094CrossRefGoogle Scholar
  242. 242.
    Cheng Y, Samia AC, Li J, Kenney ME, Resnick A, Burda C (2010) Langmuir 26(4):2248–2255CrossRefGoogle Scholar
  243. 243.
    Obaid G, Chambrier I, Cook MJ, Russell DA (2012) Angew Chem Int Ed 51(25):6158–6162CrossRefGoogle Scholar
  244. 244.
    Stuchinskaya T, Moreno M, Cook MJ, Edwards DR, Russell DA (2011) Photochem Photobiol Sci 10(5):822–831CrossRefGoogle Scholar
  245. 245.
    Obaid G, Chambrier I, Cook MJ, Russell DA (2015) Photochem Photobiol Sci 14(4):737–747CrossRefGoogle Scholar
  246. 246.
    Guo H, Qian H, Idris NM, Zhang Y (2010) Nanomed Nanotechnol Biol Med 6(3):486–495CrossRefGoogle Scholar
  247. 247.
    Cui S, Chen H, Zhu H, Tian J, Chi X, Qian Z, Achilefu S, Gu Y (2012) J Mater Chem 22(11):4861CrossRefGoogle Scholar
  248. 248.
    Cui S, Yin D, Chen Y, Di Y, Chen H, Ma Y, Achilefu S, Gu Y (2013) ACS Nano 7(1):676–688CrossRefGoogle Scholar
  249. 249.
    Wang F, Chen X, Zhao Z, Tang S, Huang X, Lin C, Cai C, Zheng N (2011) J Mater Chem 21(30):11244–11252CrossRefGoogle Scholar
  250. 250.
    Abramczyk H, Brozek-Pluska B, Surmacki J, Musial J, Kordek R (2014) Analyst 139(21):5547–5559CrossRefGoogle Scholar
  251. 251.
    Giuliani F, Martinelli M, Cocchi A, Arbia D, Fantetti L, Roncucci G (2010) Antimicrob Agents Chemother 54(2):637–642CrossRefGoogle Scholar
  252. 252.
    Ke M, Eastel JM, Ngai KLK, Cheung Y, Chan PKS, Hui M, Ng DKP, Lo P (2014) Eur J Med Chem 84:278–283CrossRefGoogle Scholar
  253. 253.
    Ke M, Eastel JM, Ngai KLK, Cheung Y, Chan PKS, Hui M, Ng DKP, Lo P (2014) Chem Asian J 9(7):1868–1875CrossRefGoogle Scholar
  254. 254.
    Mathew S, Murakami T, Nakatsuji H, Okamoto H, Morone N, Heuser JE, Hashida M, Imahori H (2013) ACS Nano 7(10):8908–8916CrossRefGoogle Scholar
  255. 255.
    Sessoli R, Gatteschi D, Caneschi A, Novak MA (1993) Nature 365(6442):141–143CrossRefGoogle Scholar
  256. 256.
    Gatteschi D, Sessoli R (2003) Angew Chem Int Ed 42(3):268–297CrossRefGoogle Scholar
  257. 257.
    Wang H, Wang B, Bian Y, Gao S, Jiang J (2016) Coord Chem Rev 306:195–216. doi: 10.1016/j.ccr.2015.07.004 CrossRefGoogle Scholar
  258. 258.
    Fukuda T, Shigeyoshi N, Yamamura T, Ishikawa N (2014) Inorg Chem 53(17):9080–9086CrossRefGoogle Scholar
  259. 259.
    Gonidec M, Davies ES, McMaster J, Amabilino DB, Veciana J (2010) J Am Chem Soc 132(6):1756–1757CrossRefGoogle Scholar
  260. 260.
    Gonidec M, Krivokapic I, Vidal-Gancedo J, Davies ES, McMaster J, Gorun SM, Veciana J (2013) Inorg Chem 52(8):4464–4471CrossRefGoogle Scholar
  261. 261.
    Gonidec M, Amabilino DB, Veciana J (2012) Dalton Trans 41(44):13632–13639CrossRefGoogle Scholar
  262. 262.
    Waters M, Moro F, Krivokapic I, McMaster J, Slageren JV (2012) Dalton Trans 41(4):1128–1130CrossRefGoogle Scholar
  263. 263.
    Glebe U, Weidner T, Baio JE, Schach D, Bruhn C, Buchholz A, Plass W, Walleck S, Glaser T, Siemeling U (2012) ChemPlusChem 77(10):889–897CrossRefGoogle Scholar
  264. 264.
    Katoh K, Isshiki H, Komeda T, Yamashita M (2011) Coord Chem Rev 255(17–18):2124–2148CrossRefGoogle Scholar
  265. 265.
    Katoh K, Umetsu K, Breedlove Brian K, Yamashita M (2012) Sci China Chem 55(6):918–925CrossRefGoogle Scholar
  266. 266.
    Ganivet CR, Ballesteros B, de la Torre G, Clemente-Juan JM, Coronado E, Torres T (2013) Chem Eur J 19(4):1457–1465CrossRefGoogle Scholar
  267. 267.
    Gonidec M, Luis F, Vílchez À, Esquena J, Amabilino DB, Veciana J (2010) Angew Chem Int Ed 49(9):1623–1626CrossRefGoogle Scholar
  268. 268.
    Cao W, Gao C, Zhang Y, Qi D, Liu T, Wang K, Duan C, Gao S, Jiang J (2015) Chem Sci 6(10):5947–5954CrossRefGoogle Scholar
  269. 269.
    Wang H, Wang K, Tao J, Jiang J (2012) Chem Commun 48(24):2973–2975CrossRefGoogle Scholar
  270. 270.
    Ishikawa N, Otsuka S, Kaizu Y (2005) Angew Chem Int Ed 44(5):731–733CrossRefGoogle Scholar
  271. 271.
    Katoh K, Kajiwara T, Nakano M, Nakazawa Y, Wernsdorfer W, Ishikawa N, Breedlove BK, Yamashita M (2011) Chem Eur J 17(1):117–122CrossRefGoogle Scholar
  272. 272.
    Katoh K, Asano R, Miura A, Horii Y, Morita T, Breedlove BK, Yamashita M (2014) Dalton Trans 43(21):7716–7725CrossRefGoogle Scholar
  273. 273.
    Sakaue S, Fuyuhiro A, Fukuda T, Ishikawa N (2012) Chem Commun 48(43):5337–5339CrossRefGoogle Scholar
  274. 274.
    Kan J, Wang H, Sun W, Cao W, Tao J, Jiang J (2013) Inorg Chem 52(15):8505–8510CrossRefGoogle Scholar
  275. 275.
    Cao W, Wang H, Shang H, Jiang J (2013) Zhongguo Xitu Xuebao 31(5):513–521 (in Chinese)Google Scholar
  276. 276.
    Wang H, Qian K, Wang K, Bian Y, Jiang J, Gao S (2011) Chem Commun 47(34):9624CrossRefGoogle Scholar
  277. 277.
    Wang H, Liu T, Wang K, Duan C, Jiang J (2012) Chem Eur J 18(25):7691–7694CrossRefGoogle Scholar
  278. 278.
    Fukuda T, Kuroda W, Ishikawa N (2011) Chem Commun 47(42):11686–11688CrossRefGoogle Scholar
  279. 279.
    Fukuda T, Matsumura K, Ishikawa N (2013) J Phys Chem A 117(40):10447–10454CrossRefGoogle Scholar
  280. 280.
    Shang H, Zeng S, Wang H, Dou J, Jiang J (2015) Sci Rep 5:8838CrossRefGoogle Scholar
  281. 281.
    Katoh K, Horii Y, Yasuda N, Wernsdorfer W, Toriumi K, Breedlove BK, Yamashita M (2012) Dalton Trans 41(44):13582–13600CrossRefGoogle Scholar
  282. 282.
    Horii Y, Katoh K, Yasuda N, Breedlove BK, Yamashita M (2015) Inorg Chem 54(7):3297–3305CrossRefGoogle Scholar
  283. 283.
    Wang K, Qi D, Wang H, Cao W, Li W, Liu T, Duan C, Jiang J (2013) Chem Eur J 19(34):11162–11166CrossRefGoogle Scholar
  284. 284.
    Morita T, Katoh K, Breedlove BK, Yamashita M (2013) Inorg Chem 52(23):13555–13561CrossRefGoogle Scholar
  285. 285.
    Blagg RJ, Ungur L, Tuna F, Speak J, Comar P, Collison D, Wernsdorfer W, McInnes EJL, Chibotaru LF, Winpenny REP (2013) Nat Chem 5(8):673–678CrossRefGoogle Scholar
  286. 286.
    Auwaerter W, Ecija D, Klappenberger F, Barth JV (2015) Nat Chem 7(2):105–120CrossRefGoogle Scholar
  287. 287.
    Katoh K, Isshiki H, Komeda T, Yamashita M (2012) Chem Asian J 7(6):1154–1169CrossRefGoogle Scholar
  288. 288.
    Gottfried JM (2015) Surf Sci Rep 70(3):259–379CrossRefGoogle Scholar
  289. 289.
    Komeda T, Isshiki H, Liu J, Zhang Y, Lorente N, Katoh K, Breedlove BK, Yamashita M (2011) Nat Commun 2:217CrossRefGoogle Scholar
  290. 290.
    Robles R, Lorente N, Isshiki H, Liu J, Katoh K, Breedlove BK, Yamashita M, Komeda T (2012) Nano Lett 12(7):3609–3612CrossRefGoogle Scholar
  291. 291.
    Komeda T, Isshiki H, Liu J, Katoh K, Shirakata M, Breedlove BK, Yamashita M (2013) ACS Nano 7(2):1092–1099CrossRefGoogle Scholar
  292. 292.
    Komeda T, Isshiki H, Liu J, Katoh K, Yamashita M (2014) ACS Nano 8(5):4866–4875CrossRefGoogle Scholar
  293. 293.
    Vincent R, Klyatskaya S, Ruben M, Wernsdorfer W, Balestro F (2012) Nature 488(7411):357–360CrossRefGoogle Scholar
  294. 294.
    Thiele S, Balestro F, Ballou R, Klyatskaya S, Ruben M, Wernsdorfer W (2014) Science 344(6188):1135–1138CrossRefGoogle Scholar
  295. 295.
    Stepanow S, Honolka J, Gambardella P, Vitali L, Abdurakhmanova N, Tseng T, Rauschenbach S, Tait SL, Sessi V, Klyatskaya S, Ruben M, Kern K (2010) J Am Chem Soc 132(34):11900–11901CrossRefGoogle Scholar
  296. 296.
    Margheriti L, Chiappe D, Mannini M, Car P, Sainctavit P, Arrio M, de Mongeot FB, Cezar JC, Piras FM, Magnani A, Otero E, Caneschi A, Sessoli R (2010) Adv Mater 22(48):5488–5493CrossRefGoogle Scholar
  297. 297.
    Mannini M, Bertani F, Tudisco C, Malavolti L, Poggini L, Misztal K, Menozzi D, Motta A, Otero E, Ohresser P, Sainctavit P, Condorelli GG, Dalcanale E, Sessoli R (2014) Nat Commun 5:4582CrossRefGoogle Scholar
  298. 298.
    Malavolti L, Mannini M, Car P, Campo G, Pineider F, Sessoli R (2013) J Mater Chem C 1(16):2935–2942CrossRefGoogle Scholar
  299. 299.
    Candini A, Klyatskaya S, Ruben M, Wernsdorfer W, Affronte M (2011) Nano Lett 11(7):2634–2639CrossRefGoogle Scholar
  300. 300.
    Lopes M, Candini A, Urdampilleta M, Reserbat-Plantey A, Bellini V, Klyatskaya S, Marty L, Ruben M, Affronte M, Wernsdorfer W, Bendiab N (2010) ACS Nano 4(12):7531–7537CrossRefGoogle Scholar
  301. 301.
    Wang H, Qian K, Qi D, Cao W, Wang K, Gao S, Jiang J (2014) Chem Sci 5(8):3214–3320CrossRefGoogle Scholar
  302. 302.
    Gonidec M, Biagi R, Corradini V, Moro F, De Renzi V, Del Pennino U, Summa D, Muccioli L, Zannoni C, Amabilino DB, Veciana J (2011) J Am Chem Soc 133(17):6603–6612CrossRefGoogle Scholar
  303. 303.
    Klar D, Candini A, Joly L, Klyatskaya S, Krumme B, Ohresser P, Kappler J, Ruben M, Wende H (2014) Dalton Trans 43(28):10686–10689CrossRefGoogle Scholar
  304. 304.
    Kyatskaya S, Mascarós JRG, Bogani L, Hennrich F, Kappes M, Wernsdorfer W, Ruben M (2009) J Am Chem Soc 131(42):15143–15151CrossRefGoogle Scholar
  305. 305.
    Ganzhorn M, Klyatskaya S, Ruben M, Wernsdorfer W (2013) ACS Nano 7(7):6225–6236CrossRefGoogle Scholar
  306. 306.
    Krull C, Balashov T, Kavich JJ, Mugarza A, Miedema PS, Thakur PK, Sessi V, Klyatskaya S, Ruben M, Stepanow S, Gambardella P, Lodi Rizzini A (2011) Phys Rev Lett 107(17):177205CrossRefGoogle Scholar
  307. 307.
    Lodi Rizzini A, Krull C, Balashov T, Mugarza A, Nistor C, Yakhou F, Sessi V, Klyatskaya S, Ruben M, Stepanow S, Gambardella P (2012) Nano Lett 12(11):5703–5707CrossRefGoogle Scholar
  308. 308.
    Malavolti L, Poggini L, Margheriti L, Chiappe D, Graziosi P, Cortigiani B, Lanzilotto V, de Mongeot FB, Ohresser P, Otero E, Choueikani F, Sainctavit P, Bergenti I, Dediu VA, Mannini M, Sessoli R (2013) Chem Commun 49(98):11506–11508CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of ChemistryUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations