Advertisement

Electron Pairs in Position Space

  • M. KohoutEmail author
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 170)

Abstract

The electron pair is a central object in chemist's view of the chemical bond. The definition and description of the electron pair in the position space is a complex problem within the quantum chemistry. Several different possibilities of how to accomplish this task, i.e., how to describe the localizability of an electron and electron pair, are given in a historical survey. The derivation of the electron localizability indicator (ELI) is presented and the application of ELI for the bonding analysis is examined for few systems. The importance of the ELI-q describing the singlet-coupled electron pairs and its connection to Lewis idea of bonding is highlighted.

Keywords

Correlation Electron localizability Electron pair ELI Fermi hole 

References

  1. 1.
    Ponec R (1997) J Math Chem 21:323CrossRefGoogle Scholar
  2. 2.
    Bader RFW (1990) Atoms in molecules. Oxford University Press, OxfordGoogle Scholar
  3. 3.
    Kohout M (2004) Int J Quantum Chem 97:651CrossRefGoogle Scholar
  4. 4.
    Kohout M (2007) Faraday Discuss 135:43CrossRefGoogle Scholar
  5. 5.
    Kohout M, Pernal K, Wagner FR, Grin Y (2004) Theor Chem Acc 112:453CrossRefGoogle Scholar
  6. 6.
    Kohout M, Pernal K, Wagner FR, Grin Y (2005) Theor Chem Acc 113:287CrossRefGoogle Scholar
  7. 7.
    Kohout M, Wagner FR, Grin Y (2006) Int J Quantum Chem 106:1499CrossRefGoogle Scholar
  8. 8.
    Kohout M, Wagner FR, Grin Y (2008) Theor Chem Acc 119:413CrossRefGoogle Scholar
  9. 9.
    Bader RFW, Stephens ME (1974) Chem Phys Lett 25:445CrossRefGoogle Scholar
  10. 10.
    Lewis GN (1916) J Am Chem Soc 33:762CrossRefGoogle Scholar
  11. 11.
    Bader RFW, Essén H (1984) J Chem Phys 80:1943CrossRefGoogle Scholar
  12. 12.
    Bader RFW, MacDougall PJ, Lau CDH (1984) J Am Chem Soc 106:1594CrossRefGoogle Scholar
  13. 13.
    Boyd RJ (1978) Can J Phys 56:780CrossRefGoogle Scholar
  14. 14.
    Hunter G (1986) Int J Quantum Chem 29:197CrossRefGoogle Scholar
  15. 15.
    Kohout M (2001) Int J Quantum Chem 83:324CrossRefGoogle Scholar
  16. 16.
    Kohout M, Savin A (1996) Int J Quantum Chem 60:875CrossRefGoogle Scholar
  17. 17.
    Sagar RP, Ku ACT, Smith VHJ, Simas AM (1988) J Chem Phys 88:4367CrossRefGoogle Scholar
  18. 18.
    Schmider HL, Sagar RP, Smith VHJ (1992) Can J Chem Phys 70:506CrossRefGoogle Scholar
  19. 19.
    Sen KD, Gayatri TV, Toufar H (1996) J Mol Struct (Theochem) 361:1CrossRefGoogle Scholar
  20. 20.
    Sen KD, Slamet M, Sahni V (1993) Chem Phys Lett 205:313CrossRefGoogle Scholar
  21. 21.
    Shi Z, Boyd RJ (1988) J Chem Phys 88:4375CrossRefGoogle Scholar
  22. 22.
    Simas AM, Sagar RP, Ku ACT, Smith VHJ (1988) Can J Phys 66:1923Google Scholar
  23. 23.
    Sperber G (1971) Int J Quantum Chem 5:189CrossRefGoogle Scholar
  24. 24.
    Waber JT, Cromer DT (1965) J Chem Phys 42:4116CrossRefGoogle Scholar
  25. 25.
    Wagner K, Kohout M (2011) Theor Chem Acc 128:39CrossRefGoogle Scholar
  26. 26.
    Heitler W, London F (1927) Z Phys 44:455CrossRefGoogle Scholar
  27. 27.
    London F (1928) Z Phys 46:455CrossRefGoogle Scholar
  28. 28.
    Pauling L (1939) The nature of the chemical bond. Cornell University Press, IthacaGoogle Scholar
  29. 29.
    Daudel R (1953) C R Hebd Seances Acad Sci 237:601Google Scholar
  30. 30.
    Daudel R, Brion H, Odiot S (1955) J Chem Phys 23:2080CrossRefGoogle Scholar
  31. 31.
    Aslangul C, Constanciel R, Daudel R, Kottis P (1972) Adv Quantum Chem 6:93CrossRefGoogle Scholar
  32. 32.
    Daudel R (1968) The fundamentals of theoretical chemistry. Pergamon, OxfordGoogle Scholar
  33. 33.
    Daudel R, Bader RFW, Stephens ME, Borrett DS (1974) Can J Chem 52:1310CrossRefGoogle Scholar
  34. 34.
    Bader RFW, Stephens ME (1975) J Am Chem Soc 97:7391CrossRefGoogle Scholar
  35. 35.
    Fradera X, Austen MA, Bader RFW (1999) J Phys Chem A 103:304–314CrossRefGoogle Scholar
  36. 36.
    Luken WL, Culberson JC (1982) Int J Quantum Chem Symp 16:265Google Scholar
  37. 37.
    Luken WL, Culberson JC (1984) Theor Chim Acta 66:279CrossRefGoogle Scholar
  38. 38.
    Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397CrossRefGoogle Scholar
  39. 39.
    Deb BM, Ghosh SK (1983) Int J Quantum Chem 23:1CrossRefGoogle Scholar
  40. 40.
    Savin A, Jepsen O, Flad J, Andersen OK, Preuss H, von Schnering HG (1992) Angew Chem Int Ed Engl 31:187CrossRefGoogle Scholar
  41. 41.
    Dobson JF (1991) J Chem Phys 94:4328CrossRefGoogle Scholar
  42. 42.
    Melin J, Fuentealba P (2003) Int J Quantum Chem 92:381CrossRefGoogle Scholar
  43. 43.
    Savin A (2005) J Mol Struct (Theochem) 727:127CrossRefGoogle Scholar
  44. 44.
    Savin A (2005) J Chem Sci 117:473CrossRefGoogle Scholar
  45. 45.
    Cioslowski J (1990) Int J Quantum Chem S24:15CrossRefGoogle Scholar
  46. 46.
    Cioslowski J (1991) J Am Chem Soc 113:4142CrossRefGoogle Scholar
  47. 47.
    Savin A, Nesper R, Wengert S, Fässler TF (1997) Angew Chem Int Ed Engl 36:1808CrossRefGoogle Scholar
  48. 48.
    Silvi B, Savin A (1994) Nature 371:683CrossRefGoogle Scholar
  49. 49.
    Kohout M, Savin A (1997) J Comput Chem 18:1431CrossRefGoogle Scholar
  50. 50.
    Gadre SR, Kulkarni SA, Pathak RK (1993) J Chem Phys 98:3574CrossRefGoogle Scholar
  51. 51.
    Fuentealba P (1998) Int J Quantum Chem 69:559CrossRefGoogle Scholar
  52. 52.
    Tsirelson V, Stash A (2002) Chem Phys Lett 351:142CrossRefGoogle Scholar
  53. 53.
    Kirzhnits DA (1957) Sov Phys JETP 5:64Google Scholar
  54. 54.
    Ayers PW (2005) J Chem Sci 117:441CrossRefGoogle Scholar
  55. 55.
    Kulkarni SA (1994) Phys Rev A 50:2202CrossRefGoogle Scholar
  56. 56.
    Burnus T, Marques AL, Gross EKU (2005) Phys Rev A 71:010501(R)CrossRefGoogle Scholar
  57. 57.
    Räsänen E, Castro A, Gross EKU (2008) Phys Rev B 77:115108CrossRefGoogle Scholar
  58. 58.
    Madsen GKH, Gatti C, Iversen BB, Damjanovic L, Stucky GD, Srdanov VI (1999) Phys Rev B 59:12359CrossRefGoogle Scholar
  59. 59.
    Santos JC, Tiznado W, Contreras R, Fuentealba P (2004) J Chem Phys 120:1670CrossRefGoogle Scholar
  60. 60.
    Schmider HL, Becke AD (2000) J Mol Struct (Theochem) 527:51CrossRefGoogle Scholar
  61. 61.
    Savin A (2002) In: Sen KD (ed) Reviews of modern quantum chemistry: a celebration of the contributions of Robert G. Parr. World Scientific, Singapore, p 43Google Scholar
  62. 62.
    Cancès E, Keriven R, Lodier F, Savin A (2004) Theor Chem Acc 111:373CrossRefGoogle Scholar
  63. 63.
    Gallegos A, Carbó-Dorca R, Lodier F, Cancès E, Savin A (2005) J Comput Chem 26:455CrossRefGoogle Scholar
  64. 64.
    Menendéz M, Martín Pendás A, Braïda B, Savin A (2015) Comput Theor Chem 1053:142CrossRefGoogle Scholar
  65. 65.
    Scemama A, Caffarel M, Savin A (2007) J Comput Chem 28:442CrossRefGoogle Scholar
  66. 66.
    Savin A (2004) J Phys Chem Solids 65:2025CrossRefGoogle Scholar
  67. 67.
    Silvi B (2003) J Phys Chem A 107:3081CrossRefGoogle Scholar
  68. 68.
    Martín Pendás A, Kohout M, Blanco MA, Francisco E (2012) In: Gatti C, Macchi P (eds) Modern charge-density analysis. Springer, DordrechtGoogle Scholar
  69. 69.
    Scemama A, Chaquin P, Caffarel M (2004) J Chem Phys 121:1725CrossRefGoogle Scholar
  70. 70.
    Amador-Bedolla C, Salomón-Ferrer R, Lester WA Jr, Vázquez-Martínez JA, Aspuru-Guzik A (2007) J Chem Phys 126:204308CrossRefGoogle Scholar
  71. 71.
    Kohout M, Wagner FR, Grin Y (2002) Theor Chem Acc 108:150CrossRefGoogle Scholar
  72. 72.
    Clementi E, Roetti C (1974) At Data Nucl Data Tables 14:218CrossRefGoogle Scholar
  73. 73.
    Bader RFW, Johnson S, Tang TH, Popelier PLA (1996) J Phys Chem 100:15398CrossRefGoogle Scholar
  74. 74.
    Burdett JK, McCormick TA (1998) J Phys Chem A 102:6366CrossRefGoogle Scholar
  75. 75.
    Sun Q, Wang Q, Yu JZ, Kumar V, Kawazoe Y (2001) Phys Rev B 63:193408CrossRefGoogle Scholar
  76. 76.
    Savin A, Silvi B, Colonna F (1996) Can J Chem 74:1088CrossRefGoogle Scholar
  77. 77.
    Matito E, Silvi B, Duran M, Solà M (2006) J Chem Phys 125:024301CrossRefGoogle Scholar
  78. 78.
    Blanco MA, Martín Pendás A, Francisco E (2005) J Chem Theory Comput 1:1096CrossRefGoogle Scholar
  79. 79.
    Francisco E, Martín Pendás A, Blanco MA (2006) J Chem Theory Comput 2:90CrossRefGoogle Scholar
  80. 80.
    Kohout M (2015) DGrid 5.0. RadebeulGoogle Scholar
  81. 81.
    Finzel K, Grin Y, Kohout M (2012) Theor Chem Acc 131:1106CrossRefGoogle Scholar
  82. 82.
    Bezugly V, Wielgus P, Wagner FR, Kohout M, Grin Y (2008) J Comput Chem 29:1198CrossRefGoogle Scholar
  83. 83.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  84. 84.
    Ángyán JG, Loos M, Mayer I (1994) J Phys Chem 98:5244CrossRefGoogle Scholar
  85. 85.
    Baranov AI, Kohout M (2011) J Comput Chem 32:2064CrossRefGoogle Scholar
  86. 86.
    Francisco E, Martín Pendás A, Blanco MA (2007) J Chem Phys 126:094102CrossRefGoogle Scholar
  87. 87.
    Bezugly V, Wielgus P, Kohout M, Wagner FR (2010) J Comput Chem 31:2273Google Scholar
  88. 88.
    Raub S, Jansen G (2001) Theor Chem Acc 106:223CrossRefGoogle Scholar
  89. 89.
    Bezugly V, Wielgus P, Kohout M, Wagner FR (2010) J Comput Chem 31:1504Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Max Planck Institute for Chemical Physics of SolidsDresdenGermany

Personalised recommendations