Photochemical Redox Reactions of Mercury

Part of the Structure and Bonding book series (STRUCTURE, volume 120)


Mercury is a unique heavy metal element with several oxidation states, whose changes are sensitive to photo energy, directly or indirectly. Because of the existence of stable oxidation states of mercury, redox reactions are important in the element's chemistry. Photochemical redox reactions of mercury involve electron transfer induced, directly, by absorption of light and consequent electronic excitation of a mercury species in a specific oxidation state, or indirectly, by another non-mercury species, i.e., the reactive intermediates (reductants or oxidants) photo-induced. In this chapter, some recent development in the photochemical redox chemistry of mercury in the last five to ten years is reviewed. First, aqueous phase and heterogeneous photochemical redox reactions of mercury in artificial media are discussed. The review is then centered on photochemical redox reactions of mercury in aquatic media relevant to natural surface waters.

Notable progress has been made in the aqueous photochemistry of Hg(II) complexes. Recent studies on heterogeneous reduction of Hg(II) photocatalyzed by semiconductor TiO2 indicate that a group of parameters control the process, including characteristics of TiO2 (surface properties, particle size, surface coating, concentration, etc.), pH, irradiation, hole scavengers, and interfering ions (e.g., Cl-). Aquatic Hg(II) species could be reduced through secondary photochemical processes mediated by intermediate reactive reductants (e.g., .O2-/HO2.) photochemically produced involving aquatic organic matter and through heterogeneous reduction photocatalyzed by particles (e.g., TiO2), and probably also through primary photochemical processes (e.g., direct photolysis of Hg(OH)2 and Hg(II)-oxalate). Aquatic organic substances are the major electron donors for Hg(II) reduction, but the mechanisms remain to be fully uncovered. The role of metal ions (e.g., Fe, Cu) in photoredox chemistry of aquatic mercury warrants more attention. While the role of the strong oxidants, i.e., .OH, in photo-induced secondary oxidation of aquatic Hg(0) is known, other possible oxidants are to be revealed. Much still remains unknown about the photochemical behavior of the unstable Hg(I) species in aquatic photochemical redox chemistry of mercury, which may hold a special key to understanding the photochemoredox cycle of aquatic mercury.

Mercury Oxidation Photochemistry Redox Reduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry, 5th edn. Wiley, New York Google Scholar
  2. 2.
    Balzani V, Carassiti V (1970) Photochemistry of coordination compounds. Academic Press, London Google Scholar
  3. 3.
    Nriagu JO (1994) Sci Total Environ 154:1 CrossRefGoogle Scholar
  4. 4.
    Campell NA (1990) Biology, 2nd edn. Benjaming/Cummings Publishing Company Inc, Redwood City, p 41 Google Scholar
  5. 5.
    Schroeder WH, Munthe J (1998) Atmos Environ 32:809 CrossRefGoogle Scholar
  6. 6.
    Ariya PA, Ryzhkov A (2003) J Phys IV France 107:57 Google Scholar
  7. 7.
    Balabanov NB, Peterson KA (2003) J Phys Chem A 107:7465 CrossRefGoogle Scholar
  8. 8.
    Bauer D, D'Ottone L, Campuzano-Jost P, Hynes AJ (2003) J Photochem Photobiol A Chem 157:247 CrossRefGoogle Scholar
  9. 9.
    Granite EJ, Pennline HW (2002) Ind Eng Chem Res 41:5470 CrossRefGoogle Scholar
  10. 10.
    Hall B (1995) Water Air Soil Pollut 80:301 CrossRefGoogle Scholar
  11. 11.
    Lee TG, Biswas P, Hedrick E (2004) Ind Eng Chem Res 43:1411 CrossRefGoogle Scholar
  12. 12.
    Pal B, Ariya PA (2003) J Phys IV France 107:189 Google Scholar
  13. 13.
    Pal B, Ariya PA (2004) Phys Chem Chem Phys 6:572 CrossRefGoogle Scholar
  14. 14.
    Pal B, Ariya PA (2004) Environ Sci Technol 38:5555 CrossRefGoogle Scholar
  15. 15.
    Sheu G-R, Mason RP (2004) J Atmos Chem 48:107 CrossRefGoogle Scholar
  16. 16.
    Sommar J, Hallquist M, Ljungstrom E (1996) Chem Phys Let 257:434 Google Scholar
  17. 17.
    Tossell JA (2003) J Phys Chem 107:7804 Google Scholar
  18. 18.
    McAuliffe CA (ed) (1977) The chemistry of mercury. Macmillan of Canada/Maclean-Hunter Press, Toronto Google Scholar
  19. 19.
    Cotton FA, Wilkinson G (1966) Advanced inorganic chemistry, 2nd edn. Wiley, New York Google Scholar
  20. 20.
    Lindsay WL (1979) Chemical equilibria in soil. Wiley, New York Google Scholar
  21. 21.
    Turro NJ (1991) Modern molecular photochemistry. University Science Books, Sausalito Google Scholar
  22. 22.
    Wayne RP (1988) Principles and applications of photochemistry. Oxford University Press, Oxford Google Scholar
  23. 23.
    Brezonik PL (1994) Chemical kinetics and process dynamics in aquatic systems. Lewis Publishers, Boca Raton Google Scholar
  24. 24.
    Leifer A (1988) The kinetics of environmental aquatic photochemistry. ACS professional reference book. American Chemical Society, Washington, DC Google Scholar
  25. 25.
    Stumm W, Morgan JJ (1996) Aquatic chemistry, chemical equilibria and rates in natural waters, 3rd edn. Wiley, New York Google Scholar
  26. 26.
    Kettle SFA (1998) Physical inorganic chemistry, a coordination chemistry approach. Oxford University Press, Oxford Google Scholar
  27. 27.
    Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry, principles of structure and reactivity, 4th edn. HarperCollins College Publishers, New York Google Scholar
  28. 28.
    Adamson AW, Waltz WL, Zinato E, Watts DW, Fleischauser PD, Lindholm RD (1968) Chem Rev 68:541 CrossRefGoogle Scholar
  29. 29.
    Uri N (1952) Chem Rev 50:375 CrossRefGoogle Scholar
  30. 30.
    Martell AE, Hancock RD (1996) Metal complexes in aqueous solutions. Plenum Press, New York Google Scholar
  31. 31.
    Levason W, McAuliffe CA (1977) In: McAuliffe CA (ed) The chemistry of mercury. Macmillan of Canada/Maclean-Hunter Press, Toronto, p 49 Google Scholar
  32. 32.
    Kunkely H, Horvath O, Vogler A (1997) Coordin Chem Rev 159:85 CrossRefGoogle Scholar
  33. 33.
    Horvath O, Vogler A (1998) Inorg Chem Commun 1:270 CrossRefGoogle Scholar
  34. 34.
    Horvath O, Vogler A (1993) Inorg Chem 32:5485 CrossRefGoogle Scholar
  35. 35.
    Kunkely H, Vogler A (1993) Z Naturforsch 48b:397 Google Scholar
  36. 36.
    Horvath O, Miko I (1999) J Photochem Photobiol A Chem 128:33 CrossRefGoogle Scholar
  37. 37.
    Hegyi J, Horvath O (2004) Progr Colloid Polym Sci 125:10 Google Scholar
  38. 38.
    Mills A, Le Hunte S (1997) J Photochem Photobiol A Chem 108:1 CrossRefGoogle Scholar
  39. 39.
    Pal B, Ikeda S, Ohtani B (2003) Inorg Chem 42:1518 CrossRefGoogle Scholar
  40. 40.
    Stephens RE, Ke B, Trivich D (1955) J Phys Chem 59:966 CrossRefGoogle Scholar
  41. 41.
    Wang X, Pehkonen SO, Ray AK (2004) Electrochimca Acta 49:1435 Google Scholar
  42. 42.
    Habibi MH, Habibian G, Haghighipor MA (2003) Fresenius Environ Bull 12:808 Google Scholar
  43. 43.
    Zhang FS, Nriagu JO, Itoh H (2004) J Photochem Photobiol A Chem 167:223 CrossRefGoogle Scholar
  44. 44.
    Skubal LR, Meshkov NK (2002) J Photochem Photobiol A Chem 148:211 CrossRefGoogle Scholar
  45. 45.
    Castillo-Rojas S, Gonzalez-Chavez JL, Vicente L, Burillo G (2001) J Phys Chem A 105:8038 CrossRefGoogle Scholar
  46. 46.
    Finlayson-Pitts BJ, Pitts JN Jr (2000) Chemistry of the upper and lower atmosphere, theory, experiments, and applications. Academic Press, San Diego Google Scholar
  47. 47.
    Amyot M, Mierle G, Lean D, McQueen DJ (1994) Environ Sci Technol 28:2366 CrossRefGoogle Scholar
  48. 48.
    Amyot M, Mierle G, Lean D, McQueen DJ (1997a) Geochim Cosmochim Acta 61:975 Google Scholar
  49. 49.
    Amyot M, Lean D, Mierle G (1997b) Environ Toxic Chem 16:2054 Google Scholar
  50. 50.
    Amyot M, Morel FMM, Ariya PA (2005) Environ Sci Technol 39:110 CrossRefGoogle Scholar
  51. 51.
    Dill C, Kuiken T, Zhang H, Ensor M (2005) Sci Total Environ (in press) Google Scholar
  52. 52.
    Krabbenhoft DP, Hurley JP, Olson ML, Cleckner LB (1998) Biogeochem 40:311 CrossRefGoogle Scholar
  53. 53.
    Hines NA, Brezonik PL (2004) Mar Chem 90:137 CrossRefGoogle Scholar
  54. 54.
    O'Driscoll NJ, Beauchamp S, Siciliano SD, Rencz AN, Lean DRS (2003) Environ Sci Technol 37:2226 CrossRefGoogle Scholar
  55. 55.
    Poulain AJ, Amyot M, Findlay D, Telor S, Barkay T, Hintelmann H (2004) Limnol Oceanogr 49:2265 CrossRefGoogle Scholar
  56. 56.
    Zhang H, Lindberg SE (2000) Sci Total Environ 259:123 CrossRefGoogle Scholar
  57. 57.
    Zhang H, Lindberg SE (2001) Environ Sci Technol 35:928 CrossRefGoogle Scholar
  58. 58.
    Zhang H, Lindberg SE (2002) Water Air Soil Pollut 133:379 Google Scholar
  59. 59.
    Amyot M, Gill GA, Morel FMM (1997c) Environ Sci Technol 31:3606 Google Scholar
  60. 60.
    Costa M, Liss PS (1999) Mar Chem 68:87 CrossRefGoogle Scholar
  61. 61.
    O'Driscoll NJ, Lean DRS, Loseto LL, Carignan R, Siciliano SD (2004) Environ Sci Technol 38:2664 CrossRefGoogle Scholar
  62. 62.
    Munthe J, McElroy WJ (1992) Atmos Environ 26A:553 Google Scholar
  63. 63.
    Munthe J, Xiao ZF, Lindqvist O (1991) Water Air Soil Pollut 56:621 CrossRefGoogle Scholar
  64. 64.
    Xiao ZF, Munthe J, Stromberg D, Lindqvist O (1994) In: Watras CJ, Huckabee JW (eds) Mercury as a global pollutant-integration and synthesis. Lewis Publishers, Boca Raton, p 581 Google Scholar
  65. 65.
    Lin C-J, Pehkonen SO (1999) Atmos Environ 33:2067 CrossRefGoogle Scholar
  66. 66.
    Ravichandran M (2004) Chemosphere 55:319 CrossRefGoogle Scholar
  67. 67.
    Matthiessen A (1996) Fresenius J Anal Chem 354:747 Google Scholar
  68. 68.
    Matthiessen A (1998) Sci Total Environ 213:177 CrossRefGoogle Scholar
  69. 69.
    Rocha JC, Sargentini E Jr, Zara LF, Rosa AH, dos Santos A, Burba P (2003) Talanta 61:699 CrossRefGoogle Scholar
  70. 70.
    Xiao ZF, Stromberg D, Lindqvist O (1995) Water Air Soil Pollut 80:789 CrossRefGoogle Scholar
  71. 71.
    Ravichandran M (2000) Environ Chem Div ACS Extended Abstract August 40:641 Google Scholar
  72. 72.
    Liu J, Wang W, Peng A (2000) J Environ Sci Health A35:1859 CrossRefGoogle Scholar
  73. 73.
    Allard B, Arsenie I (1991) Water Air Soil Pollut 56:457 CrossRefGoogle Scholar
  74. 74.
    Pehkonen SO, Lin C-J (1998) J Air Waste Manage Assoc 48:144 Google Scholar
  75. 75.
    Lin C-J, Pehkonen SO (1997) Atmos Environ 31:4125 CrossRefGoogle Scholar
  76. 76.
    Gardfeldt K, Jonsson M (2003) J Phys Chem A 107:4478 CrossRefGoogle Scholar
  77. 77.
    Sellers P, Kelly CA, Rudd JWM, MacHutchon AR (1996) Nature 380:694 CrossRefGoogle Scholar
  78. 78.
    Chen J, Pehkonen SO, Lin C-J (2003) Water Res 37:2496 CrossRefGoogle Scholar
  79. 79.
    Inoko M (1981) Environ Pollut Ser B 2:3 CrossRefGoogle Scholar
  80. 80.
    Yamamoto M (1996) Chemosphere 32:1217 CrossRefGoogle Scholar
  81. 81.
    Lalonde JD, Amyot M, Kraepiel AML, Morel FMM (2001) Environ Sci Technol 35:1367 CrossRefGoogle Scholar
  82. 82.
    Lalonde JD, Amyot M, Orvoine J, Morel FMM, Auclair J-C, Ariya PA (2004) Environ Sci Technol 38:508 CrossRefGoogle Scholar
  83. 83.
    Sawyer DT (1991) Oxygen chemistry. Oxford University Press, Oxford Google Scholar
  84. 84.
    Afanas'ev IB (1989) Superoxide ion: chemistry and biological implications, vol I. CRC Press, Boca Raton Google Scholar
  85. 85.
    Gardfeldt K, Sommar J, Stromberg D, Feng X (2001) Atmos Environ 35:3039 CrossRefGoogle Scholar
  86. 86.
    Zepp RG, Hoigne J, Bader H (1987) Environ Sci Technol 21:443 CrossRefGoogle Scholar
  87. 87.
    Helz GR, Zepp RG, Crosby DG (eds) (1994) Aquatic and surface photochemistry. Lewis Publishers, Boca Raton Google Scholar
  88. 88.
    Munthe J (1994) In: Watras CJ, Huckabee JW (eds) Mercury as a global pollutant-integration and synthesis. Lewis Publishers, Boca Raton, p 273 Google Scholar
  89. 89.
    Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) J Phys Chem Ref Data 17:513 Google Scholar
  90. 90.
    Munthe J (1992) Atmos Environ 26A:1461 Google Scholar
  91. 91.
    Zhang H, Lindberg SE (1999) J Geophys Res 104:21889 CrossRefGoogle Scholar
  92. 92.
    Canonica S, Jans U, Stemmler K, Hoigne J (1995) Environ Sci Technol 29:1822 CrossRefGoogle Scholar
  93. 93.
    Gerecke AC, Canonica S, Muller SR, Scharer M, Schwarzenbach RP (2001) Environ Sci Technol 35:3915 CrossRefGoogle Scholar
  94. 94.
    Canonica S, Hoigne J (1995) Chemosphere 30:2365 CrossRefGoogle Scholar
  95. 95.
    Bonzongo J-CJ, Donkor AK (2003) Chemosphere 52:1263 CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Department of Chemistry, Center for the Management, Utilization and Protection of Water ResourcesTennessee Technological UniversityCookevilleUSA

Personalised recommendations