Electronic Structures of Oxo-Metal Ions

Part of the Structure and Bonding book series (STRUCTURE, volume 142)

Abstract

The dianionic oxo ligand occupies a very special place in coordination chemistry, owing to its ability to donate π electrons to stabilize high oxidation states of metals. The ligand field theory of multiple bonding in oxo-metal ions, which was formulated in Copenhagen 50 years ago, predicts that there must be an “oxo wall” between Fe–Ru–Os and Co–Rh–Ir in the periodic table. In this tribute to Carl Ballhausen, we review this early work as well as new developments in the field. In particular, we discuss the electronic structures of beyond-the-wall (groups 9 and 10) complexes containing metals multiply bonded to O- and N-donor ligands.

Keywords

Ferryl Ligand field theory Oxo wall Vanadyl 

Notes

Acknowledgments

We dedicate this paper to the memory of Carl Ballhausen, a great scientist and a dear friend (Fig. 5). We note in closing that the B&G model is providing a firm foundation for structure/reactivity correlations in our current work on oxo-metal complexes [oxidative enzymes P450 and nitric oxide synthase (NIH DK019038, GM068461); water oxidation catalysts (NSF CCI Solar Program, CHE-0947829); and trans-dioxo osmium(VI) electrochemistry and photochemistry (BP)]. We thank the Gordon and Betty Moore Foundation and the Arnold and Mabel Beckman Foundation for support of our research programs.

References

  1. 1.
    Nugent WA, Mayer JM (1988) Metal-ligand multiple bonds. John Wiley & Sons, New YorkGoogle Scholar
  2. 2.
    Koppel J, Goldmann R (1903) Z Anorg Allg Chem 36:281Google Scholar
  3. 3.
    International Union of Pure and Applied Chemistry (1960) J Am Chem Soc 82:5523CrossRefGoogle Scholar
  4. 4.
    International Union of Pure and Applied Chemistry (1970) Nomenclature of inorganic chemistry. Butterworths, LondonGoogle Scholar
  5. 5.
    Ballhausen CJ, Gray HB (1962) Inorg Chem 1:111CrossRefGoogle Scholar
  6. 6.
    Furman SC, Garner CS (1950) J Am Chem Soc 72:1785CrossRefGoogle Scholar
  7. 7.
    Furman SC, Garner CS (1951) J Am Chem Soc 73:4528CrossRefGoogle Scholar
  8. 8.
    Jørgensen CK (1957) Acta Chem Scand 11:73CrossRefGoogle Scholar
  9. 9.
    Hartmann H, Schlafer HL (1954) Angew Chem Int Ed Engl 66:768CrossRefGoogle Scholar
  10. 10.
    Ballhausen CJ (1962) Introduction to ligand field theory. McGraw-Hill, New YorkGoogle Scholar
  11. 11.
    Bennett RM, Holmes OG (1960) Can J Chem 38:2319CrossRefGoogle Scholar
  12. 12.
    Hartmann H, Schlafer HL (1951) Z Naturforsch A 6:754Google Scholar
  13. 13.
    Hartmann H, Schlafer HL (1951) Z Naturforsch A 6:760Google Scholar
  14. 14.
    Ilse FE, Hartmann H (1951) Z Naturforsch A 6:751Google Scholar
  15. 15.
    Rossotti FJC, Rossotti HS (1955) Acta Chem Scand 9:1177CrossRefGoogle Scholar
  16. 16.
    Taube H (1982) In: Rorabacher DB, Endicott JF (eds) Mechanistic Aspects of Inorganic Reactions, vol 198, ACS Symposium Series. American Chemical Society, Washington DC, p 151CrossRefGoogle Scholar
  17. 17.
    Selbin J, Ortolano TR, Smith FJ (1963) Inorg Chem 2:1315CrossRefGoogle Scholar
  18. 18.
    Ballhausen CJ, Djurinski BF, Watson KJ (1968) J Am Chem Soc 90:3305CrossRefGoogle Scholar
  19. 19.
    Gray HB, Hare CR (1962) Inorg Chem 1:363CrossRefGoogle Scholar
  20. 20.
    Patterson HH, Nims JL (1972) Inorg Chem 11:520CrossRefGoogle Scholar
  21. 21.
    Horner SM, Tyree SY (1963) Inorg Chem 2:568CrossRefGoogle Scholar
  22. 22.
    Weber J, Garner CD (1980) Inorg Chem 19:2206CrossRefGoogle Scholar
  23. 23.
    Winkler JR, Gray HB (1981) Comments Inorg Chem 1:257CrossRefGoogle Scholar
  24. 24.
    Hopkins MD, Miskowski VM, Gray HB (1986) J Am Chem Soc 108:6908CrossRefGoogle Scholar
  25. 25.
    Mohammed AK, Fronczek FR, Maverick AW (1994) Inorg Chim Acta 226:25CrossRefGoogle Scholar
  26. 26.
    Mohammed AK, Maverick AW (1992) Inorg Chem 31:4441CrossRefGoogle Scholar
  27. 27.
    Winkler JR (1984) Spectroscopy and Photochemistry of Metal-Oxo Complexes, Ph.D. California Institute of Technology, CaliforniaGoogle Scholar
  28. 28.
    Strickler SJ, Berg RA (1962) J Chem Phys 37:814CrossRefGoogle Scholar
  29. 29.
    Tanabe Y, Sugano S (1954) J Phys Soc Jpn 9:753CrossRefGoogle Scholar
  30. 30.
    Tanabe Y, Sugano S (1954) J Phys Soc Jpn 9:766CrossRefGoogle Scholar
  31. 31.
    Winkler JR, Rice SF, Gray HB (1981) Comments Inorg Chem 1:47CrossRefGoogle Scholar
  32. 32.
    Sinnecker S, Svensen N, Barr EW, Ye S, Bollinger JM Jr, Neese F, Krebs C (2007) J Am Chem Soc 129:6168CrossRefGoogle Scholar
  33. 33.
    Riggs-Gelasco PJ, Price JC, Guyer RB, Brehm JH, Barr EW, Bollinger JM, Krebs C (2004) J Am Chem Soc 126:8108CrossRefGoogle Scholar
  34. 34.
    Price JC, Barr EW, Tirupati B, Bollinger JM, Krebs C (2003) Biochemistry 42:7497CrossRefGoogle Scholar
  35. 35.
    Hay-Motherwell RS, Wilkinson G, Hussain-Bates B, Hursthouse MB (1993) Polyhedron 12:2009CrossRefGoogle Scholar
  36. 36.
    Poverenov E, Efremenko I, Frenkel AI, Ben-David Y, Shimon LJW, Leitus G, Konstantinovski L, Martin JML, Milstein D (2008) Nature 455:1093CrossRefGoogle Scholar
  37. 37.
    Laskowski CA, Miller AJM, Hillhouse GL, Cundari TR (2011) J Am Chem Soc 133:771Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Beckman Institute, California Institute of TechnologyPasadenaUSA

Personalised recommendations