Liquid Crystalline Blue Phases

Chapter

Abstract

Blue phases are known to appear in chiral liquid crystals in a small temperature range between the chiral nematic phase and the isotropic one. They are optically active, non-birefringent, and they show Bragg diffraction of light in the visible wavelength, measuring several hundred nanometers. Their exotic structures and properties result from the competition between chiral forces and packing topology. Recently, the blue phases have attracted the attention in the field of optoelectronics and photonics. The following article summarizes the basic properties, especially the frustration in the double twist molecular alignment which is the origin of stabilization of the blue phase, and history of the blue phase studies, and describes significant advances that have been recently reported.

Blue phase Frustration Double twist Electrooptic effect Photonic crystal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crooker PP (1983) Mol Cryst Liq Cryst 98:31 CrossRefGoogle Scholar
  2. 2.
    Stegemeyer H, Blumel T, Hiltrop K, Onusseit H, Porsch F (1986) Liq Cryst 1:1 Google Scholar
  3. 3.
    Cladis PE (1987) Theory and Applications of Liquid Crystals. Springer, Berlin Heidelberg New York Google Scholar
  4. 4.
    Wright DC, Mermin ND (1989) Rev Mod Phys 61:385 CrossRefGoogle Scholar
  5. 5.
    Crooker PP (2001) Chirality in Liquid Crystals. Springer, Berlin Heidelberg New York CrossRefGoogle Scholar
  6. 6.
    Oswald P, Pieranski P (2005) Nematic and Cholesteric Liquid Crystals. Taylor & Francis, Boca Raton, London, New York, Singapore Google Scholar
  7. 7.
    Reinitzer F (1888) Montash Chem 9:421 CrossRefGoogle Scholar
  8. 8.
    Gray GW (1956) J Chem Soc 3733 Google Scholar
  9. 9.
    Saupe A (1969) Mol Cryst Liq Cryst 7:59 CrossRefGoogle Scholar
  10. 10.
    Coate D, Gray GW (1973) Phys Lett 45A:115 Google Scholar
  11. 11.
    Sethna JP (1985) Phys Rev B 31:6278 CrossRefGoogle Scholar
  12. 12.
    Meiboom S, Sethna JP, Anderson PW, Brinkman WF (1981) Phys Rev Lett 46:1216 CrossRefGoogle Scholar
  13. 13.
    Costello MJ, Meiboom S, Sammon M (1984) Phys Rev A 29:2957 CrossRefGoogle Scholar
  14. 14.
    Delacroix H, Gilli JM, Erk I, Mariani P (1992) Phys Rev Lett 69:2935 CrossRefGoogle Scholar
  15. 15.
    Hauser A, Thieme M, Saupe A, Heppke G, Kruerke D (1997) J Mater Chem 7:2223 CrossRefGoogle Scholar
  16. 16.
    Kikuchi H, Hirata S, Uchida K (2007) Mol Cryst Liq Cryst 465:283 CrossRefGoogle Scholar
  17. 17.
    Seshadri T, Haupt HJ (1998) Chem Commun (7):735 Google Scholar
  18. 18.
    Buey J, Espinet P, Kitzerow HS, Strauss J (1999) Chem Commun (5):441 Google Scholar
  19. 19.
    Lamb AGM, Eastwood AJ, Kelly SM, Goodby JW (1998) Ferroelectrics 212:317 CrossRefGoogle Scholar
  20. 20.
    Heppke G, Kruerke D, Lohning C, Lotzsch D, Moro D, Muller M, Sawade H (2000) J Mater Chem 10:2657 CrossRefGoogle Scholar
  21. 21.
    Nakata M, Takanishi Y, Watanabe J, Takezoe H (2003) Phys Rev E 68:041710 CrossRefGoogle Scholar
  22. 22.
    Kitzerow HS, Schmid H, Ranft A, Heppke G, Hikmet RAM, Lub J (1993) Liq Cryst 14:911 CrossRefGoogle Scholar
  23. 23.
    Kikuchi H, Yokota M, Hisakado Y, Yang H, Kajiyama T (2002) Nat Mater 1:64 CrossRefGoogle Scholar
  24. 24.
    Yoshizawa A, Sato M, Rokunohe J (2005) J Mater Chem 15:3285 CrossRefGoogle Scholar
  25. 25.
    Coles HJ, Pivnenko MN (2005) Nature 436:997 CrossRefGoogle Scholar
  26. 26.
    Alexander GP, Yeomans JM (2006) Phys Rev E 74:061706 CrossRefGoogle Scholar
  27. 27.
    Li MH, Nguyen HT, Sigaud G (1996) Liq Cryst 20:361 CrossRefGoogle Scholar
  28. 28.
    Li MH, Laux V, Nguyen HT, Sigaud G, Barois P, Isaert N (1997) Liq Cryst 23:389 CrossRefGoogle Scholar
  29. 29.
    Pansu B, Li MH, Nguyen HT (1997) J Phys II France 7:751 CrossRefGoogle Scholar
  30. 30.
    Pansu B, Li MH, Nguyen HT (1998) Eur Phys J B 2:143 CrossRefGoogle Scholar
  31. 31.
    Onusseit O, Stegemeyer H (1991) Liq Cryst 10:869 CrossRefGoogle Scholar
  32. 32.
    Demikhov E, Stegemeyer H, Tsukruk V (1992) Phys Rev A 46:4879 CrossRefGoogle Scholar
  33. 33.
    Pansu B, Grelet E, Li MH, Nguyen HT (2000) Phys Rev E 62:658 CrossRefGoogle Scholar
  34. 34.
    Grelet E, Pansu B, Li MH, Nguyen HT (2001) Phys Rev Lett 86:3791 CrossRefGoogle Scholar
  35. 35.
    Grelet E, Pansu B, Nguyen HT (2001) Phys Rev E 64:010703 CrossRefGoogle Scholar
  36. 36.
    Grelet E, Pansu B, Li MH, Nguyen HT (2002) Phys Rev E 65:050701 CrossRefGoogle Scholar
  37. 37.
    Kamien RD (1997) J Phys II France 7:743 CrossRefGoogle Scholar
  38. 38.
    DiDonna BA, Kamien RD (2003) Phys Rev E 68:041703 CrossRefGoogle Scholar
  39. 39.
    Yamamoto J, Nishiyama I, Inoue M, Yokoyama H (2005) Nature 437:525 CrossRefGoogle Scholar
  40. 40.
    Hornreich RM, Shtrikman S, Sommers C (1993) Phys Rev E 47:2067 CrossRefGoogle Scholar
  41. 41.
    Huang CY, Scott JJ, Petschek G (1998) Phys Rev Lett 80:5603 CrossRefGoogle Scholar
  42. 42.
    Etchegoin P (2000) Phys Rev E 62:1435 CrossRefGoogle Scholar
  43. 43.
    Cao W, Munoz A, Palffy-Muhoray P, Taheri B (2002) Nat Mater 1:111 CrossRefGoogle Scholar
  44. 44.
    Yokoyama S, Mashiko S, Kikuchi H, Uchida K, Nagamura T (2006) Adv Mater 18:48 CrossRefGoogle Scholar
  45. 45.
    Kikuchi H, Hisakado Y, Uchida K, Nagamura T, Kajiyama T (2004) Proc SPIE Liquid Cryst VIII 5518:182 CrossRefGoogle Scholar
  46. 46.
    Hisakado Y, Kikuchi H, Nagamura T (2005) Adv Mater 17:96 CrossRefGoogle Scholar
  47. 47.
    Lepescheux L (1988) Biol Cell 62:17 CrossRefGoogle Scholar
  48. 48.
    Calvert P (1995) Biomimetics. AIP Press, New York Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Institute for Materials Chemistry and EngineeringKyushu UniversityKasuga, FukuokaJapan

Personalised recommendations