Advertisement

Quantum Computation with Molecular Nanomagnets: Achievements, Challenges, and New Trends

  • Alberto Ghirri
  • Filippo Troiani
  • Marco Affronte
Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 164)

Abstract

Molecular nanomagnets exhibit quanto-mechanical properties that can be nicely tailored at synthetic level: superposition and entanglement of quantum states can be created with molecular spins whose manipulation can be done in a timescale shorter than their decoherence time, if the molecular environment is controlled in a proper way. The challenge of quantum computation is to exploit the similarities between the coherent manipulation of molecular spins and algorithms used to process data and solve problems. In this chapter we shall firstly introduce basic concepts, stressing analogies between the physics and the chemistry of molecular nanomagnets and the science of computing. Then we shall review main achievements obtained in the first decade of this field and present challenges for the next future. In particular we shall focus on two emerging topics: quantum simulators and hybrid systems made by resonant cavities and molecular nanomagnets.

Keywords

Decoherence and relaxation times Hybrid quantum systems Molecular spin qubits Quantum simulators Quantum Computation 

Notes

Acknowledgments

We wish to thank Dr. A. Candini, Dr. V. Corradini, Dr. V. Bellini, Dr. I. Siloi (CNR and University of Modena and Reggio E., I), Prof. S. Carretta, Prof. P. Santini and Prof. G. Amoretti (University of Parma, I), Prof. A. Lascialfari (University of Milano, I), Dr. D. Gerace and Dr. S. Sanna (University of Pavia, I), Prof. A. Cuccoli, and Dr. P. Verrucchi (University of Firenze, I) for stimulating discussions. We also wish to thank Dr. Grigore Timco and Prof. Richard Winpenny (University of Manchester, UK) for all their hints and synthesis and structural characterization of molecular spin clusters. This work was supported by FIRB project RBFR12RPD1 of the Italian Ministry of Research and by the US AFOSR/AOARD program, contract FA2386-13-1-4029.

References

  1. 1.
    Nielsen MA, Chuang IL (2010) Quantum computation and quantum information. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Bandyopadhyay S, Cahay M (2008) Introduction to spintronics. CRC, Boca RatonGoogle Scholar
  3. 3.
    Blundell S, Thouless D (2001) Magnetism in condensed matter, vol 1. Oxford University Press, New YorkGoogle Scholar
  4. 4.
    Vandersypen LM, Steffen M, Breyta G, Yannoni CS, Sherwood MH, Chuang IL (2001) Nature 414:883Google Scholar
  5. 5.
    Xu N, Zhu J, Lu D, Zhou X, Peng X, Du J (2012) Phys Rev Lett 108:130501Google Scholar
  6. 6.
    Zurek W (2003) Rev Mod Phys 75:715Google Scholar
  7. 7.
    Schlosshauer M (2005) Rev Mod Phys 76:1267Google Scholar
  8. 8.
    Stamp PC, Gaita-Arino A (2009) J Mater Chem 19:1718Google Scholar
  9. 9.
    Takahashi S, Tupitsyn I, van Tol J, Beedle C, Hendrickson D, Stamp P (2011) Nature 476:76Google Scholar
  10. 10.
    Prokof′ev N, Stamp P (2000) Rep Prog Phys 63:669Google Scholar
  11. 11.
    Morello A, Stamp P, Tupitsyn IS (2006) Phys Rev Lett 97:207206Google Scholar
  12. 12.
    Troiani F, Bellini V, Affronte M (2008) Phys Rev B 77:054428Google Scholar
  13. 13.
    Szallas A, Troiani F (2010) Phys Rev B 82:224409Google Scholar
  14. 14.
    Troiani F, Stepanenko D, Loss D (2012) Phys Rev B 86:161409Google Scholar
  15. 15.
    Leggett AJ (1980) Prog Theor Phys Suppl 69:80Google Scholar
  16. 16.
    Dür W, Simon C, Cirac JI (2002) Phys Rev Lett 89:210402Google Scholar
  17. 17.
    Björk G, Mana PGL (2004) J Opt B Quantum Semiclassical Opt 6:429Google Scholar
  18. 18.
    Korsbakken JI, Whaley KB, Dubois J, Cirac JI (2007) Phys Rev A 75:042106Google Scholar
  19. 19.
    Fröwis F, Dür W (2012) New J Phys 14:093039Google Scholar
  20. 20.
    Troiani F, Zanardi P (2013) Phys Rev B 88:094413Google Scholar
  21. 21.
    Horodecki R, Horodecki P, Horodecki M, Horodecki K (2009) Rev Mod Phys 81:865Google Scholar
  22. 22.
    Gühne O, Tóth G (2009) Phys Rep 474:1Google Scholar
  23. 23.
    Troiani F, Bellini V, Candini A, Lorusso G, Affronte M (2010) Nanotechnology 21:274009Google Scholar
  24. 24.
    Baker ML, Guidi T, Carretta J, Ollivier S, Mutka H, Güdel HU, Timco GA, McInnes EJL, Amoretti G, Winpenny REP, Santini P (2012) Nat Phys 8:906Google Scholar
  25. 25.
    Siloi I, Troiani F (2012) Phys Rev B 86:224404Google Scholar
  26. 26.
    Lorusso G, Corradini V, Ghirri A, Biagi R, del Pennino U, Siloi I, Troiani F, Timco G, Winpenny REP, Affronte M (2012) Phys Rev B 86:184424Google Scholar
  27. 27.
    Troiani F, Siloi I (2012) Phys Rev A 86:032330Google Scholar
  28. 28.
    Siloi I, Troiani F (2013) Eur Phys J B 86Google Scholar
  29. 29.
    Candini A, Lorusso G, Troiani F, Ghirri A, Carretta S, Santini P, Amoretti G, Muryn C, Tuna F, Timco G, McInnes EJL, Winpenny REP, Wernsdorfer W, Affronte M (2010) Phys Rev Lett 104:037203Google Scholar
  30. 30.
    Troiani F, Carretta S, Santini P (2013) Phys Rev B 88:195421Google Scholar
  31. 31.
    Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, New YorkGoogle Scholar
  32. 32.
    Bellini V, Lorusso G, Candini A, Wernsdorfer W, Faust T, Timco G, Winpenny R, Affronte M (2011) Phys Rev Lett 106:227205Google Scholar
  33. 33.
    Domingo N, Bellido E, Ruiz-Molina D (2012) Chem Soc Rev 41:258Google Scholar
  34. 34.
    DiVincenzo DP (2000) Fortschr Phys 48:771Google Scholar
  35. 35.
    Collauto A, Mannini M, Sorace L, Barbon A, Brustolon M, Gatteschi D (2012) J Mater Chem 22:22272Google Scholar
  36. 36.
    Sato K, Nakazawa S, Rahimi R, Ise T, Nishida S, Yoshino T, Mori N, Toyota K, Shiomi D, Yakiyama Y et al (2009) J Mater Chem 19:3739Google Scholar
  37. 37.
    Nakazawa S, Nishida S, Ise T, Yoshino T, Mori N, Rahimi RD, Sato K, Morita Y, Toyota K, Shiomi D, Kitagawa M, Hara H, Carl P, Hfer P, Takui T (2012) Angew Chem Int Ed 51:9860Google Scholar
  38. 38.
    Du J, Rong X, Zhao N, Wang Y, Yang J, Liu RB (2009) Nature 461:1265Google Scholar
  39. 39.
    Martínez-Pérez MJ, Cardona-Serra S, Schlegel C, Moro F, Alonso PJ, Prima-García H, Clemente-Juan JM, Evangelisti M, Gaita-Ariño A, Sesé J, van Slageren J, Coronado E, Luis F (2012) Phys Rev Lett 108:247213Google Scholar
  40. 40.
    Ishikawa N, Sugita M, Ishikawa T, Koshihara SY, Kaizu Y (2004) J Phys Chem B 108:11265Google Scholar
  41. 41.
    Ishikawa N, Sugita M, Wernsdorfer W (2005) Angew Chem Int Ed 44:2931Google Scholar
  42. 42.
    Vincent R, Klyatskaya S, Ruben M, Wernsdorfer W, Balestro F (2012) Nature 488:357Google Scholar
  43. 43.
    Leuenberger MN, Loss D (2001) Nature 410:789Google Scholar
  44. 44.
    Tejada J, Chudnovsky E, Del Barco E, Hernandez J, Spiller T (2001) Nanotechnology 12:181Google Scholar
  45. 45.
    Meier F, Levy J, Loss D (2003) Phys Rev B 68:134417Google Scholar
  46. 46.
    Troiani F, Ghirri A, Affronte M, Carretta S, Santini P, Amoretti G, Piligkos S, Timco G, Winpenny R (2005) Phys Rev Lett 94:207208Google Scholar
  47. 47.
    Timco GA, Faust TB, Tuna F, Winpenny RE (2011) Chem Soc Rev 40:3067Google Scholar
  48. 48.
    Ardavan A, Rival O, Morton JJ, Blundell SJ, Tyryshkin AM, Timco GA, Winpenny RE (2007) Phys Rev Lett 98:057201Google Scholar
  49. 49.
    Wedge C, Timco G, Spielberg E, George R, Tuna F, Rigby S, McInnes E, Winpenny R, Blundell S, Ardavan A (2012) Phys Rev Lett 108:107204Google Scholar
  50. 50.
    Corradini V, Ghirri A, del Pennino U, Biagi R, Milway VA, Timco G, Tuna F, Winpenny RE, Affronte M (2010) Dalton Trans 39:4928Google Scholar
  51. 51.
    Ghirri A, Corradini V, Bellini V, Biagi R, del Pennino U, De Renzi V, Cezar JC, Muryn CA, Timco GA, Winpenny RE et al (2011) ACS Nano 5:7090Google Scholar
  52. 52.
    Timco GA, Carretta S, Troiani F, Tuna F, Pritchard RJ, Muryn CA, McInnes EJ, Ghirri A, Candini A, Santini P et al (2009) Nat Nanotechnol 4:173Google Scholar
  53. 53.
    Yang J, Wang Y, Wang Z, Rong X, Duan CK, Su JH, Du J (2012) Phys Rev Lett 108:230501Google Scholar
  54. 54.
    Choi KY, Wang Z, Nojiri H, van Tol J, Kumar P, Lemmens P, Bassil B, Kortz U, Dalal N (2012) Phys Rev Lett 108:067206Google Scholar
  55. 55.
    Takahashi S, van Tol J, Beedle CC, Hendrickson DN, Brunel LC, Sherwin MS (2009) Phys Rev Lett 102:087603Google Scholar
  56. 56.
    Schlegel C, van Slageren J, Manoli M, Brechin E, Dressel M (2008) Phys Rev Lett 101:147203Google Scholar
  57. 57.
    Hill S, Edwards R, Aliaga-Alcalde N, Christou G (2003) Science 302:1015Google Scholar
  58. 58.
    Wernsdorfer W, Aliaga-Alcalde N, Hendrickson DN, Christou G (2002) Nature 416:406Google Scholar
  59. 59.
    Luis F, Repollés A, Martínez-Pérez MJ, Aguilà D, Roubeau O, Zueco D, Alonso PJ, Evangelisti M, Camón A, Sesé J, Barrios LA, Aromí G (2011) Phys Rev Lett 107:117203Google Scholar
  60. 60.
    Sañudo EC, Cauchy T, Ruiz E, Laye RH, Roubeau O, Teat SJ, Aromí G (2007) Inorg Chem 46:9045Google Scholar
  61. 61.
    Barrios L, Aguil D, Roubeau O, Gamez P, Ribas-Ario J, Teat S, Aromi G (2009) Chem Eur J 15:11235Google Scholar
  62. 62.
    Brown KL, Munro WJ, Kendon VM (2010) Entropy 12:2268Google Scholar
  63. 63.
    Buluta I, Nori F (2009) Science 326:108Google Scholar
  64. 64.
    Feynman RP (1982) Int J Theor Phys 21:467Google Scholar
  65. 65.
    Lloyd S et al (1996) Science 1073–1077Google Scholar
  66. 66.
    Jones J (2000) Fortschr Phys 48:909Google Scholar
  67. 67.
    Brown KR, Clark RJ, Chuang IL (2006) Phys Rev Lett 97:050504Google Scholar
  68. 68.
    Negrevergne C, Somma R, Ortiz G, Knill E, Laflamme R (2005) Phys Rev A 71:032344Google Scholar
  69. 69.
    Somaroo S, Tseng CH, Havel TF, Laflamme R, Cory DG (1999) Phys Rev Lett 82:5381Google Scholar
  70. 70.
    Deng XL, Porras D, Cirac JI (2005) Phys Rev A 72:063407Google Scholar
  71. 71.
    Porras D, Cirac JI (2004) Phys Rev Lett 93:263602Google Scholar
  72. 72.
    Cai J, Retzker A, Jelezko F, Plenio MB (2013) Nat Phys 9:168Google Scholar
  73. 73.
    Gaudreau L, Studenikin SA, Sachrajda AS, Zawadzki P, Kam A, Lapointe J, Korkusinski M, Hawrylak P (2006) Phys Rev Lett 97:036807Google Scholar
  74. 74.
    Vidan A, Westervelt R, Stopa M, Hanson M, Gossard A (2004) Appl Phys Lett 85:3602Google Scholar
  75. 75.
    Santini P, Carretta S, Troiani F, Amoretti G (2011) Phys Rev Lett 107:230502Google Scholar
  76. 76.
    Whitehead GF, Cross B, Carthy L, Milway VA, Rath H, Fernandez A, Heath SL, Muryn CA, Pritchard RG, Teat SJ et al (2013) Chem Commun 49:7195Google Scholar
  77. 77.
    Ueda A, Suzuki S, Yoshida K, Fukui K, Sato K, Takui T, Nakasuji K, Morita Y (2013) Angew Chem Int Ed 52:4795Google Scholar
  78. 78.
    Hodges JS, Yang JC, Ramanathan C, Cory DG (2008) Phys Rev A 78:010303Google Scholar
  79. 79.
    Zhang Y, Ryan CA, Laflamme R, Baugh J (2011) Phys Rev Lett 107:170503Google Scholar
  80. 80.
    Haroche S, Raimond JM (2006) Exploring the quantum: atoms, cavities and photons. Oxford University Press, OxfordGoogle Scholar
  81. 81.
    Wallraff A, Schuster DI, Blais A, Frunzio L, Huang RS, Majer J, Kumar S, Girvin SM, Schoelkopf RJ (2004) Nature 431:162Google Scholar
  82. 82.
    Xiang ZL, Ashhab S, You JQ, Nori F (2013) Rev Mod Phys 85:623Google Scholar
  83. 83.
    Rabi I (1937) Phys Rev 51:652Google Scholar
  84. 84.
    Abe E, Wu H, Ardavan A, Morton JJ (2011) Appl Phys Lett 98:251108Google Scholar
  85. 85.
    Dicke RH (1954) Phys Rev 93:99Google Scholar
  86. 86.
    Tavis M, Cummings FW (1968) Phys Rev 170:379Google Scholar
  87. 87.
    Chiorescu I, Groll N, Bertaina S, Mori T, Miyashita S (2010) Phys Rev B 82:024413Google Scholar
  88. 88.
    Tyryshkin AM, Tojo S, Morton JJ, Riemann H, Abrosimov NV, Becker P, Pohl HJ, Schenkel T, Thewalt ML, Itoh KM et al (2011) Nat Mater 11:143Google Scholar
  89. 89.
    Rabl P, DeMille D, Doyle JM, Lukin MD, Schoelkopf RJ, Zoller P (2006) Phys Rev Lett 97:033003Google Scholar
  90. 90.
    Tordrup K, Negretti A, Mølmer K (2008) Phys Rev Lett 101:040501Google Scholar
  91. 91.
    Imamoğlu A (2009) Phys Rev Lett 102:083602Google Scholar
  92. 92.
    Wesenberg JH, Ardavan A, Briggs GAD, Morton JJL, Schoelkopf RJ, Schuster DI, Mølmer K (2009) Phys Rev Lett 103:070502Google Scholar
  93. 93.
    Simon C, Afzelius M, Appel J, de La Giroday AB, Dewhurst S, Gisin N, Hu C, Jelezko F, Kröll S, Müller J et al (2010) Eur Phys J D 58:1Google Scholar
  94. 94.
    Schuster DI, Sears AP, Ginossar E, DiCarlo L, Frunzio L, Morton JJL, Wu H, Briggs GAD, Buckley BB, Awschalom DD, Schoelkopf RJ (2010) Phys Rev Lett 105:140501Google Scholar
  95. 95.
    Kubo Y, Ong FR, Bertet P, Vion D, Jacques V, Zheng D, Dréau A, Roch JF, Auffeves A, Jelezko F, Wrachtrup J, Barthe MF, Bergonzo P, Esteve D (2010) Phys Rev Lett 105:140502Google Scholar
  96. 96.
    Amsüss R, Koller C, Nöbauer T, Putz S, Rotter S, Sandner K, Schneider S, Schramböck M, Steinhauser G, Ritsch H, Schmiedmayer J, Majer J (2011) Phys Rev Lett 107:060502Google Scholar
  97. 97.
    Probst S, Rotzinger H, Wünsch S, Jung P, Jerger M, Siegel M, Ustinov AV, Bushev PA (2013) Phys Rev Lett 110:157001Google Scholar
  98. 98.
    Huebl H, Zollitsch C, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein ST (2013) Phys Rev Lett 111:127003Google Scholar
  99. 99.
    Majer J, Chow J, Gambetta J, Koch J, Johnson B, Schreier J, Frunzio L, Schuster D, Houck A, Wallraff A et al (2007) Nature 449:443Google Scholar
  100. 100.
    DiCarlo L, Chow J, Gambetta J, Bishop LS, Johnson B, Schuster D, Majer J, Blais A, Frunzio L, Girvin S et al (2009) Nature 460:240Google Scholar
  101. 101.
    Houck A, Schuster D, Gambetta J, Schreier J, Johnson B, Chow J, Frunzio L, Majer J, Devoret M, Girvin S et al (2007) Nature 449:328Google Scholar
  102. 102.
    Schuster D, Houck A, Schreier J, Wallraff A, Gambetta J, Blais A, Frunzio L, Majer J, Johnson B, Devoret M et al (2007) Nature 445:515Google Scholar
  103. 103.
    Hofheinz M, Weig E, Ansmann M, Bialczak RC, Lucero E, Neeley M, Oconnell A, Wang H, Martinis JM, Cleland A (2008) Nature 454:310Google Scholar
  104. 104.
    Filipp S, Maurer P, Leek PJ, Baur M, Bianchetti R, Fink JM, Göppl M, Steffen L, Gambetta JM, Blais A, Wallraff A (2009) Phys Rev Lett 102:200402Google Scholar
  105. 105.
    Wu H, George RE, Wesenberg JH, Mølmer K, Schuster DI, Schoelkopf RJ, Itoh KM, Ardavan A, Morton JJL, Briggs GAD (2010) Phys Rev Lett 105:140503Google Scholar
  106. 106.
    Zhu X, Saito S, Kemp A, Kakuyanagi K, Karimoto SI, Nakano H, Munro WJ, Tokura Y, Everitt MS, Nemoto K et al (2011) Nature 478:221Google Scholar
  107. 107.
    Julsgaard B, Grezes C, Bertet P, Mølmer K (2013) Phys Rev Lett 110:250503Google Scholar
  108. 108.
    Clauss C, Bothner D, Koelle D, Kleiner R, Bogani L, Scheffler M, Dressel M (2013) Appl Phys Lett 102:162601Google Scholar
  109. 109.
    Jenkins M, Hmmer T, Martnez-Prez MJ, Garca-Ripoll J, Zueco D, Luis F (2013) New J Phys 15:095007Google Scholar
  110. 110.
    Troiani F, Affronte M, Carretta S, Santini P, Amoretti G (2005) Phys Rev Lett 94:190501Google Scholar
  111. 111.
    Carretta S, Chiesa A, Troiani F, Gerace D, Amoretti G, Santini P (2013) Phys Rev Lett 111:110501Google Scholar
  112. 112.
    Trif M, Troiani F, Stepanenko D, Loss D (2008) Phys Rev Lett 101:217201Google Scholar
  113. 113.
    Trif M, Troiani F, Stepanenko D, Loss D (2010) Phys Rev B 82:045429Google Scholar
  114. 114.
    Nossa JF, Islam MF, Canali CM, Pederson MR (2012) Phys Rev B 85:085427Google Scholar
  115. 115.
    Cohen-Tannoudji GGC, Dupont-Roc J (2004) Atom-photon interactions. Wiley-VCH, WeinheimGoogle Scholar
  116. 116.
    Gerry CC, Knight PL (2004) Introductory quantum optics. Cambridge University Press, CambridgeGoogle Scholar
  117. 117.
    Jaynes ET, Cummings FW (1963) Proc IEEE 51:89Google Scholar
  118. 118.
    Weil JA, Bolton JR (2008) Electron paramagnetic resonance, 2nd edn. Wiley, New YorkGoogle Scholar
  119. 119.
    Gupta K, Garg R, Bahl I, Bhartia P (1996) Microstrip lines and slotlines. Artech House, BostonGoogle Scholar
  120. 120.
    Pozar DM (1998) Microwave engineering. Wiley, New YorkGoogle Scholar
  121. 121.
    Lancaster MJ (1997) Passive microwave device applications of high-temperature superconductors. Cambridge University Press, CambridgeGoogle Scholar
  122. 122.
    Vissers MR, Gao J, Wisbey DS, Hite DA, Tsuei CC, Corcoles AD, Steffen M, Pappas DP (2010) Appl Phys Lett 97:232509Google Scholar
  123. 123.
    Benningshof O, Mohebbi H, Taminiau I, Miao G, Cory D (2013) J Magn Reson 230:84Google Scholar
  124. 124.
    Song C, Heitmann TW, DeFeo MP, Yu K, McDermott R, Neeley M, Martinis JM, Plourde BLT (2009) Phys Rev B 79:174512Google Scholar
  125. 125.
    Song C, DeFeo M, Yu K, Plourde B (2009) Appl Phys Lett 95:232501Google Scholar
  126. 126.
    Bothner D, Gaber T, Kemmler M, Koelle D, Kleiner R (2011) Appl Phys Lett 98:102504Google Scholar
  127. 127.
    Bothner D, Gaber T, Kemmler M, Koelle D, Kleiner R, Wünsch S, Siegel M (2012) Phys Rev B 86:014517Google Scholar
  128. 128.
    Creedon DL, Reshitnyk Y, Farr W, Martinis JM, Duty TL, Tobar ME (2011) Appl Phys Lett 98:222903Google Scholar
  129. 129.
    Frunzio L, Wallraff A, Schuster D, Majer J, Schoelkopf R (2005) IEEE Trans Appl Supercond 15:860Google Scholar
  130. 130.
    Barends R, Vercruyssen N, Endo A, De Visser P, Zijlstra T, Klapwijk T, Diener P, Yates S, Baselmans J (2010) Appl Phys Lett 97:023508Google Scholar
  131. 131.
    Mazin B (2004) Microwave kinetic inductance detectors. Ph.D. thesis, California Institute of TechnologyGoogle Scholar
  132. 132.
    Gao J, Daal M, Vayonakis A, Kumar S, Zmuidzinas J, Sadoulet B, Mazin BA, Day PK, Leduc HG (2008) Appl Phys Lett 92:152505Google Scholar
  133. 133.
    Wang H, Hofheinz M, Wenner J, Ansmann M, Bialczak R, Lenander M, Lucero E, Neeley M, OConnell A, Sank D et al (2009) Appl Phys Lett 95:233508Google Scholar
  134. 134.
    Lindström T, Healey JE, Colclough MS, Muirhead CM, Tzalenchuk AY (2009) Phys Rev B 80:132501Google Scholar
  135. 135.
    Macha P, van Der Ploeg S, Oelsner G, Ilichev E, Meyer HG, Wunsch S, Siegel M (2010) Appl Phys Lett 96:062503Google Scholar
  136. 136.
    Goppl M, Fragner A, Baur M, Bianchetti R, Filipp S, Fink J, Leek P, Puebla G, Steffen L, Wallraff A (2008) J Appl Phys 104:113904Google Scholar
  137. 137.
    Osborn K, Strong J, Sirois A, Simmonds R (2007) IEEE Trans Appl Supercond 17:166Google Scholar
  138. 138.
    Castellanos-Beltran M, Lehnert K (2007) Appl Phys Lett 91:083509Google Scholar
  139. 139.
    Palacios-Laloy A, Nguyen F, Mallet F, Bertet P, Vion D, Esteve D (2008) J Low Temp Phys 151:1034Google Scholar
  140. 140.
    Sandberg M, Wilson C, Persson F, Bauch T, Johansson G, Shumeiko V, Duty T, Delsing P (2008) Appl Phys Lett 92:203501Google Scholar
  141. 141.
    Poole CP (1983) Electron spin resonance: a comprehensive treatise on experimental techniques. Wiley, New YorkGoogle Scholar
  142. 142.
    Johansson B, Haraldson S, Pettersson L, Beckman O (1974) Rev Sci Instrum 45:1445Google Scholar
  143. 143.
    Wallace W, Silsbee R (1991) Rev Sci Instrum 62:1754Google Scholar
  144. 144.
    Torrezan A, Mayer Alegre T, Medeiros-Ribeiro G (2009) Rev Sci Instrum 80:075111Google Scholar
  145. 145.
    Narkowicz RSR, Suter D (2005) J Magn Reson 175:275284Google Scholar
  146. 146.
    Narkowicz R, Suter D, Niemeyer I (2008) Rev Sci Instrum 79:084702Google Scholar
  147. 147.
    Twig Y, Suhovoy E, Blank A (2010) Rev Sci Instrum 81:104703Google Scholar
  148. 148.
    Goglio G, Pignard S, Radulescu A, Piraux L, Huynen I, Vanhoenacker D, Vander Vorst A (1999) Appl Phys Lett 75:1769Google Scholar
  149. 149.
    Giesen F, Podbielski J, Korn T, Steiner M, Van Staa A, Grundler D (2005) Appl Phys Lett 86:112510Google Scholar
  150. 150.
    Liu Y, Chen L, Tan C, Liu H, Ong C (2005) Rev Sci Instrum 76:063911Google Scholar
  151. 151.
    Henderson J, Ramsey C, Quddusi H, Del Barco E (2008) Rev Sci Instrum 79:074704Google Scholar
  152. 152.
    Bushev P, Feofanov AK, Rotzinger H, Protopopov I, Cole JH, Wilson CM, Fischer G, Lukashenko A, Ustinov AV (2011) Phys Rev B 84:060501Google Scholar
  153. 153.
    Malissa H, Schuster D, Tyryshkin A, Houck A, Lyon S (2013) Rev Sci Instrum 84:025116Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alberto Ghirri
    • 1
  • Filippo Troiani
    • 1
  • Marco Affronte
    • 1
    • 2
  1. 1.Istituto Nanoscienze – CNR, Centro S3ModenaItaly
  2. 2.Dipartimento di Fisica, Informatica e MatematicaUniversità di Modena e Reggio EmiliaModenaItaly

Personalised recommendations