Reliable Measurements of Dipole Moments from Single-Crystal Diffraction Data and Assessment of an In-Crystal Enhancement

Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 147)

Abstract

Using seven examples of high-quality data sets of amino acids it is shown that accurate molecular dipole moments can be obtained from experimental diffraction data. Recommendations for practical modeling choices are given when using the Hansen/Coppens multipole model. Multipole-model results, including those from invariom refinement, are found to be less accurate than results from a basis-set description. The question whether a molecular dipole-moment enhancement in the solid state is fact or artifact is studied by a number of techniques: A theoretical molecule embedded in a cluster of point-charges gives a substantial enhancement, in agreement with Hirshfeld atom refinement with point charges and dipoles. The experimental techniques, multipole refinement and wavefunction fitting, lead to smaller dipole-moment enhancements than the theoretical predictions.

Keywords

Single-crystal X-ray diffraction molecular dipole moment dipole-moment enhancement multipole model wavefunction fitting hirshfeld-atom refinement 

Notes

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft DFG. B.D. is grateful for support of an Emmy Noether research fellowship, grant DI 921/3-2. We thank R. Flaig, A. Wagner and P. Luger as well as R. Destro and P. Coppens for diffraction data. Fruitful discussions with J. Bak, P. Dominiak, M. A. Spackman and H.-B. Bürgi are acknowledged.

References

  1. 1.
    Stone AJ (1996) The theory of intermolecular forces. Clarendon, OxfordGoogle Scholar
  2. 2.
    Stewart RF (1969) J Chem Phys 51:4569–4577CrossRefGoogle Scholar
  3. 3.
    Kurki-Suonio K (1968) Acta Cryst A A24:379–390CrossRefGoogle Scholar
  4. 4.
    Hirshfeld FL (1971) Acta Cryst B 27:769–781CrossRefGoogle Scholar
  5. 5.
    Stewart RF (1976) Acta Cryst A 32:565–574CrossRefGoogle Scholar
  6. 6.
    Kurki-Suonio K (1977) Isr J Chem 16:132–136Google Scholar
  7. 7.
    Hansen NK, Coppens P (1978) Acta Cryst A 34:909–921CrossRefGoogle Scholar
  8. 8.
    Jayatilaka D (1998) Phy Rev Lett 80:798–801CrossRefGoogle Scholar
  9. 9.
    Whitten AE, Spackman MA (2006) Acta Cryst B 62:875–888CrossRefGoogle Scholar
  10. 10.
    Madsen AØ (2006) J Appl Cryst 39:757–758CrossRefGoogle Scholar
  11. 11.
    Munshi P, Madsen AØ, Spackman MA, Larsen S, Destro R (2008) Acta Cryst A 64:465–475CrossRefGoogle Scholar
  12. 12.
    Bruning H, Feil D (1992) Acta Cryst A 48:865–872CrossRefGoogle Scholar
  13. 13.
    Jayatilaka D, Dittrich B (2008) Acta Cryst A 64:383–393CrossRefGoogle Scholar
  14. 14.
    Howard ST, Hursthouse MB, Lehmann CW, Mallinson PR, Frampton CS (1992) J Chem Phys 97:5616–5630CrossRefGoogle Scholar
  15. 15.
    Jayatilaka D, Grimwood DJ (2001) Acta Cryst A 57:76–86CrossRefGoogle Scholar
  16. 16.
    Grimwood DJ, Jayatilaka D (2001) Acta Cryst A 57:87–100CrossRefGoogle Scholar
  17. 17.
    Bytheway I, Grimwood DJ, Jayatilaka D (2002) Acta Cryst A 58:232–243CrossRefGoogle Scholar
  18. 18.
    Bytheway I, Grimwood DJ, Figgis BN, Chandler GS, Jayatilaka D (2002) Acta Cryst A 58:244–251CrossRefGoogle Scholar
  19. 19.
    Jayatilaka D, Grimwood DJ (2004) Acta Cryst A 60:111–119CrossRefGoogle Scholar
  20. 20.
    Palatinus L, van Smaalen S (2002) Acta Cryst A 58:559–567CrossRefGoogle Scholar
  21. 21.
    Spackman MA (1992) Chem Rev 92:1769–1797CrossRefGoogle Scholar
  22. 22.
    Spackman MA, Munshi P, Dittrich B (2007) ChemPhysChem 8:2051–2063CrossRefGoogle Scholar
  23. 23.
    Martin RM (1974) Phys Rev B Condens Matter 9:1998–1999CrossRefGoogle Scholar
  24. 24.
    Resta R (1991) Phys Rev B Condens Matter 44:11035–11041CrossRefGoogle Scholar
  25. 25.
    El Haouzi A, Hansen NK, Le Hénaff C, Protas J (1996) Acta Cryst A 52:291–301CrossRefGoogle Scholar
  26. 26.
    Spackman MA (2005) Phys Rev Lett 95:085502CrossRefGoogle Scholar
  27. 27.
    Dittrich B, Hübschle CB, Luger P, Spackman MA (2006) Acta Cryst D 62:1325–1335CrossRefGoogle Scholar
  28. 28.
    Coppens P, Abramov Y, Carducci M, Korjov B, Novozhilova I, Alhambra C, Pressprich MR (1999) J Am Chem Soc 121:2585–2593CrossRefGoogle Scholar
  29. 29.
    Destro R, Soave R, Barzaghi M (2008) J Phys Chem B 112:5163–5174CrossRefGoogle Scholar
  30. 30.
    Destro R, Marsh RE, Bianchi R (1988) J Phys Chem 92:966–973CrossRefGoogle Scholar
  31. 31.
    Moggach SA, Clark SJ, Parsons S (2005) Acta Cryst E 61:o2739–o2742CrossRefGoogle Scholar
  32. 32.
    Wagner A, Luger P (2001) J Mol Struct 595:39–46CrossRefGoogle Scholar
  33. 33.
    Dittrich B, Hübschle CB, Messerschmidt M, Kalinowski R, Girnt D, Luger P (2005) Acta Cryst A 61:314–320CrossRefGoogle Scholar
  34. 34.
    Flaig R, Koritsánszky T, Janczak J, Krane H-G, Morgenroth W, Luger P (1999) Angew Chem Int Ed 38:1397–1400CrossRefGoogle Scholar
  35. 35.
    Flaig R, Koritsánszky T, Zobel D, Luger P (1998) J Am Chem Soc 120:2227–2238CrossRefGoogle Scholar
  36. 36.
    Stewart RF (1973) Acta Cryst A 29:602–605CrossRefGoogle Scholar
  37. 37.
    Abramov YA, Volkov A, Wu G, Coppens P (1999) Chem Phy Lett 311:81–86CrossRefGoogle Scholar
  38. 38.
    Zarychta B, Pichon-Pesme V, Guillot B, Lecomte C, Jelsch C (2007) Acta Cryst A 63:108–125CrossRefGoogle Scholar
  39. 39.
    Dominiak PM, Volkov A, Li X, Messerschmidt M, Coppens P (2007) J Chem Theory Comput 2:232–247CrossRefGoogle Scholar
  40. 40.
    Hübschle CB, Luger P, Dittrich B (2007) J Appl Cryst 40:623–627CrossRefGoogle Scholar
  41. 41.
    Reid JS (1976) Acta Cryst A 29:248–251CrossRefGoogle Scholar
  42. 42.
    Coppens P (1997) X-ray charge densities and chemical bonding, 1st edn. Oxford University Press, OxfordGoogle Scholar
  43. 43.
    Dittrich B, Hübschle CB, Holstein J, Fabbiani FPA (2009) J Appl Cryst 42:1110–1121CrossRefGoogle Scholar
  44. 44.
    Frisch MJ et al (2004) “Gaussian 03, Revision D.01”, Technical Report, Gaussian, Inc., Wallingford CTGoogle Scholar
  45. 45.
    Jayatilaka D, Grimwood DJ (2003) Computational Science – ICCS 2003, 2660:142–151Google Scholar
  46. 46.
    Koritsánszky T, Volkov A, Coppens P (2002) Acta Cryst A 58:464–472CrossRefGoogle Scholar
  47. 47.
    Fischer A, Tiana D, Scherer W, Batke K, Svendsen H, Bindzus N, Iversen BB (2011) J Phys Chem B 115:13061–13071CrossRefGoogle Scholar
  48. 48.
    Volkov A, Gatti C, Abramov Y, Coppens P (2000) Acta Cryst A 56:252–258CrossRefGoogle Scholar
  49. 49.
    Dunmuir DA (1972) Mol Phys 23:109–115CrossRefGoogle Scholar
  50. 50.
    Cummins PG, Dunmuir DA (1976) Acta Cryst A 32:847–853CrossRefGoogle Scholar
  51. 51.
    Spackman MA, Munshi P, Jayatilaka D (2007) Chem Phys Lett 443:87–91CrossRefGoogle Scholar
  52. 52.
    Bader RFW (1990) Atoms in molecules: a quantum theory, vol 22, 1st edn, The international series of monographs on chemistry. Clarendon, OxfordGoogle Scholar
  53. 53.
    Gatti C, Silvi B, Colonna F (1995) Chem Phys Lett 247:135–141CrossRefGoogle Scholar
  54. 54.
    Whitten AE, Turner P, Klooster W, Piltz RO, Spackman MA (2006) J Phys Chem A 110:8763–8776CrossRefGoogle Scholar
  55. 55.
    Fantoni AC, Pozzi CG, Punte G (2009) J Phys Chem A 113:9527–9532CrossRefGoogle Scholar
  56. 56.
    Dittrich B, Pfitzenreuter S, Hübschle CB (2012) Acta Cryst A 68:110–116CrossRefGoogle Scholar
  57. 57.
    Dapprich S, Komáromi I, Byun KS, Morokuma K, Frisch MJ (1999) J Mol Struct (Theochem) 461:1–21CrossRefGoogle Scholar
  58. 58.
    Bak KL, Gauss J, Helgaker T, Jorgensen P, Olsen J (2000) Chem Phys Lett 319:563–568CrossRefGoogle Scholar
  59. 59.
    Dittrich B, Strümpel M, Koritsánszky T, Schäfer M, Spackman MA (2006) Acta Cryst A 62:217–223CrossRefGoogle Scholar
  60. 60.
    Dittrich B, Bond CS, Kalinowski R, Spackman MA, Jayatilaka D (2010) Cryst Eng Comm 12:2419–2423Google Scholar
  61. 61.
    Johnas SKJ, Dittrich B, Meents A, Messerschmidt M, Weckert EF (2009) Acta Cryst D 65:284–293CrossRefGoogle Scholar
  62. 62.
    Koritsánszky T, Richter T, Macchi P, Volkov A, Gatti C, Howard S, Mallinson PR, Farrugia L (2003) XD – a computer program package for multipole refinement and topological analysis of electron densities from diffraction data. Freie Universität Berlin, BerlinGoogle Scholar
  63. 63.
    Dunning TH (1970) J Chem Phys 53:2823–2833CrossRefGoogle Scholar
  64. 64.
    Dunning TH (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  65. 65.
    Grimme S (2006) J Comput Chem 27:1787–1799CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für Anorganische Chemie der Universität GöttingenGöttingenGermany
  2. 2.Chemistry, M313, School of Biomedical, Biomolecular and Chemical ScienceUniversity of Western AustraliaCrawleyAustralia

Personalised recommendations