Advertisement

pp 1-64 | Cite as

Fluorescence in Pharmaceutics and Cosmetics

  • Maurício da Silva BaptistaEmail author
  • Erick Leite BastosEmail author
Chapter
Part of the Springer Series on Fluorescence book series

Abstract

Fluorescence is a visually appealing phenomenon that revolutionized many fields of science and technology. The abilities to see biological processes as they occur, monitor drug delivery and action, stain specific cells, and highlight microscopic structures are some of the applications of fluorescence that are changing our daily lives. This chapter discusses the use of the fluorescence phenomenon in pharmaceuticals and cosmetics focusing on the toxicology and the use of task-specific fluorescent materials and development of sensitive and selective analytical and imaging methods. Noninvasive bioimaging using endogenous fluorophores as probes, emerging techniques related to fluorescence, and a brief description of selected fundamental concepts in photoscience are provided for completeness.

Keywords

Cosmetics Drug discovery Dyes Fluorescence Hair Labels Microscopy Nanomaterials Pharmaceuticals Photoprotection Probes Skin 

Abbreviations

ε

Molar absorption coefficient

λABS

Absorption wavelength

λEM

Emission wavelength

λEX

Excitation wavelength

τ

Lifetime of the singlet excited state

ϕFL

Fluorescence quantum yield

AFP

Aequorea-derived fluorescent proteins

API

Active pharmaceutical ingredients

C-dots

Carbon nanodots

CNTs

Carbon nanotubes

CT

Charge transfer

DSNPs

Fluorescent dye-doped silica nanoparticles

FCCS

Fluorescence cross-correlation spectroscopy

FCS

Fluorescence correlation spectroscopy

FLM

Fluorescence lifetime measurements

FP

Fluorescent protein

FPR

Fluorescence photobleaching recovery

FRET

Förster resonance energy transfer

GFP

Green fluorescent protein

GM

Goeppert-Mayer

GO

Graphene oxide

MB

Molecular beacons

NCE

New chemical entities

NDs

Nanodiamonds

NIR

Near infrared

PeT

Photoinduced electron transfer

Ph. Eur.

European Pharmacopoeia

QD

Semiconductor quantum dots

spFRET

Solution-phase single-pair FRET

TRF

Time-resolved fluorescence

UCNPs

Lanthanide-based upconversion nanoparticles

USP

US Pharmacopeia

Notes

Acknowledgments

We thank the São Paulo Research Foundation (FAPESP), the Brazilian National Council for Scientific and Technological Development (CNPq), the Coordination for the Improvement of Higher Education Personnel (CAPES), and Natura Cosmetics for the financial support.

Conflict of Interest Statement

The authors declare that there are no conflicts of interest associated with this publication.

References

  1. 1.
    Merola F, Levy B, Demachy I, Pasquier H (2010) Photophysics and spectroscopy of fluorophores in the green fluorescent protein family. Springer Ser Fluoresc 8:347–384.  https://doi.org/10.1007/978-3-642-04702-2_11CrossRefGoogle Scholar
  2. 2.
    Liu J, Liu C, He W (2013) Fluorophores and their applications as molecular probes in living cells. Curr Org Chem 17:564–579Google Scholar
  3. 3.
    Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, Iancu C, Mocan L (2017) Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine 12:5421–5431Google Scholar
  4. 4.
    Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544.  https://doi.org/10.1146/annurev.biochem.67.1.509CrossRefGoogle Scholar
  5. 5.
    Lavis LD, Raines RT (2008) Bright ideas for chemical biology. ACS Chem Biol 3:142–155.  https://doi.org/10.1021/cb700248mCrossRefGoogle Scholar
  6. 6.
    Hanson GT, Hanson BJ (2008) Fluorescent probes for cellular assays. Comb Chem High Throughput Screen 11:505–513.  https://doi.org/10.2174/138620708785204090CrossRefGoogle Scholar
  7. 7.
    Warrier S, Kharkar PS (2014) Fluorescent probes for biomedical applications (2009-2014). Pharm Pat Anal 3:543–560.  https://doi.org/10.4155/ppa.14.41CrossRefGoogle Scholar
  8. 8.
    Zheng Q, Lavis LD (2017) Development of photostable fluorophores for molecular imaging. Curr Opin Chem Biol 39:32–38.  https://doi.org/10.1016/j.cbpa.2017.04.017CrossRefGoogle Scholar
  9. 9.
    Chandan HR, Schiffman JD, Balakrishna RG (2018) Quantum dots as fluorescent probes: synthesis, surface chemistry, energy transfer mechanisms, and applications. Sens Actuators B 258:1191–1214.  https://doi.org/10.1016/j.snb.2017.11.189CrossRefGoogle Scholar
  10. 10.
    Haque A, Faizi MSH, Rather JA, Khan MS (2017) Next generation NIR fluorophores for tumor imaging and fluorescence-guided surgery: a review. Bioorg Med Chem 25:2017–2034.  https://doi.org/10.1016/j.bmc.2017.02.061CrossRefGoogle Scholar
  11. 11.
    Zhang X, Liu J, Wang W et al (2013) Applications of fluorescent molecular probes in cell biology. In: Fluorophores. Nova Science Publishers, Hauppauge, NY, pp 29–52Google Scholar
  12. 12.
    Monici M (2005) Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev 11:227–256Google Scholar
  13. 13.
    Lavis LD (2017) Teaching old dyes new tricks: biological probes built from fluoresceins and rhodamines. Annu Rev Biochem 86:825–843.  https://doi.org/10.1146/annurev-biochem-061516-044839CrossRefGoogle Scholar
  14. 14.
    Petryayeva E, Algar WR, Medintz IL (2013) Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc 67:215–252.  https://doi.org/10.1366/12-06948CrossRefGoogle Scholar
  15. 15.
    Specht EA, Braselmann E, Palmer AE (2017) A critical and comparative review of fluorescent tools for live-cell imaging. Annu Rev Physiol 79:93–117.  https://doi.org/10.1146/annurev-physiol-022516-034055CrossRefGoogle Scholar
  16. 16.
    Peng Z, Han X, Li S et al (2017) Carbon dots: biomacromolecule interaction, bioimaging and nanomedicine. Coord Chem Rev 343:256–277.  https://doi.org/10.1016/j.ccr.2017.06.001CrossRefGoogle Scholar
  17. 17.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer US, Boston, MAGoogle Scholar
  18. 18.
    Valeur B, Berberan-Santos, MN, Martin MM, Plaza P (2012) Photophysics and photochemistry of supramolecular systems. In: Schalley CA (ed) Analytical methods in supramolecular chemistry, 2nd edn. Wiley-VCH Verlag & Co., Weinheim, pp 287–336Google Scholar
  19. 19.
    Turro NJ, Ramamurthy V, Scaiano JC (2012) Modern molecular photochemistry of organic molecules. Photochem Photobiol 88:1033.  https://doi.org/10.1111/j.1751-1097.2012.01178.xCrossRefGoogle Scholar
  20. 20.
    Klán P, Wirz J (2009) Photochemistry of organic compounds: from concepts to practice. John Wiley & Sons Ltd, Chichester, p 582Google Scholar
  21. 21.
    Marcu L, French PMW, Elson DS (2015) Fluorescence lifetime spectroscopy and imaging: principles and applications in biomedical diagnostics. CRC Press, Boca Raton, p 570Google Scholar
  22. 22.
    Braslavsky SE (2007) Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006). Pure Appl Chem 79:293–465.  https://doi.org/10.1351/pac200779030293CrossRefGoogle Scholar
  23. 23.
    Yang C, Hou VW, Girard EJ et al (2014) Target-to-background enhancement in multispectral endoscopy with background autofluorescence mitigation for quantitative molecular imaging. J Biomed Opt 19:76014Google Scholar
  24. 24.
    Roshchina VV (2012) Vital autofluorescence: application to the study of plant living cells. Int J Spectrosc 2012:1–14.  https://doi.org/10.1155/2012/124672CrossRefGoogle Scholar
  25. 25.
    Lu H-H, Wu Y-M, Chang W-T et al (2014) Molecular imaging of ischemia and reperfusion in vivo with mitochondrial autofluorescence. Anal Chem 86:5024–5031.  https://doi.org/10.1021/ac5006469CrossRefGoogle Scholar
  26. 26.
    Wagnieres GA, Star WM, Wilson BC (1998) In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 68:603–632.  https://doi.org/10.1111/j.1751-1097.1998.tb02521.xCrossRefGoogle Scholar
  27. 27.
    Fellner MJ (1976) Green autofluorescence in human epidermal cells. Arch Dermatol 112:667.  https://doi.org/10.1001/archderm.1976.01630290017003CrossRefGoogle Scholar
  28. 28.
    Zeng H, MacAulay C, Palcic B, McLean DI (1995) Spectroscopic and microscopic characteristics of human skin autofluorescence emission. Photochem Photobiol 61:639–645.  https://doi.org/10.1111/j.1751-1097.1995.tb09881.xCrossRefGoogle Scholar
  29. 29.
    Hosoi J, Koyama J, Ozawa T (2017) New aspects of cosmetics and cosmetic science. Elsevier, New YorkGoogle Scholar
  30. 30.
    Martinic I, Eliseeva SV, Petoud S (2017) Near-infrared emitting probes for biological imaging: organic fluorophores, quantum dots, fluorescent proteins, lanthanide(III) complexes and nanomaterials. J Lumin 189:19–43.  https://doi.org/10.1016/j.jlumin.2016.09.058CrossRefGoogle Scholar
  31. 31.
    Ye Y, Bloch S, Kao J, Achilefu S (2005) Multivalent carbocyanine molecular probes: synthesis and applications. Bioconjug Chem 16:51–61.  https://doi.org/10.1021/bc049790iCrossRefGoogle Scholar
  32. 32.
    He J, Yang L, Yi W et al (2017) Combination of fluorescence-guided surgery with photodynamic therapy for the treatment of cancer. Mol Imaging 16:153601211772291.  https://doi.org/10.1177/1536012117722911CrossRefGoogle Scholar
  33. 33.
    Siddiqui MR, AlOthman ZA, Rahman N (2017) Analytical techniques in pharmaceutical analysis: a review. Arab J Chem 10:S1409–S1421.  https://doi.org/10.1016/j.arabjc.2013.04.016CrossRefGoogle Scholar
  34. 34.
    Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2:123–131.  https://doi.org/10.1038/nrd1007CrossRefGoogle Scholar
  35. 35.
    Thapaliya ER, Zhang Y, Dhakal P et al (2017) Bioimaging with macromolecular probes incorporating multiple BODIPY fluorophores. Bioconjug Chem 28:1519–1528.  https://doi.org/10.1021/acs.bioconjchem.7b00166CrossRefGoogle Scholar
  36. 36.
    Chrzanowski SM, Vohra RS, Batra A et al (2016) Near-infrared optical imaging noninvasively detects acutely damaged muscle. Am J Pathol 186:2692–2700Google Scholar
  37. 37.
    Ravoori MK, Singh S, Bhavane R et al (2016) Multimodal magnetic resonance and near-infrared-fluorescent imaging of intraperitoneal ovarian cancer using a dual-mode-dual-gadolinium liposomal contrast agent. Sci Rep 6:38991.  https://doi.org/10.1038/srep38991CrossRefGoogle Scholar
  38. 38.
    Wolff M, Kredel S, Wiedenmann J et al (2008) Cell-based assays in practice: cell markers from autofluorescent proteins of the GFP-family. Comb Chem High Throughput Screen 11:602–609.  https://doi.org/10.2174/138620708785739880CrossRefGoogle Scholar
  39. 39.
    Pitre SP, McTiernan CD, Scaiano JC (2016) Library of cationic organic dyes for visible-light-driven photoredox transformations. ACS Omega 1:66–76.  https://doi.org/10.1021/acsomega.6b00058CrossRefGoogle Scholar
  40. 40.
    Chen X, Zaro JL, Shen WC (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65:1357–1369Google Scholar
  41. 41.
    Wang J, Xie J, Schultz PG (2006) A genetically encoded fluorescent amino acid. J Am Chem Soc 128:8738–8739.  https://doi.org/10.1021/ja062666kCrossRefGoogle Scholar
  42. 42.
    Koopmans T, van Haren M, van Ufford LQ et al (2013) A concise preparation of the fluorescent amino acid l-(7-hydroxycoumarin-4-yl) ethylglycine and extension of its utility in solid phase peptide synthesis. Bioorg Med Chem 21:553–559.  https://doi.org/10.1016/j.bmc.2012.10.055CrossRefGoogle Scholar
  43. 43.
    Bryson DI, Fan C, Guo LT et al (2017) Continuous directed evolution of aminoacyl-tRNA synthetases. Nat Chem Biol 13:1253–1260.  https://doi.org/10.1038/nchembio.2474CrossRefGoogle Scholar
  44. 44.
    Kuhn SM, Rubini M, Müller MA, Skerra A (2011) Biosynthesis of a fluorescent protein with extreme Pseudo-Stokes shift by introducing a genetically encoded non-natural amino acid outside the fluorophore. J Am Chem Soc 133:3708–3711.  https://doi.org/10.1021/ja1099787CrossRefGoogle Scholar
  45. 45.
    Hudson EN, Weber G (1973) Synthesis and characterization of 2 fluorescent sulfhydryl reagents. Biochemistry 12:4154–4161.  https://doi.org/10.1021/bi00745a019CrossRefGoogle Scholar
  46. 46.
    Maggiora LL, Smith CW, Zhang ZY (1992) A general-method for the preparation of internally quenched fluorogenic protease substrates using solid-phase peptide-synthesis. J Med Chem 35:3727–3730.  https://doi.org/10.1021/jm00099a001CrossRefGoogle Scholar
  47. 47.
    Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308.  https://doi.org/10.1038/nbt0396-303CrossRefGoogle Scholar
  48. 48.
    Smalley MK, Silverman SK (2006) Fluorescence of covalently attached pyrene as a general RNA folding probe. Nucleic Acids Res 34:152–166.  https://doi.org/10.1093/nar/gkj420CrossRefGoogle Scholar
  49. 49.
    Sahoo D, Narayanaswami V, Kay CM, Ryan RO (2000) Pyrene excimer fluorescence: a spatially sensitive probe to monitor lipid-induced helical rearrangement of apolipophorin III. Biochemistry 39:6594–6601.  https://doi.org/10.1021/bi992609mCrossRefGoogle Scholar
  50. 50.
    Gee KR, Sun WC, Bhalgat MK et al (1999) Fluorogenic substrates based on fluorinated umbelliferones for continuous assays of phosphatases and beta-galactosidases. Anal Biochem 273:41–48.  https://doi.org/10.1006/abio.1999.4202CrossRefGoogle Scholar
  51. 51.
    Babiak P, Reymond JL (2005) A high-throughput, low-volume enzyme assay on solid support. Anal Chem 77:373–377.  https://doi.org/10.1021/ac048611nCrossRefGoogle Scholar
  52. 52.
    Yamazaki H, Inoue K, Mimura M et al (1996) 7-ethoxycoumarin O-deethylation catalyzed by cytochromes P450 1A2 and 2E1 in human liver microsomes. Biochem Pharmacol 51:313–319.  https://doi.org/10.1016/0006-2952(95)02178-7CrossRefGoogle Scholar
  53. 53.
    Zimmerman M, Ashe B, Yurewicz EC, Patel G (1977) Sensitive assays for trypsin, elastase, and chymotrypsin using new fluoroenic substrates. Anal Biochem 78:47–51.  https://doi.org/10.1016/0003-2697(77)90006-9CrossRefGoogle Scholar
  54. 54.
    Salisbury CM, Maly DJ, Ellman JA (2002) Peptide microarrays for the determination of protease substrate specificity. J Am Chem Soc 124:14868–14870.  https://doi.org/10.1021/ja027477qCrossRefGoogle Scholar
  55. 55.
    Wegener D, Wirsching F, Riester D, Schwienhorst A (2003) A fluorogenic histone deacetylase assay well suited for high-throughput activity screening. Chem Biol 10:61–68.  https://doi.org/10.1016/s1074-5521(02)00305-8CrossRefGoogle Scholar
  56. 56.
    Lavis LD, Chao T-Y, Raines RT (2006) Latent blue and red fluorophores based on the trimethyl lock. Chembiochem 7:1151–1154.  https://doi.org/10.1002/cbic.200500559CrossRefGoogle Scholar
  57. 57.
    Lavis LD, Rutkoski TJ, Raines RT (2007) Tuning the pK(a) of fluorescein to optimize binding assays. Anal Chem 79:6775–6782.  https://doi.org/10.1021/ac070907gCrossRefGoogle Scholar
  58. 58.
    Sun WC, Gee KR, Klaubert DH, Haugland RP (1997) Synthesis of fluorinated fluoresceins. J Org Chem 62:6469–6475.  https://doi.org/10.1021/jo9706178CrossRefGoogle Scholar
  59. 59.
    Minta A, Kao JPY, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264:8171–8178Google Scholar
  60. 60.
    Inglese J, Johnson RL, Simeonov A et al (2007) High-throughput screening assays for the identification of chemical probes. Nat Chem Biol 3:466–479.  https://doi.org/10.1038/nchembio.2007.17CrossRefGoogle Scholar
  61. 61.
    Liu JX, Bhalgat M, Zhang CL et al (1999) Fluorescent molecular probes V: a sensitive caspase-3 substrate for fluorometric assays. Bioorg Med Chem Lett 9:3231–3236Google Scholar
  62. 62.
    Kupcho K, Hsiao K, Bulleit B, Goueli SA (2004) A homogeneous, nonradioactive high-throughput fluorogenic protein phosphatase assay. J Biomol Screen 9:223–231.  https://doi.org/10.1177/1087057103262840CrossRefGoogle Scholar
  63. 63.
    Lavis LD, Chao T-Y, Raines RT (2006) Fluorogenic label for biomolecular imaging. ACS Chem Biol 1:252–260.  https://doi.org/10.1021/cb600132mCrossRefGoogle Scholar
  64. 64.
    Streu C, Meggers E (2006) Ruthenium-induced allylcarbamate cleavage in living cells. Angew Chem Int Ed 45:5645–5648.  https://doi.org/10.1002/anie.200601752CrossRefGoogle Scholar
  65. 65.
    Koide Y, Urano Y, Kenmoku S et al (2007) Design and synthesis of fluorescent probes for selective detection of highly reactive oxygen species in mitochondria of living cells. J Am Chem Soc 129:10324–10325.  https://doi.org/10.1021/ja073220mCrossRefGoogle Scholar
  66. 66.
    Karstens T, Kobs K (1980) Rhodamine-B and rhodamine-101 as reference substances for fluorescence quantum yield measurements. J Phys Chem 84:1871–1872.  https://doi.org/10.1021/j100451a030CrossRefGoogle Scholar
  67. 67.
    Whitaker JE, Haugland RP, Ryan D et al (1992) Fluorescent rhodol derivatives—versatile, photostable labels and tracers. Anal Biochem 207:267–279.  https://doi.org/10.1016/0003-2697(92)90011-uCrossRefGoogle Scholar
  68. 68.
    Lukinavičius G, Umezawa K, Olivier N et al (2013) A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. Nat Chem 5:132–139.  https://doi.org/10.1038/nchem.1546CrossRefGoogle Scholar
  69. 69.
    Lukinavičius G, Blaukopf C, Pershagen E et al (2015) SiR-Hoechst is a far-red DNA stain for live-cell nanoscopy. Nat Commun 6.  https://doi.org/10.1038/ncomms9497
  70. 70.
    Lukinavičius G, Reymond L, D’Este E et al (2014) Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat Methods 11:731–733.  https://doi.org/10.1038/nmeth.2972CrossRefGoogle Scholar
  71. 71.
    Grimm JB, Sung AJ, Legant WR et al (2013) Carbofluoresceins and carborhodamines as scaffolds for high-contrast fluorogenic probes. ACS Chem Biol 8:1303–1310.  https://doi.org/10.1021/cb4000822CrossRefGoogle Scholar
  72. 72.
    Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932.  https://doi.org/10.1021/cr078381nCrossRefGoogle Scholar
  73. 73.
    Marfin YS, Solomonov AV, Timin AS, Rumyantsev EV (2017) Recent advances of individual BODIPY and BODIPY-based functional materials in medical diagnostics and treatment. Curr Med Chem 24:1–28.  https://doi.org/10.2174/0929867324666170601092327CrossRefGoogle Scholar
  74. 74.
    Karolin J, Johansson LBA, Strandberg L, Ny T (1994) Fluorescence and absorption spectroscopic properties of dipyrrometheneboron difluoride (BODIPY) derivatives in liquids, lipid-membranes, and proteins. J Am Chem Soc 116:7801–7806.  https://doi.org/10.1021/ja00096a042CrossRefGoogle Scholar
  75. 75.
    Johnson I (1998) Fluorescent probes for living cells. Histochem J 30:123–140.  https://doi.org/10.1023/A:1003287101868CrossRefGoogle Scholar
  76. 76.
    Banks P, Gosselin M, Prystay L (2000) Impact of a red-shifted dye label for high throughput fluorescence polarization assays of G protein-coupled receptors. J Biomol Screen 5:329–334.  https://doi.org/10.1177/108705710000500504CrossRefGoogle Scholar
  77. 77.
    Thompson VF, Saldana S, Cong JY, Goll DE (2000) A BODIPY fluorescent microplate assay for measuring activity of calpains and other proteases. Anal Biochem 279:170–178.  https://doi.org/10.1006/abio.1999.4475CrossRefGoogle Scholar
  78. 78.
    Buschmann V, Weston KD, Sauer M (2003) Spectroscopic study and evaluation of red-absorbing fluorescent dyes. Bioconjug Chem 14:195–204.  https://doi.org/10.1021/bc025600xCrossRefGoogle Scholar
  79. 79.
    Cosa G, Focsaneanu KS, McLean JRN et al (2001) Photophysical properties of fluorescent DNA-dyes bound to single- and double-stranded DNA in aqueous buffered solution. Photochem Photobiol 73:585–599.  https://doi.org/10.1562/0031-8655(2001)073<0585:ppofdd>2.0.co;2CrossRefGoogle Scholar
  80. 80.
    Smith JC (1990) Potential-sensitive molecular probes in membranes of bioenergetic relevance. Biochim Biophys Acta 1016:1–28.  https://doi.org/10.1016/0005-2728(90)90002-lCrossRefGoogle Scholar
  81. 81.
    Plasek J, Sigler K (1996) Slow fluorescent indicators of membrane potential: a survey of different approaches to probe response analysis. J Photochem Photobiol B 33:101–124.  https://doi.org/10.1016/1011-1344(96)07283-1CrossRefGoogle Scholar
  82. 82.
    Zhou W-L, Yan P, Wuskell JP et al (2007) Intracellular long-wavelength voltage-sensitive dyes dynamics of action potentials in axons and thin for studying the dendrites. J Neurosci Methods 164:225–239.  https://doi.org/10.1016/j.jneumeth.2007.05.002CrossRefGoogle Scholar
  83. 83.
    Mujumdar SR, Mujumdar RB, Grant CM, Waggoner AS (1996) Cyanine-labeling reagents: sulfobenzindocyanine succinimidyl esters. Bioconjug Chem 7:356–362.  https://doi.org/10.1021/bc960021bCrossRefGoogle Scholar
  84. 84.
    Waggoner A (1995) Covalent labeling of proteins and nucleic-acids with fluorophores. Biochem Spectrosc 246:362–373Google Scholar
  85. 85.
    Waggoner A (2006) Fluorescent labels for proteomics and genomics. Curr Opin Chem Biol 10:62–66.  https://doi.org/10.1016/j.cbpa.2006.01.005CrossRefGoogle Scholar
  86. 86.
    Schobel U, Egelhaaf HJ, Brecht A et al (1999) New-donor-acceptor pair for fluorescent immunoassays by energy transfer. Bioconjug Chem 10:1107–1114.  https://doi.org/10.1021/bc990073bCrossRefGoogle Scholar
  87. 87.
    Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753.  https://doi.org/10.1126/science.1146598CrossRefGoogle Scholar
  88. 88.
    Grosenick D, Wabnitz H, Ebert B (2012) Recent advances in contrast-enhanced near infrared diffuse optical imaging of diseases using indocyanine green. J Near Infrared Spectrosc 20:203–221.  https://doi.org/10.1255/jnirs.964CrossRefGoogle Scholar
  89. 89.
    Toyota T, Fujito H, Suganami A et al (2014) Near-infrared-fluorescence imaging of lymph nodes by using liposomally formulated indocyanine green derivatives. Bioorg Med Chem 22:721–727.  https://doi.org/10.1016/j.bmc.2013.12.026CrossRefGoogle Scholar
  90. 90.
    Alander JT, Kaartinen I, Laakso A et al (2012) A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging 2012:940585Google Scholar
  91. 91.
    Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) Review—the fluorescent toolbox for assessing protein location and function. Science 312:217–224.  https://doi.org/10.1126/science.1124618CrossRefGoogle Scholar
  92. 92.
    Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci 91:12501–12504.  https://doi.org/10.1073/pnas.91.26.12501CrossRefGoogle Scholar
  93. 93.
    Kairdolf BA, Qian X, Nie S (2017) Bioconjugated nanoparticles for biosensing, in vivo imaging, and medical diagnostics. Anal Chem 89:1015–1031.  https://doi.org/10.1021/acs.analchem.6b04873CrossRefGoogle Scholar
  94. 94.
    Khomein P, Swaminathan S, Young ER, Thayumanavan S (2017) Fluorescence enhancement through incorporation of chromophores in polymeric nanoparticles. J Inorg Organomet Polym Mater 28(2):1–7.  https://doi.org/10.1007/s10904-017-0670-1CrossRefGoogle Scholar
  95. 95.
    Chen W (2008) Nanoparticle fluorescence based technology for biological applications. J Nanosci Nanotechnol 8:1019–1051.  https://doi.org/10.1166/jnn.2008.301CrossRefGoogle Scholar
  96. 96.
    Fu A, Wilson RJ, Smith BR et al (2012) Fluorescent magnetic nanoparticles for magnetically enhanced cancer imaging and targeting in living subjects. ACS Nano 6:6862–6869.  https://doi.org/10.1021/nn301670aCrossRefGoogle Scholar
  97. 97.
    Huang H-C, Barua S, Sharma G et al (2011) Inorganic nanoparticles for cancer imaging and therapy. J Control Release 155:344–357.  https://doi.org/10.1016/j.jconrel.2011.06.004CrossRefGoogle Scholar
  98. 98.
    Cheraghi M, Negahdari B, Daraee H, Eatemadi A (2017) Heart targeted nanoliposomal/nanoparticles drug delivery: an updated review. Biomed Pharmacother 86:316–323.  https://doi.org/10.1016/j.biopha.2016.12.009CrossRefGoogle Scholar
  99. 99.
    Gao X, Du C, Zhuang Z, Chen W (2016) Carbon quantum dot-based nanoprobes for metal ion detection. J Mater Chem C Mater Opt Electron Devices 4:6927–6945.  https://doi.org/10.1039/C6TC02055KCrossRefGoogle Scholar
  100. 100.
    Wegner KD, Hildebrandt N (2015) Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 44:4792–4834.  https://doi.org/10.1039/C4CS00532ECrossRefGoogle Scholar
  101. 101.
    Hou Y, Cao S, Wang L et al (2015) Morphology-controlled dual clickable nanoparticles via ultrasonic-assisted click polymerization. Polym Chem 6:223–227.  https://doi.org/10.1039/C4PY01045KCrossRefGoogle Scholar
  102. 102.
    Feng Y, Panwar N, Tng DJH et al (2016) The application of mesoporous silica nanoparticle family in cancer theranostics. Coord Chem Rev 319:86–109.  https://doi.org/10.1016/j.ccr.2016.04.019CrossRefGoogle Scholar
  103. 103.
    Syamchand SS, Sony G (2015) Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging. Microchim Acta 182:1567–1589.  https://doi.org/10.1007/s00604-015-1504-xCrossRefGoogle Scholar
  104. 104.
    Xu X, Liu R, Li L (2015) Nanoparticles made of π-conjugated compounds targeted for chemical and biological applications. Chem Commun 51:16733–16749.  https://doi.org/10.1039/C5CC06439BCrossRefGoogle Scholar
  105. 105.
    Kim K, Lee M, Park H et al (2006) Cell-permeable and biocompatible polymeric nanoparticles for apoptosis imaging. J Am Chem Soc 128:3490–3491.  https://doi.org/10.1021/ja057712fCrossRefGoogle Scholar
  106. 106.
    Sun M, Li Z-J, Liu C-L et al (2014) Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation. J Lumin 145:838–842.  https://doi.org/10.1016/j.jlumin.2013.08.070CrossRefGoogle Scholar
  107. 107.
    Kang KA, Wang J (2014) Smart dual-mode fluorescent gold nanoparticle agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:398–409.  https://doi.org/10.1002/wnan.1267CrossRefGoogle Scholar
  108. 108.
    Nedosekin DA, Foster S, Nima ZA et al (2015) Photothermal confocal multicolor microscopy of nanoparticles and nanodrugs in live cells. Drug Metab Rev 47:346–355.  https://doi.org/10.3109/03602532.2015.1058818CrossRefGoogle Scholar
  109. 109.
    Rosenthal SJ, Chang JC, Kovtun O et al (2011) Biocompatible quantum dots for biological applications. Chem Biol 18:10–24.  https://doi.org/10.1016/j.chembiol.2010.11.013CrossRefGoogle Scholar
  110. 110.
    Delehanty JB, Mattoussi H, Medintz IL (2009) Delivering quantum dots into cells: strategies, progress and remaining issues. Anal Bioanal Chem 393:1091–1105.  https://doi.org/10.1007/s00216-008-2410-4CrossRefGoogle Scholar
  111. 111.
    Lin G, Yin F, Yong K-T (2014) The future of quantum dots in drug discovery. Expert Opin Drug Discov 9:991–994.  https://doi.org/10.1517/17460441.2014.928280CrossRefGoogle Scholar
  112. 112.
    Hoshino A, Fujioka K, Oku T et al (2004) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169.  https://doi.org/10.1021/nl048715dCrossRefGoogle Scholar
  113. 113.
    Larson DR, Zipfel WR, Williams RM et al (2003) Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300:1434–1436.  https://doi.org/10.1126/science.1083780CrossRefGoogle Scholar
  114. 114.
    Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940.  https://doi.org/10.1038/nmeth818CrossRefGoogle Scholar
  115. 115.
    Na RH, Stender IM, Ma LX, Wulf HC (2000) Autofluorescence spectrum of skin: component bands and body site variations. Skin Res Technol 6:112–117.  https://doi.org/10.1034/j.1600-0846.2000.006003112.xCrossRefGoogle Scholar
  116. 116.
    Clarke S, Pinaud F, Beutel O et al (2010) Covalent monofunctionalization of peptide-coated quantum dots for single-molecule assays. Nano Lett 10:2147–2154.  https://doi.org/10.1021/nl100825nCrossRefGoogle Scholar
  117. 117.
    Ehrensperger M-V, Hanus C, Vannier C et al (2007) Multiple association states between glycine receptors and gephyrin identified by SPT analysis. Biophys J 92:3706–3718.  https://doi.org/10.1529/biophysj.106.095596CrossRefGoogle Scholar
  118. 118.
    Dertinger T, Colyer R, Iyer G et al (2009) Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci U S A 106:22287–22292.  https://doi.org/10.1073/pnas.0907866106CrossRefGoogle Scholar
  119. 119.
    Algar WR, Susumu K, Delehanty JB, Medintz IL (2011) Semiconductor quantum dots in bioanalysis: crossing the valley of death. Anal Chem 83:8826–8837.  https://doi.org/10.1021/ac201331rCrossRefGoogle Scholar
  120. 120.
    Smith AM, Nie S (2010) Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res 43:190–200.  https://doi.org/10.1021/ar9001069CrossRefGoogle Scholar
  121. 121.
    Zhong XH, Han MY, Dong ZL et al (2003) Composition-tunable ZnxCd1-xSe nanocrystals with high luminescence and stability. J Am Chem Soc 125:8589–8594.  https://doi.org/10.1021/ja035096mCrossRefGoogle Scholar
  122. 122.
    Jäger S, Brand L, Eggeling C (2003) New fluorescence techniques for high-throughput drug discovery. Curr Pharm Biotechnol 4:463–476.  https://doi.org/10.2174/1389201033377382CrossRefGoogle Scholar
  123. 123.
    Xiao L, Guo J (2015) Multiplexed single-cell in situ RNA analysis by reiterative hybridization. Anal Methods 7:7290–7295.  https://doi.org/10.1039/c5ay00500kCrossRefGoogle Scholar
  124. 124.
    Liu J, Lau SK, Varma VA et al (2010) Multiplexed detection and characterization of rare tumor cells in Hodgkin’s lymphoma with multicolor quantum dots. Anal Chem 82:6237–6243.  https://doi.org/10.1021/ac101065bCrossRefGoogle Scholar
  125. 125.
    Medintz IL, Farrell D, Susumu K et al (2009) Multiplex charge-transfer interactions between quantum dots and peptide-bridged ruthenium complexes. Anal Chem 81:4831–4839.  https://doi.org/10.1021/ac900412jCrossRefGoogle Scholar
  126. 126.
    Bae SW, Tan W, Hong J-I (2012) Fluorescent dye-doped silica nanoparticles: new tools for bioapplications. Chem Commun 48:2270–2282.  https://doi.org/10.1039/c2cc16306cCrossRefGoogle Scholar
  127. 127.
    Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11–23.  https://doi.org/10.1038/nnano.2011.209CrossRefGoogle Scholar
  128. 128.
    Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024.  https://doi.org/10.1038/nchem.907CrossRefGoogle Scholar
  129. 129.
    Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed Engl 49:6726–6744.  https://doi.org/10.1002/anie.200906623CrossRefGoogle Scholar
  130. 130.
    Wu H-C, Chang X, Liu L et al (2010) Chemistry of carbon nanotubes in biomedical applications. J Mater Chem 20:1036–1052.  https://doi.org/10.1039/b911099mCrossRefGoogle Scholar
  131. 131.
    Wang F, Banerjee D, Liu Y et al (2010) Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135:1839–1854.  https://doi.org/10.1039/c0an00144aCrossRefGoogle Scholar
  132. 132.
    Shiang Y-C, Huang C-C, Chen W-Y et al (2012) Fluorescent gold and silver nanoclusters for the analysis of biopolymers and cell imaging. J Mater Chem 22:12972–12982.  https://doi.org/10.1039/c2jm30563aCrossRefGoogle Scholar
  133. 133.
    Mongin C, Garakyaraghi S, Razgoniaeva N et al (2016) Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 351:369–372.  https://doi.org/10.1126/science.aad6378CrossRefGoogle Scholar
  134. 134.
    Yang I, Lee JW, Hwang S et al (2017) Live bio-imaging with fully bio-compatible organic fluorophores. J Photochem Photobiol B Biol 166:52–57.  https://doi.org/10.1016/j.jphotobiol.2016.11.009CrossRefGoogle Scholar
  135. 135.
    Chakraborty C, Hsu C-H, Wen Z-H, Lin C-S (2009) Recent advances of fluorescent technologies for drug discovery and development. Curr Pharm Des 15:3552–3570.  https://doi.org/10.2174/138161209789207006CrossRefGoogle Scholar
  136. 136.
    Vogel HG (2008) Drug discovery and evaluation: pharmacological assays. Springer, BerlinGoogle Scholar
  137. 137.
    Shashkova S, Leake MC (2017) Single-molecule fluorescence microscopy review: shedding new light on old problems. Biosci Rep 37. pii: BSR20170031.  https://doi.org/10.1042/BSR20170031Google Scholar
  138. 138.
    Choyke PL, Alford R, Simpson HM et al (2009) Toxicity of organic fluorophores used in molecular imaging: literature review. Mol Imaging 8:341–354.  https://doi.org/10.2310/7290.2009.00031CrossRefGoogle Scholar
  139. 139.
    Gandorfer A, Haritoglou C, Gandorfer A, Kampik A (2003) Retinal damage from indocyanine green in experimental macular surgery. Invest Ophthalmol Vis Sci 44:316–323.  https://doi.org/10.1167/iovs.02-0545CrossRefGoogle Scholar
  140. 140.
    Kawahara S, Hata Y, Miura M et al (2007) Intracellular events in retinal glial cells exposed to ICG and BBG. Invest Ophthalmol Vis Sci 48:4426–4432.  https://doi.org/10.1167/iovs.07-0358CrossRefGoogle Scholar
  141. 141.
    Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7:626–634.  https://doi.org/10.1016/j.cbpa.2003.08.007CrossRefGoogle Scholar
  142. 142.
    Lai CC, Wu WC, Chuang LH et al (2005) Prevention of indocyanine green toxicity on retinal pigment epithelium with whole blood in stain-assisted macular hole surgery. Ophthalmology 112:1409–1414.  https://doi.org/10.1016/j.ophtha.2005.02.025CrossRefGoogle Scholar
  143. 143.
    Narayanan R, Kenney M, Kamjoo S et al (2005) Toxicity of indocyanine green (ICG) in combination with light on retinal pigment epithelial cells and neurosensory retinal cells. Curr Eye Res 30:471–478.  https://doi.org/10.1080/02713680590959312CrossRefGoogle Scholar
  144. 144.
    Enaida H, Sakamoto T, Hisatomi T et al (2002) Morphological and functional damage of the retina caused by intravitreous indocyanine green in rat eyes. Graefes Arch Clin Exp Ophthalmol 240:209–213.  https://doi.org/10.1007/s00417-002-0433-7CrossRefGoogle Scholar
  145. 145.
    Laperche Y, Oudea MC, Lostanlen D (1977) Toxic effects of indocyanine green on rat liver mitochondria. Toxicol Appl Pharmacol 41:377–387.  https://doi.org/10.1016/0041-008X(77)90039-4CrossRefGoogle Scholar
  146. 146.
    Yam HF, Kwok AKH, Chan KP et al (2003) Effect of indocyanine green and illumination on gene expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 44:370–377.  https://doi.org/10.1167/iovs.01-1113CrossRefGoogle Scholar
  147. 147.
    Haritoglou C, Yu A, Freyer W et al (2005) An evaluation of novel vital dyes for intraocular surgery. Invest Ophthalmol Vis Sci 46:3315–3322.  https://doi.org/10.1167/iovs.04-1142CrossRefGoogle Scholar
  148. 148.
    Kwok AKH, Lai TYY, Yeung C-K et al (2005) The effects of indocyanine green and endoillumination on rabbit retina: an electroretinographic and histological study. Br J Ophthalmol 89:897–900Google Scholar
  149. 149.
    Abels C, Fickweiler S, Weiderer P et al (2000) Indocyanine green (ICG) and laser irradiation induce photooxidation. Arch Dermatol Res 292:404–411.  https://doi.org/10.1007/s004030000147CrossRefGoogle Scholar
  150. 150.
    Omar GS, Wilson M, Nair SP (2008) Lethal photosensitization of wound-associated microbes using indocyanine green and near-infrared light. BMC Microbiol 8.  https://doi.org/10.1186/1471-2180-8-111Google Scholar
  151. 151.
    Jori G, Brown SB (2004) Photosensitized inactivation of microorganisms. Photochem Photobiol Sci 3:403–405.  https://doi.org/10.1039/b311904cCrossRefGoogle Scholar
  152. 152.
    Baumler W, Abels C, Karrer S et al (1999) Photo-oxidative killing of human colonic cancer cells using indocyanine green and infrared light. Br J Cancer 80:360–363.  https://doi.org/10.1038/sj.bjc.6690363CrossRefGoogle Scholar
  153. 153.
    Hope-Ross M, Yannuzzi LA, Gragoudas ES et al (1994) Adverse reactions due to indocyanine green. Ophthalmology 101:529–533Google Scholar
  154. 154.
    Kato S, Madachi-Yamamoto S, Hayashi Y et al (1983) Effect of sodium fluorescein on neurite outgrowth from the retinal explant culture: an in vitro model for retinal toxicity. Dev Brain Res 11:143–147.  https://doi.org/10.1016/0165-3806(83)90211-0CrossRefGoogle Scholar
  155. 155.
    Placantonakis DG, Tabaee A, Anand VK et al (2007) Safety of low-dose intrathecal fluorescein in endoscopic cranial base surgery. Neurosurgery 61:161–165.  https://doi.org/10.1227/01.neu.0000279993.65459.7bCrossRefGoogle Scholar
  156. 156.
    Pouliquen H, Algoet M, Buchet V, Le BH (1995) Acute toxicity of fluorescein to turbot (Scophthalmus maximus). Vet Hum Toxicol 37:527–529Google Scholar
  157. 157.
    Susumu K, Oh E, Delehanty JB et al (2011) Multifunctional compact zwitterionic ligands for preparing robust biocompatible semiconductor quantum dots and gold nanoparticles. J Am Chem Soc 133:9480–9496.  https://doi.org/10.1021/ja201919sCrossRefGoogle Scholar
  158. 158.
    O’Goshi KI, Serup J (2006) Safety of sodium fluorescein for in vivo study of skin. Skin Res Technol 12:155–161.  https://doi.org/10.1111/j.0909-752X.2006.00147.xCrossRefGoogle Scholar
  159. 159.
    Butner RW, McPherson AR (1983) Adverse reactions in intravenous fluorescein angiography. Ann Ophthalmol 15:1084–1086Google Scholar
  160. 160.
    Lentner A, Boehler U, Bohler U (1995) Photosensitivity reaction to intravenously administered fluorescein. Photodermatol Photoimmunol Photomed 11:178–179.  https://doi.org/10.1111/j.1600-0781.1995.tb00163.xCrossRefGoogle Scholar
  161. 161.
    Lampidis TJ, Castello C, Del Giglio A et al (1989) Relevance of the chemical charge of rhodamine dyes to multiple drug resistance. Biochem Pharmacol 38:4267–4271.  https://doi.org/10.1016/0006-2952(89)90525-XCrossRefGoogle Scholar
  162. 162.
    Elliott GS, Mason RW, Edwards IR (1990) Studies on the pharmacokinetics and mutagenic potential of rhodamine b. Clin Toxicol 28:45–59.  https://doi.org/10.3109/15563659008993475CrossRefGoogle Scholar
  163. 163.
    Hood RD, Jones CL, Ranganathan S (1989) Comparative developmental toxicity of cationic and neutral rhodamines in mice. Teratology 40:143–150.  https://doi.org/10.1002/tera.1420400207CrossRefGoogle Scholar
  164. 164.
    Ranganathan S, Hood RD (1989) Effects of in vivo and in vitro exposure to rhodamine dyes on mitochondrial function of mouse embryos. Teratog Carcinog Mutagen 9:29–37Google Scholar
  165. 165.
    Nestmann ER, Douglas GR, Matula TI et al (1979) Mutagenic activity of rhodamine dyes and their impurities as detected by mutation induction in Salmonella and DNA damage in Chinese hamster ovary cells. Cancer Res 39:4412–4417Google Scholar
  166. 166.
    Jeannot V, Salmon JM, Deumie M, Viallet P (1997) Intracellular accumulation of rhodamine 110 in single living cells. J Histochem Cytochem 45:403–412Google Scholar
  167. 167.
    Bingaman S, Huxley VH, Rumbaut RE (2003) Fluorescent dyes modify properties of proteins used in microvascular research. Microcirculation 10:221–231.  https://doi.org/10.1080/mic.10.2.221.231CrossRefGoogle Scholar
  168. 168.
    Rumbaut RE, Sial AJ (1999) Differential phototoxicity of fluorescent dye-labeled albumin conjugates. Microcirculation 6:205–213Google Scholar
  169. 169.
    Lelong IH, Guzikowski AP, Haugland RP et al (1991) Fluorescent verapamil derivative for monitoring activity of the multidrug transporter. Mol Pharmacol 40:490–494Google Scholar
  170. 170.
    Offermanns S, Rosenthal W (2008) Encyclopedia of molecular pharmacology. Springer, BerlinGoogle Scholar
  171. 171.
    Di Genova BM, da Silva RC, da Cunha JPC et al (2017) Protein SUMOylation is involved in cell-cycle progression and cell morphology in Giardia lamblia. J Eukaryot Microbiol 64:491–503.  https://doi.org/10.1111/jeu.12386CrossRefGoogle Scholar
  172. 172.
    Tian J, Zhou L, Zhao Y et al (2012) Multiplexed detection of tumor markers with multicolor quantum dots based on fluorescence polarization immunoassay. Talanta 92:72–77.  https://doi.org/10.1016/j.talanta.2012.01.051CrossRefGoogle Scholar
  173. 173.
    Wu M-S, Shi H-W, He L-J et al (2012) Microchip device with 64-site electrode array for multiplexed immunoassay of cell surface antigens based on electrochemiluminescence resonance energy transfer. Anal Chem 84:4207–4213.  https://doi.org/10.1021/ac300551eCrossRefGoogle Scholar
  174. 174.
    Mukherjee A, Walker J, Weyant KB, Schroeder CM (2013) Characterization of flavin-based fluorescent proteins: an emerging class of fluorescent reporters. PLoS One 8.  https://doi.org/10.1371/journal.pone.0064753Google Scholar
  175. 175.
    Zaslaver A, Bren A, Ronen M et al (2006) A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 3:623–628.  https://doi.org/10.1038/nmeth895CrossRefGoogle Scholar
  176. 176.
    Hackett EA, Esch RK, Maleri S, Errede B (2006) A family of destabilized cyan fluorescent proteins as transcriptional reporters in S. cerevisiae. Yeast 23:333–349.  https://doi.org/10.1002/yea.1358CrossRefGoogle Scholar
  177. 177.
    Wang X, Errede B, Elston TC (2008) Mathematical analysis and quantification of fluorescent proteins as transcriptional reporters. Biophys J 94:2017–2026.  https://doi.org/10.1529/biophysj.107.122200CrossRefGoogle Scholar
  178. 178.
    Gross S, Piwnica-Worms D (2005) Spying on cancer: molecular imaging in vivo with genetically encoded reporters. Cancer Cell 7:5–15Google Scholar
  179. 179.
    Han KY, Leslie BJ, Fei J et al (2013) Understanding the photophysics of the Spinach-DFHBI RNA aptamer-fluorogen complex to improve live-cell RNA imaging. J Am Chem Soc 135:19033–19038.  https://doi.org/10.1021/ja411060pCrossRefGoogle Scholar
  180. 180.
    Paige JS, Nguyen-Duc T, Song W, Jaffrey SR (2012) Fluorescence imaging of cellular metabolites with RNA. Science 335:1194Google Scholar
  181. 181.
    Zhang J, Fei J, Leslie BJ et al (2015) Tandem spinach array for mRNA imaging in living bacterial cells. Sci Rep 5.  https://doi.org/10.1038/srep17295
  182. 182.
    Pothoulakis G, Ellis T (2015) Using spinach aptamer to correlate mRNA and protein levels in escherichia coli. Methods Enzymol 550:173–185.  https://doi.org/10.1016/bs.mie.2014.10.047CrossRefGoogle Scholar
  183. 183.
    Kellenberger CA, Hammond MC (2015) In vitro analysis of riboswitch-spinach aptamer fusions as metabolite-sensing fluorescent biosensors. Methods Enzymol 550:147–172.  https://doi.org/10.1016/bs.mie.2014.10.045CrossRefGoogle Scholar
  184. 184.
    Pothoulakis G, Ceroni F, Reeve B, Ellis T (2014) The Spinach RNA aptamer as a characterization tool for synthetic biology. ACS Synth Biol 3:182–187.  https://doi.org/10.1021/sb400089cCrossRefGoogle Scholar
  185. 185.
    Pope AJ, Haupts UM, Moore KJ (1999) Homogeneous fluorescence readouts for miniaturized high-throughput screening: theory and practice. Drug Discov Today 4:350–362.  https://doi.org/10.1016/S1359-6446(99)01340-9CrossRefGoogle Scholar
  186. 186.
    Wölcke J, Ullmann D (2001) Miniaturized HTS technologies—uHTS. Drug Discov Today 6:637–646.  https://doi.org/10.1016/S1359-6446(01)01807-4CrossRefGoogle Scholar
  187. 187.
    Albani JR (2004) Structure and dynamics of macromolecules: absorption and fluorescence studies. Elsevier B.V, Amsterdam, p 426Google Scholar
  188. 188.
    Milligan G (2004) Applications of bioluminescence- and fluorescence resonance energy transfer to drug discovery at G protein-coupled receptors. Eur J Pharm Sci 21:397–405.  https://doi.org/10.1016/j.ejps.2003.11.010CrossRefGoogle Scholar
  189. 189.
    Lai W-F, Rogach AL, Wong W-T (2017) Chemistry and engineering of cyclodextrins for molecular imaging. Chem Soc Rev 46:6379–6419.  https://doi.org/10.1039/C7CS00040ECrossRefGoogle Scholar
  190. 190.
    Zheng P, Wu N (2017) Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review. Chem Asian J 12:2343–2353.  https://doi.org/10.1002/asia.201700814CrossRefGoogle Scholar
  191. 191.
    Prasuhn DE, Feltz A, Blanco-Canosa JB et al (2010) Quantum dot peptide biosensors for monitoring caspase 3 proteolysis and calcium ions. ACS Nano 4:5487–5497.  https://doi.org/10.1021/nn1016132CrossRefGoogle Scholar
  192. 192.
    Algar WR, Tavares AJ, Krull UJ (2010) Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal Chim Acta 673:1–25.  https://doi.org/10.1016/j.aca.2010.05.026CrossRefGoogle Scholar
  193. 193.
    Melo CV, Okumoto S, Gomes JR et al (2013) Spatiotemporal resolution of Bdnf neuroprotection against glutamate excitotoxicity in cultured hippocampal neurons. Neuroscience 237:66–86.  https://doi.org/10.1016/j.neuroscience.2013.01.054CrossRefGoogle Scholar
  194. 194.
    Rose T, Goltstein PM, Portugues R, Griesbeck O (2014) Putting a finishing touch on GEC’s. Front Mol Neurosci 7.  https://doi.org/10.3389/fnmol.2014.00088
  195. 195.
    Sapsford KE, Granek J, Deschamps JR et al (2011) Monitoring botulinum neurotoxin a activity with peptide-functionalized quantum dot resonance energy transfer sensors. ACS Nano 5:2687–2699.  https://doi.org/10.1021/nn102997bCrossRefGoogle Scholar
  196. 196.
    Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67:2141–2153.  https://doi.org/10.1021/np040106yCrossRefGoogle Scholar
  197. 197.
    Lin M, Gao Y, Diefenbach TJ et al (2017) Facial layer-by-layer engineering of upconversion nanoparticles for gene delivery: near-infrared-initiated fluorescence resonance energy transfer tracking and overcoming drug resistance in ovarian cancer. ACS Appl Mater Interfaces 9:7941–7949.  https://doi.org/10.1021/acsami.6b15321CrossRefGoogle Scholar
  198. 198.
    Hall MD, Yasgar A, Peryea T et al (2016) Fluorescence polarization assays in high-throughput screening and drug discovery: a review. Methods Appl Fluoresc 4.  https://doi.org/10.1088/2050-6120/4/2/022001Google Scholar
  199. 199.
    Algar WR, Malanoski AP, Susumu K et al (2012) Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated forster resonance energy transfer relay. Anal Chem 84:10136–10146.  https://doi.org/10.1021/ac3028068CrossRefGoogle Scholar
  200. 200.
    Huang S, Xiao Q, He ZK et al (2008) A high sensitive and specific QDs FRET bioprobe for MNase. Chem Commun:5990–5992.  https://doi.org/10.1039/b815061c
  201. 201.
    Algar WR, Wegner D, Huston AL et al (2012) Quantum dots as simultaneous acceptors and donors in time-gated forster resonance energy transfer relays: characterization and biosensing. J Am Chem Soc 134:1876–1891.  https://doi.org/10.1021/ja210162fCrossRefGoogle Scholar
  202. 202.
    Algar WR, Krull UJ (2007) Towards multi-colour strategies for the detection of oligonucleotide hybridization using quantum dots as energy donors in fluorescence resonance energy transfer (FRET). Anal Chim Acta 581:193–201.  https://doi.org/10.1016/j.aca.2006.08.026CrossRefGoogle Scholar
  203. 203.
    Kattke MD, Gao EJ, Sapsford KE et al (2011) FRET-based quantum dot immunoassay for rapid and sensitive detection of Aspergillus amstelodami. Sensors 11:6396–6410.  https://doi.org/10.3390/s110606396CrossRefGoogle Scholar
  204. 204.
    Dennis AM, Rhee WJ, Sotto D et al (2012) Quantum dot-fluorescent protein FRET probes for sensing intracellular pH. ACS Nano 6:2917–2924.  https://doi.org/10.1021/nn2038077CrossRefGoogle Scholar
  205. 205.
    Morikawa TJ, Fujita H, Kitamura A et al (2016) Dependence of fluorescent protein brightness on protein concentration in solution and enhancement of it. Sci Rep 6.  https://doi.org/10.1038/srep22342
  206. 206.
    Lock JT, Parker I, Smith IF (2015) A comparison of fluorescent Ca2+ indicators for imaging local Ca2+ signals in cultured cells. Cell Calcium 58:638–648.  https://doi.org/10.1016/j.ceca.2015.10.003CrossRefGoogle Scholar
  207. 207.
    Rodriguez EA, Campbell RE, Lin JY et al (2017) The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem Sci 42:111–129.  https://doi.org/10.1016/j.tibs.2016.09.010CrossRefGoogle Scholar
  208. 208.
    Broussard GJ, Liang R, Tian L (2014) Monitoring activity in neural circuits with genetically encoded indicators. Front Mol Neurosci 7.  https://doi.org/10.3389/fnmol.2014.00097
  209. 209.
    Dana H, Mohar B, Sun Y et al (2016) Sensitive red protein calcium indicators for imaging neural activity. Elife 5.  https://doi.org/10.7554/eLife.12727
  210. 210.
    Palmer AE, Qin Y, Park JG, McCombs JE (2011) Design and application of genetically encoded biosensors. Trends Biotechnol 29:144–152.  https://doi.org/10.1016/j.tibtech.2010.12.004CrossRefGoogle Scholar
  211. 211.
    Akerboom J, Rivera JDV, Guilbe MMR et al (2009) Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J Biol Chem 284:6455–6464.  https://doi.org/10.1074/jbc.M807657200CrossRefGoogle Scholar
  212. 212.
    Wang Q, Shui B, Kotlikoff MI, Sondermann H (2008) Structural basis for calcium sensing by GCaMP2. Structure 16:1817–1827.  https://doi.org/10.1016/j.str.2008.10.008CrossRefGoogle Scholar
  213. 213.
    Wardill TJ, Chen T-W, Schreiter ER et al (2013) A neuron-based screening platform for optimizing genetically-encoded calcium indicators. PLoS One 8.  https://doi.org/10.1371/journal.pone.0077728Google Scholar
  214. 214.
    Chen T-W, Wardill TJ, Sun Y et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300.  https://doi.org/10.1038/nature12354CrossRefGoogle Scholar
  215. 215.
    Thestrup T, Litzlbauer J, Bartholomaeus I et al (2014) Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat Methods 11:175–182.  https://doi.org/10.1038/nmeth.2773CrossRefGoogle Scholar
  216. 216.
    Kushida Y, Arai Y, Shimono K, Nagai T (2017) Biomimetic chemical sensing by fluorescence signals using a virus-like particle-based platform. ACS Sens.  https://doi.org/10.1021/acssensors.7b00537Google Scholar
  217. 217.
    Ni Q, Mehta S, Zhang J (2017) Live-cell imaging of cell signaling using genetically encoded fluorescent reporters. FEBS J:1–17.  https://doi.org/10.1111/febs.14134Google Scholar
  218. 218.
    Bruchez M, Moronne M, Gin P et al (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016.  https://doi.org/10.1126/science.281.5385.2013CrossRefGoogle Scholar
  219. 219.
    Bruchez MP (2011) Quantum dots find their stride in single molecule tracking. Curr Opin Chem Biol 15:775–780.  https://doi.org/10.1016/j.cbpa.2011.10.011CrossRefGoogle Scholar
  220. 220.
    Pinaud F, Clarke S, Sittner A, Dahan M (2010) Probing cellular events, one quantum dot at a time. Nat Methods 7:275–285.  https://doi.org/10.1038/nmeth.1444CrossRefGoogle Scholar
  221. 221.
    Opperwall SR, Divakaran A, Porter EG et al (2012) Wide dynamic range sensing with single quantum dot biosensors. ACS Nano 6:8078–8086.  https://doi.org/10.1021/nn303347kCrossRefGoogle Scholar
  222. 222.
    Zhang C, Hu J (2010) Single quantum dot-based nanosensor for multiple DNA detection. Anal Chem 82:1921–1927.  https://doi.org/10.1021/ac9026675CrossRefGoogle Scholar
  223. 223.
    Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4:826–831.  https://doi.org/10.1038/nmat1508CrossRefGoogle Scholar
  224. 224.
    Swift JL, Heuff R, Cramb DT (2006) A two-photon excitation fluorescence cross-correlation assay for a model ligand-receptor binding system using quantum dots. Biophys J 90:1396–1410.  https://doi.org/10.1529/biophysj.105.069526CrossRefGoogle Scholar
  225. 225.
    Swift JL, Cramb DT (2008) Nanoparticles as fluorescence labels: is size all that matters? Biophys J 95:865–876.  https://doi.org/10.1529/biophysj.107.127688CrossRefGoogle Scholar
  226. 226.
    Malic L, Sandros MG, Tabrizian M (2011) Designed biointerface using near-infrared quantum dots for ultrasensitive surface plasmon resonance imaging biosensors. Anal Chem 83:5222–5229.  https://doi.org/10.1021/ac200465mCrossRefGoogle Scholar
  227. 227.
    Han MY, Gao XH, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635.  https://doi.org/10.1038/90228CrossRefGoogle Scholar
  228. 228.
    Agrawal A, Zhang CY, Byassee T et al (2006) Counting single native biomolecules and intact viruses with color-coded nanoparticles. Anal Chem 78:1061–1070.  https://doi.org/10.1021/ac051801tCrossRefGoogle Scholar
  229. 229.
    Ruan Y, Yu W, Cheng F et al (2012) Detection of prostate stem cell antigen expression in human prostate cancer using quantum-dot-based technology. Sensors 12:5461–5470.  https://doi.org/10.3390/s120505461CrossRefGoogle Scholar
  230. 230.
    Xing Y, Chaudry Q, Shen C et al (2007) Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat Protoc 2:1152–1165.  https://doi.org/10.1038/nprot.2007.107CrossRefGoogle Scholar
  231. 231.
    Krutzik PO, Nolan GP (2006) Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat Methods 3:361–368.  https://doi.org/10.1038/nmeth872CrossRefGoogle Scholar
  232. 232.
    Gao Y, Stanford WL, Chan WCW (2011) Quantum-dot-encoded microbeads for multiplexed genetic detection of non-amplified DNA samples. Small 7:137–146.  https://doi.org/10.1002/smll.201000909CrossRefGoogle Scholar
  233. 233.
    Goldman ER, Clapp AR, Anderson GP et al (2004) Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal Chem 76:684–688.  https://doi.org/10.1021/ac035083rCrossRefGoogle Scholar
  234. 234.
    Suzuki M, Husimi Y, Komatsu H et al (2008) Quantum dot FRET biosensors that respond to pH, to proteolytic or nucleolytic cleavage, to DNA synthesis, or to a multiplexing combination. J Am Chem Soc 130:5720–5725.  https://doi.org/10.1021/ja710870eCrossRefGoogle Scholar
  235. 235.
    Xia Z, Rao J (2009) Biosensing and imaging based on bioluminescence resonance energy transfer. Curr Opin Biotechnol 20:37–44.  https://doi.org/10.1016/j.copbio.2009.01.001CrossRefGoogle Scholar
  236. 236.
    Bloch S, Lesage F, McIntosh L et al (2005) Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice. J Biomed Opt 10:054003.  https://doi.org/10.1117/1.2070148CrossRefGoogle Scholar
  237. 237.
    Almutairi A, Akers WJ, Berezin MY et al (2008) Monitoring the biodegradation of dendritic near-infrared nanoprobes by in vivo fluorescence imaging. Mol Pharm 5:1103–1110.  https://doi.org/10.1021/mp8000952CrossRefGoogle Scholar
  238. 238.
    Tarte K, Klein B (1999) Dendritic cell-based vaccine: a promising approach for cancer immunotherapy. Leukemia 13:653–663Google Scholar
  239. 239.
    Reynolds J, Troy T, Mayer R et al (1999) Imaging of spontaneous canine mammary tumors using fluorescent contrast agents. Photochem Photobiol 70:87–94.  https://doi.org/10.1111/j.1751-1097.1999.tb01953.xCrossRefGoogle Scholar
  240. 240.
    Wu XY, Liu HJ, Liu JQ et al (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46.  https://doi.org/10.1038/nbt764CrossRefGoogle Scholar
  241. 241.
    Chen H, Xue J, Zhang Y et al (2009) Comparison of quantum dots immunofluorescence histochemistry and conventional immunohistochemistry for the detection of caveolin-1 and PCNA in the lung cancer tissue microarray. J Mol Histol 40:261–268.  https://doi.org/10.1007/s10735-009-9237-yCrossRefGoogle Scholar
  242. 242.
    Chen C, Peng J, Xia H-S et al (2009) Quantum dots-based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials 30:2912–2918.  https://doi.org/10.1016/j.biomaterials.2009.02.010CrossRefGoogle Scholar
  243. 243.
    Chen C, Sun S-R, Gong Y-P et al (2011) Quantum dots-based molecular classification of breast cancer by quantitative spectroanalysis of hormone receptors and HER2. Biomaterials 32:7592–7599.  https://doi.org/10.1016/j.biomaterials.2011.06.029CrossRefGoogle Scholar
  244. 244.
    Yang X-Q, Chen C, Peng C-W et al (2011) Quantum dot-based quantitative immunofluorescence detection and spectrum analysis of epidermal growth factor receptor in breast cancer tissue arrays. Int J Nanomedicine 6:2265–2273.  https://doi.org/10.2147/ijn.s24161CrossRefGoogle Scholar
  245. 245.
    Liu J, Lau SK, Varma VA et al (2010) Molecular mapping of tumor heterogeneity on clinical tissue specimens with multiplexed quantum dots. ACS Nano 4:2755–2765.  https://doi.org/10.1021/nn100213vCrossRefGoogle Scholar
  246. 246.
    Jennings TL, Becker-Catania SG, Triulzi RC et al (2011) Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis. ACS Nano 5:5579–5593.  https://doi.org/10.1021/nn201050gCrossRefGoogle Scholar
  247. 247.
    Giri S, Sykes EA, Jennings TL, Chan WCW (2011) Rapid screening of genetic biomarkers of infectious agents using quantum dot barcodes. ACS Nano 5:1580–1587.  https://doi.org/10.1021/nn102873wCrossRefGoogle Scholar
  248. 248.
    Xu HX, Sha MY, Wong EY et al (2003) Multiplexed SNP genotyping using the Qbead (TM) system: a quantum dot-encoded microsphere-based assay. Nucleic Acids Res:31.  https://doi.org/10.1093/nar/gng043Google Scholar
  249. 249.
    Gonçalves LCP, Tonelli RR, Bagnaresi P et al (2013) A nature-inspired betalainic probe for live-cell imaging of plasmodium-infected erythrocytes. PLoS One 8.  https://doi.org/10.1371/journal.pone.0053874Google Scholar
  250. 250.
    Eigen M, Rigler R (1994) Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci U S A 91:5740–5747.  https://doi.org/10.1073/pnas.91.13.5740CrossRefGoogle Scholar
  251. 251.
    Lavery P, Brown MJB, Pope AJ (2001) Simple absorbance-based assays for ultra-high throughput screening. J Biomol Screen 6:3–9.  https://doi.org/10.1177/108705710100600102CrossRefGoogle Scholar
  252. 252.
    Diaspro A, Chirico G, Collini M (2005) Two-photon fluorescence excitation and related techniques in biological microscopy. Q Rev Biophys 38:97–166.  https://doi.org/10.1017/S0033583505004129CrossRefGoogle Scholar
  253. 253.
    Wachsmuth M, Conrad C, Bulkescher J et al (2015) High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells. Nat Biotechnol 33:384–389.  https://doi.org/10.1038/nbt.3146CrossRefGoogle Scholar
  254. 254.
    Rudiger M, Haupts U, Moore KJ, Pope a J (2001) Single-molecule detection technologies in miniaturized high throughput screening: binding assays for G protein-coupled receptors using fluorescence intensity distribution analysis and fluorescence anisotropy. J Biomol Screen 6:29–37.  https://doi.org/10.1177/108705710100600105CrossRefGoogle Scholar
  255. 255.
    Haupts U, Maiti S, Schwille P, Webb WW (1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A 95:13573–13578.  https://doi.org/10.1073/pnas.95.23.13573CrossRefGoogle Scholar
  256. 256.
    Palo K, Brand L, Eggeling C et al (2002) Fluorescence intensity and lifetime distribution analysis: toward higher accuracy in fluorescence fluctuation spectroscopy. Biophys J 83:605–618.  https://doi.org/10.1016/S0006-3495(02)75195-3CrossRefGoogle Scholar
  257. 257.
    Parker GJ (2000) Development of high throughput screening assays using fluorescence polarization: nuclear receptor-ligand-binding and kinase/phosphatase assays. J Biomol Screen 5:77–88.  https://doi.org/10.1177/108705710000500204CrossRefGoogle Scholar
  258. 258.
    Banks P, Gosselin M, Prystay L (2000) Fluorescence polarization assays for high throughput screening of G protein-coupled receptors. J Biomol Screen 5:159–167Google Scholar
  259. 259.
    Li Z, Mehdi S, Patel I et al (2000) An ultra-high throughput screening approach for an adenine transferase using fluorescence polarization. J Biomol Screen 5:31–37.  https://doi.org/10.1177/108705710000500107CrossRefGoogle Scholar
  260. 260.
    Owicki JC (2000) Fluorescence polarization and anisotropy in high throughput screening: perspectives and primer. J Biomol Screen 5:297–306.  https://doi.org/10.1177/108705710000500501CrossRefGoogle Scholar
  261. 261.
    Qian J, Voorbach MJ, Huth JR et al (2004) Discovery of novel inhibitors of Bcl-xL using multiple high-throughput screening platforms. Anal Biochem 328:131–138.  https://doi.org/10.1016/j.ab.2003.12.034CrossRefGoogle Scholar
  262. 262.
    Lu Z, Yin Z, James L et al (2004) Development of a fluorescence polarization bead-based coupled assay to target different activity/conformation states of a protein kinase. J Biomol Screen 9:309–321.  https://doi.org/10.1177/1087057104263506CrossRefGoogle Scholar
  263. 263.
    Gaudet EA, Sen HK, Zhang Y et al (2003) A homogeneous fluorescence polarization assay adaptable for a range of protein serine/threonine and tyrosine kinases. J Biomol Screen 8:164–175.  https://doi.org/10.1177/1087057103252309CrossRefGoogle Scholar
  264. 264.
    Sportsman JR, Gaudet JD and EA (2003) Fluorescence polarization assays in signal transduction discovery. Comb Chem High Throughput Screen 6:195–200Google Scholar
  265. 265.
    Auer M, Moore KJ, Meyer-Almes FJ et al (1998) Fluorescence correlation spectroscopy: lead discovery by miniaturized HTS. Drug Discov Today 3:457–465Google Scholar
  266. 266.
    Schwille P, Kummer S, Heikal AA et al (2000) Fluorescence correlation spectroscopy reveals fast optical excitation-driven intramolecular dynamics of yellow fluorescent proteins. Proc Natl Acad Sci U S A 97:151–156.  https://doi.org/10.1073/pnas.97.1.151CrossRefGoogle Scholar
  267. 267.
    Koltermann A, Kettling U, Bieschke J et al (1998) Rapid assay processing by integration of dual-color fluorescence cross-correlation spectroscopy: high throughput screening for enzyme activity. Proc Natl Acad Sci U S A 95:1421–1426.  https://doi.org/10.1073/pnas.95.4.1421CrossRefGoogle Scholar
  268. 268.
    Beasley JR, Dunn DA, Walker TL et al (2003) Evaluation of compound interference in immobilized metal ion affinity-based fluorescence polarization detection with a four million member compound collection. Assay Drug Dev Technol 1:455–459.  https://doi.org/10.1089/154065803322163768CrossRefGoogle Scholar
  269. 269.
    Loomans EEMG, van Doornmalen AM, Wat JWY, Zaman GJR (2003) High-throughput screening with immobilized metal ion affinity-based fluorescence polarization detection, a homogeneous assay for protein kinases. Assay Drug Dev Technol 1:445–453.  https://doi.org/10.1089/154065803322163759CrossRefGoogle Scholar
  270. 270.
    Klumpp M, Boettcher A, Becker D et al (2006) Readout technologies for highly miniaturized kinase assays applicable to high-throughput screening in a 1536-well format. J Biomol Screen 11:617–633.  https://doi.org/10.1177/1087057106288444CrossRefGoogle Scholar
  271. 271.
    Markela E, Ståhlberg TH, Hemmilä I (1993) Europium-labelled recombinant protein G. A fast and sensitive universal immunoreagent for time-resolved immunofluorometry. J Immunol Methods 161:1–6.  https://doi.org/10.1016/0022-1759(93)90192-ACrossRefGoogle Scholar
  272. 272.
    Thibon A, Pierre VC (2009) Principles of responsive lanthanide-based luminescent probes for cellular imaging. Anal Bioanal Chem 394:107–120Google Scholar
  273. 273.
    Wang X, Chang H, Xie J et al (2014) Recent developments in lanthanide-based luminescent probes. Coord Chem Rev 273–274:201–212Google Scholar
  274. 274.
    Selvin PR (2002) Principles and biophysical applications of lanthanide-based probes. Annu Rev Biophys Biomol Struct 31:275–302.  https://doi.org/10.1146/annurev.biophys.31.101101.140927CrossRefGoogle Scholar
  275. 275.
    Nagai T, Yamada S, Tominaga T et al (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci 101:10554–10559.  https://doi.org/10.1073/pnas.0400417101CrossRefGoogle Scholar
  276. 276.
    Chin J, Adams AD, Bouffard A et al (2003) Miniaturization of cell-based beta-lactamase-dependent FRET assays to ultra-high throughput formats to identify agonists of human liver X receptors. Assay Drug Dev Technol 1:777–787.  https://doi.org/10.1089/154065803772613417CrossRefGoogle Scholar
  277. 277.
    Eggeling C, Kask P, Winkler D, Jäger S (2005) Rapid analysis of Förster resonance energy transfer by two-color global fluorescence correlation spectroscopy: trypsin proteinase reaction. Biophys J 89:605–618.  https://doi.org/10.1529/biophysj.104.052753CrossRefGoogle Scholar
  278. 278.
    Lundin K, Blomberg K, Nordström T, Lindqvist C (2001) Development of a time-resolved fluorescence resonance energy transfer assay (cell TR-FRET) for protein detection on intact cells. Anal Biochem 299:92–97.  https://doi.org/10.1006/abio.2001.5370CrossRefGoogle Scholar
  279. 279.
    Moshinsky DJ, Ruslim L, Blake RA, Tang F (2003) A widely applicable, high-throughput TR-FRET assay for the measurement of kinase autophosphorylation: VEGFR-2 as a prototype. J Biomol Screen 8:447–452.  https://doi.org/10.1177/1087057103255282CrossRefGoogle Scholar
  280. 280.
    Glickman JF, Wu X, Mercuri R et al (2002) A comparison of ALPHAScreen, TR-FRET, and TRF as assay methods for FXR nuclear receptors. J Biomol Screen 7:3–10.  https://doi.org/10.1177/108705710200700102CrossRefGoogle Scholar
  281. 281.
    Newman M, Josiah S (2004) Utilization of fluorescence polarization and time resolved fluorescence resonance energy transfer assay formats for SAR studies: Src kinase as a model system. J Biomol Screen 9:525–532.  https://doi.org/10.1177/1087057104264597CrossRefGoogle Scholar
  282. 282.
    Swift JL, Burger MC, Massotte D et al (2007) Two-photon excitation fluorescence cross-correlation assay for ligand-receptor binding: cell membrane nanopatches containing the human mu-opioid receptor. Anal Chem 79:6783–6791.  https://doi.org/10.1021/ac0709495CrossRefGoogle Scholar
  283. 283.
    Blades ML, Grekova E, Wobma HM et al (2012) Three-color fluorescence cross-correlation spectroscopy for analyzing complex nanoparticle mixtures. Anal Chem 84:9623–9631.  https://doi.org/10.1021/ac302572kCrossRefGoogle Scholar
  284. 284.
    Heuff RF, Swift JL, Cramb DT (2007) Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities. Phys Chem Chem Phys 9:1870–1880.  https://doi.org/10.1039/b617115jCrossRefGoogle Scholar
  285. 285.
    Wobma HM, Blades ML, Grekova E et al (2012) The development of direct multicolour fluorescence cross-correlation spectroscopy: towards a new tool for tracking complex biomolecular events in real-time. Phys Chem Chem Phys 14:3290–3294.  https://doi.org/10.1039/c2cp23278bCrossRefGoogle Scholar
  286. 286.
    Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51.  https://doi.org/10.1038/nbt.767CrossRefGoogle Scholar
  287. 287.
    Delehanty JB, Bradburne CE, Susumu K et al (2011) Spatiotemporal multicolor labeling of individual cells using peptide-functionalized quantum dots and mixed delivery techniques. J Am Chem Soc 133:10482–10489.  https://doi.org/10.1021/ja200555zCrossRefGoogle Scholar
  288. 288.
    Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018.  https://doi.org/10.1126/science.281.5385.2016CrossRefGoogle Scholar
  289. 289.
    Matsuno A, Itoh J, Takekoshi S et al (2005) Three-dimensional imaging of the intracellular localization of growth hormone and prolactin and their mRNA using nanocrystal (Quantum dot) and confocal laser scanning microscopy techniques. J Histochem Cytochem 53:833–838.  https://doi.org/10.1369/jhc.4A6577.2005CrossRefGoogle Scholar
  290. 290.
    Chan PM, Yuen T, Ruf F et al (2005) Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization. Nucleic Acids Res 33.  https://doi.org/10.1093/nar/gni162Google Scholar
  291. 291.
    Lee J, Kwon Y-J, Choi Y et al (2012) Quantum dot-based screening system for discovery of G protein-coupled receptor agonists. Chembiochem 13:1503–1508.  https://doi.org/10.1002/cbic.201200128CrossRefGoogle Scholar
  292. 292.
    DaCosta RS, Wilson BC, Marcon NE (2007) Fluorescence and spectral imaging. ScientificWorldJournal 7:2046–2071.  https://doi.org/10.1100/tsw.2007.308CrossRefGoogle Scholar
  293. 293.
    Hagen N, Kudenov MW (2013) Review of snapshot spectral imaging technologies. Opt Eng 52:090901.  https://doi.org/10.1117/1.OE.52.9.090901CrossRefGoogle Scholar
  294. 294.
    Haraguchi T, Shimi T, Koujin T et al (2002) Spectral imaging fluorescence microscopy. Genes Cells 7:881–887Google Scholar
  295. 295.
    Garini Y, Young IT, McNamara G (2006) Spectral imaging: principles and applications. Cytom A 69:735–747Google Scholar
  296. 296.
    Rice WL, Kaplan DL, Georgakoudi I (2010) Two-photon microscopy for non-invasive, quantitative monitoring of stem cell differentiation. PLoS One 5.  https://doi.org/10.1371/journal.pone.0010075Google Scholar
  297. 297.
    Varshni YP (1967) Temperature dependence of energy gap in semiconductors. Physica 34:149–154.  https://doi.org/10.1016/0031-8914(67)90062-6CrossRefGoogle Scholar
  298. 298.
    Yang J-M, Yang H, Lin L (2011) Quantum dot nano thermometers reveal heterogeneous local thermogenesis in living cells. ACS Nano 5:5067–5071.  https://doi.org/10.1021/nn201142fCrossRefGoogle Scholar
  299. 299.
    He GS, Tan L-S, Zheng Q, Prasad PN (2008) Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem Rev 108:1245–1330.  https://doi.org/10.1021/cr050054xCrossRefGoogle Scholar
  300. 300.
    Mariz IFA, Pinto S, Lavrado J et al (2017) Cryptolepine and quindoline: understanding their photophysics. Phys Chem Chem Phys 19:10255–10263.  https://doi.org/10.1039/C7CP00455ACrossRefGoogle Scholar
  301. 301.
    Rodrigues ACB, Mariz I de FA, Maçoas EMS et al (2018) Bioinspired water-soluble two-photon fluorophores. Dye Pigment 150:105–111.  https://doi.org/10.1016/j.dyepig.2017.11.020CrossRefGoogle Scholar
  302. 302.
    Rodrigues CAB, Mariz IFA, MaçÔas EMS et al (2012) Two-photon absorption properties of push-pull oxazolones derivatives. Dye Pigment 95:713–722.  https://doi.org/10.1016/j.dyepig.2012.06.005CrossRefGoogle Scholar
  303. 303.
    Pawlicki M, Collins HA, Denning RG, Anderson HL (2009) Two-photon absorption and the design of two-photon dyes. Angew Chem Int Ed 48:3244–3266Google Scholar
  304. 304.
    Resch-Genger U, Grabolle M, Cavaliere-Jaricot S et al (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775.  https://doi.org/10.1038/nmeth.1248CrossRefGoogle Scholar
  305. 305.
    Wang T, Chen J-Y, Zhen S et al (2009) Thiol-capped CdTe quantum dots with two-photon excitation for imaging high autofluorescence background living cells. J Fluoresc 19:615–621.  https://doi.org/10.1007/s10895-008-0452-9CrossRefGoogle Scholar
  306. 306.
    Bharali DJ, Lucey DW, Jayakumar H et al (2005) Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J Am Chem Soc 127:11364–11371.  https://doi.org/10.1021/ja051455xCrossRefGoogle Scholar
  307. 307.
    Geszke M, Murias M, Balan L et al (2011) Folic acid-conjugated core/shell ZnS:Mn/ZnS quantum dots as targeted probes for two photon fluorescence imaging of cancer cells. Acta Biomater 7:1327–1338.  https://doi.org/10.1016/j.actbio.2010.10.012CrossRefGoogle Scholar
  308. 308.
    Tu C, Ma X, Pantazis P et al (2010) Paramagnetic, silicon quantum dots for magnetic resonance and two-photon imaging of macrophages. J Am Chem Soc 132:2016–2023.  https://doi.org/10.1021/ja909303gCrossRefGoogle Scholar
  309. 309.
    Lidke KA, Rieger B, Jovin TM, Heintzmann R (2005) Superresolution by localization of quantum dots using blinking statistics. Opt Express 13:7052–7062.  https://doi.org/10.1364/opex.13.007052CrossRefGoogle Scholar
  310. 310.
    Chien F-C, Kuo CW, Chen P (2011) Localization imaging using blinking quantum dots. Analyst 136:1608–1613.  https://doi.org/10.1039/c0an00859aCrossRefGoogle Scholar
  311. 311.
    Tam J, Cordier GA, Bálint Š et al (2014) A microfluidic platform for correlative live-cell and super-resolution microscopy. PLoS One 9:1–20.  https://doi.org/10.1371/journal.pone.0115512CrossRefGoogle Scholar
  312. 312.
    Chen Y, Shao L, Ali Z et al (2008) NSOM/QD-based nanoscale immunofluorescence imaging of antigen-specific T-cell receptor responses during an in vivo clonal V gamma 2V delta 2 T-cell expansion. Blood 111:4220–4232.  https://doi.org/10.1182/blood-2007-07-101691CrossRefGoogle Scholar
  313. 313.
    Chen J, Wu Y, Wang C, Cai J (2008) Nanoscale organization of CD4 molecules of human T helper cell mapped by NSOM and quantum dots. Scanning 30:448–451.  https://doi.org/10.1002/sca.20128CrossRefGoogle Scholar
  314. 314.
    Chen J, Pei Y, Chen Z, Cai J (2010) Quantum dot labeling based on near-field optical imaging of CD44 molecules. Micron 41:198–202.  https://doi.org/10.1016/j.micron.2009.11.002CrossRefGoogle Scholar
  315. 315.
    Zhong L, Zeng G, Lu X et al (2009) NSOM/QD-based direct visualization of CD3-induced and CD28-enhanced nanospatial coclustering of TCR and coreceptor in nanodomains in T Cell activation. PLoS One 4.  https://doi.org/10.1371/journal.pone.0005945Google Scholar
  316. 316.
    Walker K-AD, Morgan C, Doak SH, Dunstan PR (2012) Quantum dots for multiplexed detection and characterisation of prostate cancer cells using a scanning near-field optical microscope. PLoS One 7:e31592.  https://doi.org/10.1371/journal.pone.0031592CrossRefGoogle Scholar
  317. 317.
    Walker GW, Sundar VC, Rudzinski CM et al (2003) Quantum-dot optical temperature probes. Appl Phys Lett 83:3555–3557.  https://doi.org/10.1063/1.1620686CrossRefGoogle Scholar
  318. 318.
    Maestro LM, Jacinto C, Silva UR et al (2011) CdTe quantum dots as nanothermometers: towards highly sensitive thermal imaging. Small 7:1774–1778.  https://doi.org/10.1002/smll.201002377CrossRefGoogle Scholar
  319. 319.
    Haro-Gonzalez P, Martinez-Maestro L, Martin IR et al (2012) High-sensitivity fluorescence lifetime thermal sensing based on CdTe quantum dots. Small 8:2652–2658.  https://doi.org/10.1002/smll.201102736CrossRefGoogle Scholar
  320. 320.
    Pai RK, Cotlet M (2011) Highly stable, water-soluble, intrinsic fluorescent hybrid scaffolds for imaging and biosensing. J Phys Chem C 115:1674–1681.  https://doi.org/10.1021/jp109589hCrossRefGoogle Scholar
  321. 321.
    Boeneman K, Mei BC, Dennis AM et al (2009) Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies. J Am Chem Soc 131:3828–3829.  https://doi.org/10.1021/ja809721jCrossRefGoogle Scholar
  322. 322.
    Lowe SB, Dick JAG, Cohen BE, Stevens MM (2012) Multiplex sensing of protease and kinase enzyme activity via orthogonal coupling of quantum dot peptide conjugates. ACS Nano 6:851–857.  https://doi.org/10.1021/nn204361sCrossRefGoogle Scholar
  323. 323.
    Ruedas-Rama MJ, Orte A, Hall EAH et al (2012) A chloride ion nanosensor for time-resolved fluorimetry and fluorescence lifetime imaging. Analyst 137:1500–1508.  https://doi.org/10.1039/c2an15851eCrossRefGoogle Scholar
  324. 324.
    Provenzano PP, Eliceiri KW, Keely PJ (2009) Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin Exp Metastasis 26:357–370.  https://doi.org/10.1007/s10585-008-9204-0CrossRefGoogle Scholar
  325. 325.
    Sun Y, Phipps J, Elson DS et al (2009) Fluorescence lifetime imaging microscopy: in vivo application to diagnosis of oral carcinoma. Opt Lett 34:2081–2083.  https://doi.org/10.1364/ol.34.002081CrossRefGoogle Scholar
  326. 326.
    Shcherbo D, Souslova EA, Goedhart J et al (2009) Practical and reliable FRET/FLIM pair of fluorescent proteins. BMC Biotechnol 9.  https://doi.org/10.1186/1472-6750-9-24Google Scholar
  327. 327.
    Barroso M, Sun Y, Wallrabe H, Periasamy A (2013) Nanometer-scale measurements using FRET and FLIM microscopy. In: Gilmore AM (ed) Luminescence: the instrumental key to the future of nanotechnology. CRC Press, Boca Raton, pp 259–290Google Scholar
  328. 328.
    Rudkouskaya A, Sinsuebphon N, Intes X et al (2017) Fluorescence lifetime FRET imaging of receptor-ligand complexes in tumor cells in vitro and in vivo. Proc SPIE 10049:1006917.  https://doi.org/10.1117/12.2258231CrossRefGoogle Scholar
  329. 329.
    Chandler A, Chandler A, Wallrabe H (2017) Differential levels of metabolic activity in isolated versus confluent/partially confluent HeLa cells are analyzed by autofluorescent NAD (P) H using multi-photon FLIM microscopy. Proc SPIE 10069:1–6.  https://doi.org/10.1117/12.2267657CrossRefGoogle Scholar
  330. 330.
    Alpert A, Altenburg M, Bailey D, Barnes L, Barnes L (2009) Milady’s standard cosmetology. Cengage Learning, Clifton Park, p 897Google Scholar
  331. 331.
    Zimnyakov DA, Tuchin VV (2002) Optical tomography of tissues. Quantum Electron 32:849–867.  https://doi.org/10.1070/QE2002v032n10ABEH00CrossRefGoogle Scholar
  332. 332.
    Huang D, Swanson EA, Lin CP et al (1991) Optical coherence tomography. Science 254:1178–1181Google Scholar
  333. 333.
    Campagnola P (2011) Second harmonic generation imaging microscopy: applications to diseases diagnostics. Anal Chem 83:3224–3231.  https://doi.org/10.1021/ac1032325CrossRefGoogle Scholar
  334. 334.
    Gibb L, Matthews D (2002) Two photon microscopy and second harmonic generation. ReportGoogle Scholar
  335. 335.
    Stoller P, Celliers PM, Reiser KM, Rubenchik AM (2003) Quantitative second-harmonic generation microscopy in collagen. Appl Optics 42:5209.  https://doi.org/10.1364/AO.42.005209CrossRefGoogle Scholar
  336. 336.
    Ntziachristos V (2006) Fluorescence molecular imaging. Annu Rev Biomed Eng 8:1–33.  https://doi.org/10.1146/annurev.bioeng.8.061505.095831CrossRefGoogle Scholar
  337. 337.
    Hilderbrand SA, Weissleder R (2010) Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol 14:71–79Google Scholar
  338. 338.
    Wang Y, Shyy JY-J, Chien S (2008) Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing. Annu Rev Biomed Eng 10:1–38.  https://doi.org/10.1146/annurev.bioeng.010308.161731CrossRefGoogle Scholar
  339. 339.
    Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13:195–208.  https://doi.org/10.1007/s00330-002-1524-xCrossRefGoogle Scholar
  340. 340.
    Venus M, Waterman J, McNab I (2011) Basic physiology of the skin. Surgery 29:471–474.  https://doi.org/10.1016/j.mpsur.2011.06.010CrossRefGoogle Scholar
  341. 341.
    Farage MA, Miller KW, Maibach HI (2017) Textbook of aging skin, 2nd edn. Springer-Verlag, Berlin, p 616Google Scholar
  342. 342.
    Kollias N, Zonios G, Stamatas GN (2002) Fluorescence spectroscopy of skin. Vib Spectrosc 28:17–23.  https://doi.org/10.1016/S0924-2031(01)00142-4CrossRefGoogle Scholar
  343. 343.
    McMullen RL, Chen S, Moore DJ (2012) Spectrofluorescence of skin and hair. Int J Cosmet Sci 34:246–256.  https://doi.org/10.1111/j.1468-2494.2012.00709.xCrossRefGoogle Scholar
  344. 344.
    Seidenari S, Arginelli F, Bassoli S et al (2012) Multiphoton laser microscopy and fluorescence lifetime imaging for the evaluation of the skin. Dermatol Res Pract 2012:1–9.  https://doi.org/10.1155/2012/810749CrossRefGoogle Scholar
  345. 345.
    Benati E, Bellini V, Borsari S et al (2011) Quantitative evaluation of healthy epidermis by means of multiphoton microscopy and fluorescence lifetime imaging microscopy. Skin Res Technol 17:295–303.  https://doi.org/10.1111/j.1600-0846.2011.00496.xCrossRefGoogle Scholar
  346. 346.
    Leffell DJ, Stetz ML, Milstone LM, Deckelbaum LI (1988) In vivo fluorescence of human skin: a potential marker of photoaging. Arch Dermatol 124:1514–1518Google Scholar
  347. 347.
    Campisi J (1997) The biology of replicative senescence. Eur J Cancer A 33:703–709Google Scholar
  348. 348.
    Cristofalo VJ, Lorenzini A, Allen RG et al (2004) Replicative senescence: a critical review. Mech Ageing Dev 125:827–848Google Scholar
  349. 349.
    Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: a review. Diabetologia 44:129–146Google Scholar
  350. 350.
    Ott C, Jacobs K, Haucke E et al (2014) Role of advanced glycation end products in cellular signaling. Redox Biol 2:411–429Google Scholar
  351. 351.
    Daniel CR, Piraccini BM, Tosti A (2004) The nail and hair in forensic science. J Am Acad Dermatol 50:258–261Google Scholar
  352. 352.
    Tobin DJ (2008) Human hair pigmentation—biological aspects. Int J Cosmet Sci 30:233–257Google Scholar
  353. 353.
    Yang CC, Cotsarelis G (2010) Review of hair follicle dermal cells. J Dermatol Sci 57:2–11Google Scholar
  354. 354.
    Westgate GE, Botchkareva NV, Tobin DJ (2013) The biology of hair diversity. Int J Cosmet Sci 35:329–336Google Scholar
  355. 355.
    Meredith P, Sarna T (2006) The physical and chemical properties of eumelanin. Pigment Cell Res 19:572–594Google Scholar
  356. 356.
    Daly S, Bianchini R, Polefka T et al (2009) Fluorescence and coloration of grey hair. Int J Cosmet Sci 31:347–359.  https://doi.org/10.1111/j.1468-2494.2009.00500.xCrossRefGoogle Scholar
  357. 357.
    Kayatz P, Thumann G, Luther TT et al (2001) Oxidation causes melanin fluorescence. Invest Ophthalmol Vis Sci 42:241–246Google Scholar
  358. 358.
    Freis O, Gauché D, Griesbach U, Haake H-M (2010) Fluorescence laser scanning confocal microscopy to assess the penetration of low molecular protein hydrolyzates into hair. Cosmet Toilet 125:30–35Google Scholar
  359. 359.
    DeLauder SF, Kidwell DA (2000) The incorporation of dyes into hair as a model for drug binding. Forensic Sci Int 107:93–104.  https://doi.org/10.1016/S0379-0738(99)00153-XCrossRefGoogle Scholar
  360. 360.
  361. 361.
  362. 362.
    Madhusudan Rao Y, Shayeda, Sujatha P (2008) Formulation and evaluation of commonly used natural hair colorants. Indian J Nat Prod Resour 7:45–48Google Scholar
  363. 363.
    Bechtold T (2009) Natural colorants in hair dyeing. In: Bechtold T, Mussak R (eds) Handbook of natural colorants. John Wiley & Sons Ltd, Chichester, pp 339–350Google Scholar
  364. 364.
    Allam KV, Kumar GP (2011) Colorants—the cosmetics for the pharmaceutical dosage forms. Int J Pharm Pharm Sci 3:13–21Google Scholar
  365. 365.
    Rosenthal I, Yang GC, Bell SJ, Scher AL (1988) The chemical photosensitizing ability of certified colour additives. Food Addit Contam 5:563–571.  https://doi.org/10.1080/02652038809373719CrossRefGoogle Scholar
  366. 366.
    Laux P, Tralau T, Tentschert J et al (2016) A medical-toxicological view of tattooing. Lancet 387:395–402.  https://doi.org/10.1016/S0140-6736(15)60215-XCrossRefGoogle Scholar
  367. 367.
    Liu F, Fang Y, Chen Y, Liu J (2011) Dissociative excitation energy transfer in the reactions of protonated cysteine and tryptophan with electronically excited singlet molecular oxygen (a1Δg). J Phys Chem B 115:9898–9909.  https://doi.org/10.1021/jp205235dCrossRefGoogle Scholar
  368. 368.
    Jachowicz J, McMullen RL (2011) Tryptophan fluorescence in hair-examination of contributing factors. J Cosmet Sci 62:291–304Google Scholar
  369. 369.
    Chiarelli-Neto O, Pavani C, Ferreira AS et al (2011) Generation and suppression of singlet oxygen in hair by photosensitization of melanin. Free Radic Biol Med 51:1195–1202.  https://doi.org/10.1016/j.freeradbiomed.2011.06.013CrossRefGoogle Scholar
  370. 370.
    Nofsinger JB, Liu Y, Simon JD (2002) Aggregation of eumelanin mitigates photogeneration of reactive oxygen species. Free Radic Biol Med 32:720–730.  https://doi.org/10.1016/S0891-5849(02)00763-3CrossRefGoogle Scholar
  371. 371.
    Chiarelli-Neto O, Ferreira AS, Martins WK et al (2014) Melanin photosensitization and the effect of visible light on epithelial cells. PLoS One 9.  https://doi.org/10.1371/journal.pone.0113266Google Scholar
  372. 372.
    Syed IA, Najdek L, Ionita-Manzatu MC, Susak M (2014) Topical compositions comprising inorganic particulates and an alkoxylated diphenylacrylate compound. United States ELC Management LLC, New York. Patent #8765156Google Scholar
  373. 373.
    Tonolli PN, Neto OC, Santacruz-Perez C et al (2017) Lipofuscin generated by UVA exposure makes human skin keratinocytes sensitive to visible light. Free Radic Biol Med 112:65–66.  https://doi.org/10.1016/j.freeradbiomed.2017.10.093CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto de Química, Universidade de São PauloSão PauloBrazil

Personalised recommendations