Liquid Crystalline Assembly of Rod–Coil Molecules

Chapter
Part of the Structure and Bonding book series (STRUCTURE, volume 128)

Abstract

The development of novel supramolecular materials with nanometer-scale architectures and the effect of these architectures on the materials' properties are currently of great interest in molecular design. Liquid crystalline assemblies of rod-like mesogenic molecules containing flexible coils (rod–coil molecules) provide a facile entry into this area. Rod–coil molecules have been demonstrated to self-assemble into a rich variety of different liquid crystalline structures of nanoscale dimensions through the combination of shape complementarity and repulsive interaction of rigid and flexible parts as an organizing force. The mesophases include smectic, hexagonal or rectangular columnar, bicontinuous cubic, hexagonal channeled lamellar, barrel-like, honeycomb-like, and discrete micellar phases. The unconventional mesophases are induced by changing the rod-to-coil volume fraction, controlling the number of rod–coil repeating units, designing novel shapes of rod–coil molecules, and increasing the rod–coil molecular length.

Liquid crystal Rod–coil Self-assembly Block copolymer Microphase separation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lehn JM (1995) Supramolecular chemistry, concepts and perspective. VCH, Weinheim Google Scholar
  2. 2.
    Lee M, Cho BK, Zin WC (2001) Chem Rev 101:3869 Google Scholar
  3. 3.
    Klok HA, Lecommandoux S (2001) Adv Mater 13:1217 Google Scholar
  4. 4.
    Stupp SI, Pralle MU, Tew GN, Li L, Sayar M, Zubarev ER (2000) MRS Bull 42 Google Scholar
  5. 5.
    Loos K, Munoz-Guerra S (2000) Microstructure and crystallization of rigid-coil comblike polymers and block copolymers. In: Ciferri A (ed) Supramolecular polymers, Chap 7. Dekker, New York Google Scholar
  6. 6.
    Ryu JH, Cho BK, Lee M (2006) Bull Korean Chem Soc 27:1270 CrossRefGoogle Scholar
  7. 7.
    Collings PJ, Hird M (1997) Introduction to liquid crystals: chemistry and physics. Taylor and Francis, London Google Scholar
  8. 8.
    Tschierske C (2001) J Mater Chem 11:2647 Google Scholar
  9. 9.
    Kato T, Mizoshita N, Kishimoto K (2006) Angew Chem Int Ed 45:38 Google Scholar
  10. 10.
    Mingos DMP (1999) Liquid crystal II. Springer, Berlin Heidelberg New York Google Scholar
  11. 11.
    Föster S, Plantenberg T (2002) Angew Chem Int Ed 41:688 Google Scholar
  12. 12.
    Föster S, Antonietti M (1998) Adv Mater 10:195 Google Scholar
  13. 13.
    Khandpur AK, Föster S, Bates FS, Hamley IW, Ryan AJ, Bras W, Almdal K, Mortensen K (1995) Macromolecules 28:8796 Google Scholar
  14. 14.
    Zeng F, Zimmerman SC (1997) Chem Rev 97:1681 Google Scholar
  15. 15.
    Brunsveld L, Folmer BJB, Meijer EW, Sijbesma RP (2001) Chem Rev 101:4071 Google Scholar
  16. 16.
    Hennigar TL, MacQuarrie DC, Losier P, Rogers RD, Zaworotko MJ (1997) Angew Chem Int Ed 36:972 Google Scholar
  17. 17.
    Kaes C, Hosseini MW, Rickard CEF, Skelton BW, White AH (1998) Angew Chem Int Ed 37:920 Google Scholar
  18. 18.
    Cui Y, Lee SJ, Lin W (2003) J Am Chem Soc 125:6014 Google Scholar
  19. 19.
    Tschierske C (1998) J Mater Chem 8:1485 Google Scholar
  20. 20.
    Berresheim AJ, Müller B, Müllen K (1999) Chem Rev 99:1747 Google Scholar
  21. 21.
    Steffen W, Köhler B, Altmann M, Scherf U, Stitzer K, Loye HC, Bunz UHF (2001) Chem Eur J 7:117 Google Scholar
  22. 22.
    Jeneckhe SA, Chen XL (1999) Science 283:372 Google Scholar
  23. 23.
    Lee M, Yoo YS (2002) J Mater Chem 12:2161 Google Scholar
  24. 24.
    Stupp SI (1998) Curr Opin Colloid Interface Sci 3:20 CrossRefGoogle Scholar
  25. 25.
    Semenov AN, Vasilenko SV (1986) Sov Phys JETP 63:70 Google Scholar
  26. 26.
    Semenov AN (1991) Mol Cryst Liq Cryst 209:191 Google Scholar
  27. 27.
    Williams DRM, Fredrickson GH (1992) Macromolecules 25:3561 Google Scholar
  28. 28.
    Halperin A (1990) Macromolecules 23:2724 Google Scholar
  29. 29.
    Lee M, Oh NK (1996) J Mater Chem 6:1079 Google Scholar
  30. 30.
    Lee M, Oh NK, Choi MG (1996) Polym Bull 37:511 Google Scholar
  31. 31.
    Lee M, Oh NK, Zin WC (1996) Chem Commun, p 1787 Google Scholar
  32. 32.
    Lee M, Cho BK, Kim H, Zin WC (1998) Angew Chem Int Ed 37:638 Google Scholar
  33. 33.
    Lee M, Cho BK, Kim H, Yoon JY, Zin WC (1998) J Am Chem Soc 120:9168 Google Scholar
  34. 34.
    Hamley IW, Ropp KA, Rosedale JH, Bates FS, Almdal K, Mortensen K (1993) Macromolecules 26:5959 Google Scholar
  35. 35.
    Bates FS, Schulz MF, Khandpur AK, Foster S, Rosedale JH, Almdal K, Mortensen K (1994) Faraday Discuss Chem Soc 98:7 Google Scholar
  36. 36.
    Park MH, Ryu JH, Lee E, Han KH, Chung YW, Cho BK, Lee M (2006) Macromol Rapid Commun 27:1684 Google Scholar
  37. 37.
    Radzilowsk JL, Wu JL, Stupp SI (1993) Macromolecules 26:879 Google Scholar
  38. 38.
    Radzilowsk JL, Stupp SI (1994) Macromolecules 27:7747 Google Scholar
  39. 39.
    Radzilowsk JL, Carragher BO, Stupp SI (1997) Macromolecules 30:2110 Google Scholar
  40. 40.
    Stupp SI, Lebonheur V, Walker K, Li LS, Huggins KE, Keser M, Amstutz A (1997) Science 276:384 Google Scholar
  41. 41.
    Zubarev ER, Pralle MU, Li L, Stupp SI (1999) Science 283:523 Google Scholar
  42. 42.
    Zubarev ER, Pralle MU, Sone ED, Stupp SI (2001) J Am Chem Soc 123:4105 Google Scholar
  43. 43.
    Li W, Wang H, Yu L, Morkved TL, Jaeger HM (1999) Macromolecules 32:3034 Google Scholar
  44. 44.
    Wang H, Wang HH, Urban VS, Littrell KC, Thiyagarajan P, Yu L (2000) J Am Chem Soc 122:6855 Google Scholar
  45. 45.
    Kim JK, Hong MK, Ahn JH, Lee M (2005) Angew Chem Int Ed 44:328 Google Scholar
  46. 46.
    Ungar G, Liu Y, Zeng X, Percec V, Cho WD (2003) Science 299:1208 Google Scholar
  47. 47.
    Kato T, Matsuoka T, Nishii M, Kamikawa Y, Kanie K, Nishimura T, Yashima E, Ujiie S (2004) Angew Chem Int Ed 43:1969 Google Scholar
  48. 48.
    Fréchet JMJ (2002) Proc Natl Acad Sci USA 99:4782 Google Scholar
  49. 49.
    Bur AJ, Fetters LJ (1976) Chem Rev 76:727 Google Scholar
  50. 50.
    Fetters LJ, Yu H (1971) Macromolecules 4:385 Google Scholar
  51. 51.
    Aharoni SM (1979) Macromolecules 12:94 Google Scholar
  52. 52.
    Aharoni SM, Walsh EK (1979) Macromolecules 12:271 Google Scholar
  53. 53.
    Aharoni SM (1980) J Polym Sci Polym Phys Ed 18:1439 Google Scholar
  54. 54.
    Chen JT, Thomas EL, Ober CK, Hwang SS (1995) Macromolecules 28:1688 Google Scholar
  55. 55.
    Chen JT, Thomas EL, Ober CK, Mao G (1996) Science 273:343 Google Scholar
  56. 56.
    Park JW, Thomas EL (2003) Adv Mater 15:585 Google Scholar
  57. 57.
    Park JW, Thomas EL (2004) Macromolecules 37:3532 Google Scholar
  58. 58.
    van der Veen MH, de Boer B, Stalmach U, van de Wetering KI, Hadziioannou G (2004) Macromolecules 37:3673 Google Scholar
  59. 59.
    Gallot B (1996) Prog Polym Sci 21:1035 Google Scholar
  60. 60.
    Zhang G, Fournier MJ, Mason TL, Tirrell DA (1992) Macromolecules 25:3601 Google Scholar
  61. 61.
    Yu SM, Conticello VP, Zhang G, Kayser C, Fournier MJ, Mason TL, Tirrell DA (1997) Nature 389:167 Google Scholar
  62. 62.
    Klok HA, Langenwalter JF, Lecommandoux S (2000) Macromolecules 33:7819 Google Scholar
  63. 63.
    Lecommandoux S, Achard MF, Langenwalter JF, Klok HA (2001) Macromolecules 34:9100 Google Scholar
  64. 64.
    Minich EA, Nowak AP, Deming TJ, Pochan DJ (2004) Polymer 45:1951 Google Scholar
  65. 65.
    Hanski S, Houbenov N, Ruokolainen J, Chondronicola D, Iatrou H, Hadjichristidis N, Ikkala O (2006) Biomacromolecules 7:3379 Google Scholar
  66. 66.
    Stadler R, Auschra C, Beckmann J, Krappe U, Voigt-Martin I, Leibler L (1995) Macromolecules 28:3080 Google Scholar
  67. 67.
    Lee M, Lee DW, Cho BK, Yoon JY, Zin WC (1998) J Am Chem Soc 120:13258 Google Scholar
  68. 68.
    Schwab M, Stuehn B (1996) Phys Rev Lett 76:924 Google Scholar
  69. 69.
    Sakamota N, Hashimoto T, Han CD, Vaidya N (1997) Macromolecules 30:1621 Google Scholar
  70. 70.
    Oh NK, Zin WC, Im JH, Ryu JH, Lee M (2004) Chem Commun, p 1092 Google Scholar
  71. 71.
    Jang CJ, Ryu JH, Lee JD, Sohn D, Lee M (2004) Chem Mater 16:4226 Google Scholar
  72. 72.
    Percec V, Cho WD, Ungar G, Yeardley DJP (2001) J Am Chem Soc 123:1302 Google Scholar
  73. 73.
    Yeardley DJP, Ungar G, Percec V, Holerca MN, Johansson G (2000) J Am Chem Soc 122:1684 Google Scholar
  74. 74.
    Hulvat JF, Sofos M, Tajima K, Stupp SI (2005) J Am Chem Soc 127:366 Google Scholar
  75. 75.
    Lin HC, Lee KW, Tsai CM, Wei KH (2006) Macromolecules 39:3808 Google Scholar
  76. 76.
    Lee M, Cho BK, Jang YG, Zin WC (2000) J Am Chem Soc 122:7449 Google Scholar
  77. 77.
    Cho BK, Chung YW, Lee M (2005) Macromolecules 38:10261 Google Scholar
  78. 78.
    Cho BK, Lee M, Oh NK, Zin WC (2001) J Am Chem Soc 123:9677 Google Scholar
  79. 79.
    Lee M, Jeong YS, Cho BK, Oh NK, Zin WC (2002) Chem Eur J 8:876 Google Scholar
  80. 80.
    Henglein A (1989) Chem Rev 89:1861 Google Scholar
  81. 81.
    Murray BC, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706 Google Scholar
  82. 82.
    Jin LY, Ahn JH, Lee M (2004) J Am Chem Soc 126:12208 Google Scholar
  83. 83.
    Jin LY, Bae J, Ryu JH, Lee M (2006) Angew Chem Int Ed 45:650 Google Scholar
  84. 84.
    Jin LY, Bae J, Ahn JH, Lee M (2005) Chem Commun, p 1197 Google Scholar
  85. 85.
    Müller M, Schich M (1996) Macromolecules 29:8900 Google Scholar
  86. 86.
    Ohtake T, Ogasawara M, Ito-Akita K, Nishina N, Ujie S, Ohno H, Kato T (2000) Chem Mater 12:782 Google Scholar
  87. 87.
    Ibarboure E, Rodríguez-hernández J, Papon E (2006) J Polym Sci Part A Polym Chem 44:4668 Google Scholar
  88. 88.
    Yang WY, Ahn JH, Yoo YS, Oh NK, Lee M (2005) Nat Mater 4:399 Google Scholar
  89. 89.
    Yang WY, Lee E, Lee M (2006) J Am Chem Soc 128:3484 Google Scholar
  90. 90.
    In M, Aguerre-Chariol O, Zana R (1999) J Phys Chem B 103:7747 Google Scholar
  91. 91.
    Chen B, Baumeister U, Diele S, Das MK, Zeng XB, Ungar G, Tschierske C (2004) J Am Chem Soc 126:8608 Google Scholar
  92. 92.
    Chen B, Zeng XB, Baumeister U, Diele S, Ungar G, Tschierske C (2004) Angew Chem Int Ed 43:4621 Google Scholar
  93. 93.
    Chen B, Zeng XB, Baumeister U, Ungar G, Tschierske C (2005) Science 307:96 Google Scholar
  94. 94.
    Chen B, Baumeister U, Pelzl G, Das MK, Zeng XB, Ungar G, Tschierske C (2005) J Am Chem Soc 127:16578 Google Scholar
  95. 95.
    Lee M, Cho BK, Kang YS, Zin WC (1999) Macromolecules 32:7688 Google Scholar
  96. 96.
    Lee M, Cho BK, Kang YS, Zin WC (1999) Macromolecules 32:8531 Google Scholar
  97. 97.
    Eisenbach CD, Heinemann T, Ribbe A, Stadler E (1994) Macromol Symp 77:125 Google Scholar
  98. 98.
    Osaheni JA, Jenekhe SA (1995) J Am Chem Soc 117:7389 Google Scholar
  99. 99.
    Lee M, Cho BK, Oh NK, Zin WC (2001) Macromolecules 34:1987 Google Scholar
  100. 100.
    de Ruijter C, Jager WF, Li L, Picken SJ (2006) Macromolecules 39:4411 Google Scholar
  101. 101.
    Cho BK, Choi MG, Zin WC, Lee M (2002) Macromolecules 35:4845 Google Scholar
  102. 102.
    Schneider A, Zanna JJ, Yamada M, Finkelmann H, Thomann R (2000) Macromolecules 33:649 Google Scholar
  103. 103.
    Hayakawa T, Horiuchi S (2003) Angew Chem Int Ed 42:2285 Google Scholar
  104. 104.
    Zhou QF, Zhu XL, Wen ZQ (1989) Macromolecules 22:491 Google Scholar
  105. 105.
    Zhang D, Liu YX, Wan XH, Zhou QF (1999) Macromolecules 32:5183 Google Scholar
  106. 106.
    Gopalan P, Ober CK (2001) Macromolecules 34:5120 Google Scholar
  107. 107.
    Tenneti KK, Chen X, Li CY, Tu Y, Wan X, Zhou QF, Sics I, Hsiao BS (2005) J Am Chem Soc 127:15481 Google Scholar
  108. 108.
    Pralle MU, Whitaker CM, Braun PV, Stupp SI (2000) Macromolecules 33:3550 Google Scholar
  109. 109.
    Tew GN, Pralle MU, Stupp SI (2000) Angew Chem Int Ed 39:517 Google Scholar
  110. 110.
    Stalmach U, de Boer B, Videlot C, van Hutten PF, Hadziioannou G (2000) J Am Chem Soc 122:5464 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Center for Supramolecular Nano-Assembly and Department of ChemistryYonsei UniversitySeoulKorea

Personalised recommendations