Advertisement

Probes for Nanoscopy: Photoswitchable Fluorophores

  • Pedro F. Aramendía
  • Mariano L. Bossi
Chapter
Part of the Springer Series on Fluorescence book series (SS FLUOR, volume 14)

Abstract

In recent years, new concepts have emerged for imaging in a far-field fluorescence microscope with resolution under the diffraction limit. All these concepts bear in common the use of molecular states of the probe to switch its signal between a fluorescent and a dark state. So far, in these techniques different kinds of molecular switches have been applied, whose photochemical features become a crucial fact for the success. In this chapter, we will discuss how the two isomeric forms of a photochromic system can be used to design a fluorescent switch for that purpose. We will focus on the photochemical and photophysical relevant properties for these systems to fulfill the requirements of a suitable probe for the different strategies currently used in fluorescence nanoscopy. Examples containing diverse photochromes and their application in super-resolution fluorescence imaging will be described.

Keywords

Imaging Microscopy Photomodulation Photochromism Photoswitching 

References

  1. 1.
    Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikr Anat 9:413–468CrossRefGoogle Scholar
  2. 2.
    Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782CrossRefGoogle Scholar
  3. 3.
    Hell SW, Kroug M (1995) Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit. Appl Phys B 60(5):495–497CrossRefGoogle Scholar
  4. 4.
    Hell SW (2009) Microscopy and its focal switch. Nat Methods 6(1):24–32CrossRefGoogle Scholar
  5. 5.
    Crano JC, Guglielmetti RJ (eds) (1999) Organic photochromic and thermochromic compounds. Topics in applied chemistry, vol 1. Plenum, New York, p 376Google Scholar
  6. 6.
    Bouas-Laurent H, Düurr H (2001) Organic photochromism (IUPAC technical report). Pure Appl Chem 73(4):639–665CrossRefGoogle Scholar
  7. 7.
    Braslavsky S (2007) Glossary of terms used in photochemistry 3rd edition. Pure Appl Chem 79(3):293–465CrossRefGoogle Scholar
  8. 8.
    Feringa BL, van Delden RA, Koumura N, Geertsema EM (2000) Chiroptical molecular switches. Chem Rev 100(5):1789–1816CrossRefGoogle Scholar
  9. 9.
    Hell SW (2004) Strategy for far-field optical imaging and writing without diffraction limit. Phys Lett A 326(1–2):140–145CrossRefGoogle Scholar
  10. 10.
    Westphal V, Hell SW (2005) Nanoscale resolution in the focal plane of an optical microscope. Phys Rev Lett 94(14):143903CrossRefGoogle Scholar
  11. 11.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–16455CrossRefGoogle Scholar
  12. 12.
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795CrossRefGoogle Scholar
  13. 13.
    Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783CrossRefGoogle Scholar
  14. 14.
    Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78:993–1016CrossRefGoogle Scholar
  15. 15.
    Shroff H, Galbraith CG, Galbraith JA, Betzig E (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5(5):417–423CrossRefGoogle Scholar
  16. 16.
    Belfield KD, Liu Y, Negres RA, Fan M, Pan G, Hagan DJ, Hernandez FE (2002) Two-photon photochromism of an organic material for holographic recording. Chem Mater 14(9):3663–3667CrossRefGoogle Scholar
  17. 17.
    Folling J, Belov V, Kunetsky R, Medda R, Schonle A, Egner A, Eggeling C, Bossi M, Hell SW (2007) Photochromic rhodamines provide nanoscopy with optical sectioning. Angew Chem Int Ed 46(33):6266–6270CrossRefGoogle Scholar
  18. 18.
    Folling J, Belov V, Riedel D, Schonle A, Egner A, Eggeling C, Bossi M, Hell SW (2008) Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers. ChemPhysChem 9(2):321–326CrossRefGoogle Scholar
  19. 19.
    Zhu M-Q, Zhang G-F, Li C, Aldred MP, Chang E, Drezek RA, Li ADQ (2011) Reversible two-photon photoswitching and two-photon imaging of immunofunctionalized nanoparticles targeted to cancer cells. J Am Chem Soc 133(2):365–372CrossRefGoogle Scholar
  20. 20.
    Miyasaka H, Murakami M, Itaya A, Guillaumont D, Nakamura S, Irie M (2001) Multiphoton gated photochromic reaction in a diarylethene derivative. J Am Chem Soc 123(4):753–754CrossRefGoogle Scholar
  21. 21.
    Tamai N, Miyasaka H (2000) Ultrafast dynamics of photochromic systems. Chem Rev 100(5):1875–1890CrossRefGoogle Scholar
  22. 22.
    Takahashi T, Taniguchi Y, Umetani K, Yokouchi H, Hashimoto M, Kano T (1985) Cis-trans photoisomerization of perinaphthothioindigo for use as a photo-imaging sensor using fluorescence under He-Ne laser excitation. Jpn J Appl Phys 24(2):173–176CrossRefGoogle Scholar
  23. 23.
    Tsivgoulis GM, Lehn J-M (1997) Multiplexing optical systems: multicolor-bifluorescent-biredox photochromic mixtures. Adv Mater 9(8):627–630CrossRefGoogle Scholar
  24. 24.
    Irie M (2000) Diarylethenes for memories and switches. Chem Rev 100(5):1685–1716CrossRefGoogle Scholar
  25. 25.
    Liang Y, Dvornikov AS, Rentzepis PM (2000) Synthesis and photochemistry of photochromic fluorescing indol-2-ylfulgimides. J Mater Chem 10(11):2477–2482CrossRefGoogle Scholar
  26. 26.
    Walz J, Ulrich K, Port H, Wolf HC, Wonner J, Effenberger F (1993) Fulgides as switches for intramolecular energy transfer. Chem Phys Lett 213(3–4):321–324CrossRefGoogle Scholar
  27. 27.
    Daub J, Beck M, Knorr A, Spreitzer H (1996) New molecular systems for functional dye-based molecular switching of luminescence. Pure Appl Chem 68(7):1399–1404CrossRefGoogle Scholar
  28. 28.
    Bahr JL, Kodis G, de la Garza L, Lin S, Moore AL, Moore TA, Gust D (2001) Photoswitched singlet energy transfer in a porphyrin-spiropyran dyad. J Am Chem Soc 123(29):7124–7133CrossRefGoogle Scholar
  29. 29.
    Giordano L, Jovin TM, Irie M, Jares-Erijman EA (2002) Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). J Am Chem Soc 124(25):7481–7489CrossRefGoogle Scholar
  30. 30.
    Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T (2002) A digital fluorescent molecular photoswitch. Nature 420(6917):759–760CrossRefGoogle Scholar
  31. 31.
    Bossi M, Belov V, Polyakova S, Hell SW (2006) Reversible red fluorescent molecular switches. Angew Chem Int Ed 45(44):7462–7465CrossRefGoogle Scholar
  32. 32.
    de Meijere A, Zhao L, Belov VN, Bossi M, Noltemeyer M, Hell SW (2007) 1,3-bicyclo[1.1.1]pentanediyl: the shortest rigid linear connector of phenylated photochromic units and a 1,5-dimethoxy-9,10-di(phenylethynyl)anthracene fluorophore. Chem Eur J 13(9):2503–2516CrossRefGoogle Scholar
  33. 33.
    Tsuchiya S (1998) Intramolecular electron transfer of diporphyrins comprised of electron-deficient porphyrin and electron-rich porphyrin with photocontrolled isomerization. J Am Chem Soc 121(1):48–53CrossRefGoogle Scholar
  34. 34.
    Myles AJ, Branda NR (2000) Porphyrinic phenoxynaphthacenequinones. Tetrahedron Lett 41(20):3785–3788CrossRefGoogle Scholar
  35. 35.
    Fukaminato T, Doi T, Tamaoki N, Okuno K, Ishibashi Y, Miyasaka H, Irie M (2011) Single-molecule fluorescence photoswitching of a diarylethene-perylenebisimide dyad: non-destructive fluorescence readout. J Am Chem Soc 133(13):4984–4990CrossRefGoogle Scholar
  36. 36.
    Yan SF, Belov VN, Bossi ML, Hell SW (2008) Switchable fluorescent and solvatochromic molecular probes based on 4-amino-N-methylphthalimide and a photochromic diarylethene. Eur J Org Chem 2008(15):2531–2538CrossRefGoogle Scholar
  37. 37.
    Clegg RM (1995) Fluorescence resonance energy transfer. Curr Opin Biotechnol 6(1):103–110CrossRefGoogle Scholar
  38. 38.
    Jin M, Lu R, Bao CY, Xu TH, Zhao YY (2004) Fluorescence modulation in azobenzene-substituted triphenyl pyrazoline derivative. Opt Mater 26(1):85–88CrossRefGoogle Scholar
  39. 39.
    Harbron EJ, Vicente DA, Hoyt MT (2004) Fluorescence modulation via isomer-dependent energy transfer in an azobenzene-functionalized poly(phenylenevinylene) derivative. J Phys Chem B 108(49):18789–18792CrossRefGoogle Scholar
  40. 40.
    Song L, Jares-Erijman EA, Jovin TM (2002) A photochromic acceptor as a reversible light-driven switch in fluorescence resonance energy transfer (FRET). J Photochem Photobiol A 150(1–3):177–185CrossRefGoogle Scholar
  41. 41.
    Seefeldt B, Kasper R, Beining M, Mattay J, Arden-Jacob J, Kemnitzer N, Drexhage KH, Heilemann M, Sauer M (2010) Spiropyrans as molecular optical switches. Photochem Photobiol Sci 9(2):213–220CrossRefGoogle Scholar
  42. 42.
    Bossi M, Folling J, Belov VN, Boyarskiy VP, Medda R, Egner A, Eggeling C, Schonle A, Hell SW (2008) Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. Nano Lett 8(8):2463–2468CrossRefGoogle Scholar
  43. 43.
    Belov VN, Bossi ML, Folling J, Boyarskiy VP, Hell SW (2009) Rhodamine spiroamides for multicolor single-molecule switching fluorescent nanoscopy. Chem Eur J 15(41):10762–10776CrossRefGoogle Scholar
  44. 44.
    Deniz E, Sortino S, Raymo FM (2010) Fluorescence switching with a photochromic auxochrome. J Phys Chem Lett 1(24):3506–3509CrossRefGoogle Scholar
  45. 45.
    Bossi M, Folling J, Dyba M, Westphal V, Hell SW (2006) Breaking the diffraction resolution barrier in far-field microscopy by molecular optical bistability. New J Phys 8:275CrossRefGoogle Scholar
  46. 46.
    Fukaminato T, Sasaki T, Kawai T, Tamai N, Irie M (2004) Digital photoswitching of fluorescence based on the photochromism of diarylethene derivatives at a single-molecule level. J Am Chem Soc 126(45):14843–14849CrossRefGoogle Scholar
  47. 47.
    Folling J, Polyakova S, Belov V, van Blaaderen A, Bossi ML, Hell SW (2008) Synthesis and characterization of photoswitchable fluorescent silica nanoparticles. Small 4(1):134–142CrossRefGoogle Scholar
  48. 48.
    Takeshita M, Irie M (1997) Enhancement of the photocyclization quantum yield of 2,2[prime or minute]-dimethyl-3,3[prime or minute]-(perfluorocyclopentene-1,2-diyl)bis(benzo[b]- thiophene-6-sulfonate) by inclusion in a cyclodextrin cavity. Chem Commun (23):2265–2266Google Scholar
  49. 49.
    Soh N, Yoshida K, Nakajima H, Nakano K, Imato T, Fukaminato T, Irie M (2007) A fluorescent photochromic compound for labeling biomolecules. Chem Commun (48):5206–5208Google Scholar
  50. 50.
    Hirose T, Irie M, Matsuda K (2008) Temperature-light dual control of clouding behavior of an oligo(ethylene glycol)-diarylethene hybrid system. Adv Mater 20(11):2137–2141CrossRefGoogle Scholar
  51. 51.
    Hirose T, Matsuda K, Irie M (2006) Self-assembly of photochromic diarylethenes with amphiphilic side chains: reversible thermal and photochemical control. J Org Chem 71(20):7499–7508CrossRefGoogle Scholar
  52. 52.
    Piao X, Zou Y, Wu J, Li C, Yi T (2009) Multiresponsive switchable diarylethene and its application in bioimaging. Org Lett 11(17):3818–3821CrossRefGoogle Scholar
  53. 53.
    Zou Y, Yi T, Xiao SZ, Li FY, Li CY, Gao X, Wu JC, Yu MX, Huang CH (2008) Amphiphilic diarylethene as a photoswitchable probe for imaging living cells. J Am Chem Soc 130(47):15750–15751CrossRefGoogle Scholar
  54. 54.
    Zhou X, Duan Y, Yan S, Liu Z, Zhang C, Yao L, Cui G (2011) Optical modulation of supramolecular assembly of amphiphilic photochromic diarylethene: from nanofiber to nanosphere. Chem Commun 47(24):6876–6878CrossRefGoogle Scholar
  55. 55.
    Polyakova S, Belov VN, Bossi ML, Hell SW (2011) Synthesis of photochromic compounds for aqueous solutions and focusable light. Eur J Org Chem 2011(18):3301–3312CrossRefGoogle Scholar
  56. 56.
    Knauer KH, Gleiter R (1977) Photochromism of rhodarnine derivatives. Angew Chem Int Ed 16(2):113CrossRefGoogle Scholar
  57. 57.
    Willwohl H, Wolfrum J, Gleiter R (1989) Kinetics and mechanism of the photochromism of N-phenyl-rhodaminelactame. Laser Chem 10(2):63–72CrossRefGoogle Scholar
  58. 58.
    Kummer S, Dickson RM, Moerner WE (1998) Probing single molecules in polyacrylamide gels. Proc Soc Photo-Opt Instrum Eng 3272:165–173Google Scholar
  59. 59.
    Zondervan R, Kulzer F, Orlinskii SB, Orrit M (2003) Photoblinking of rhodamine 6G in poly(vinyl alcohol): radical dark state formed through the triplet. J Phys Chem A 107(35):6770–6776CrossRefGoogle Scholar
  60. 60.
    Foiling J, Belov V, Riedel D, Schonle A, Egner A, Eggeling C, Bossi M, Hell SW (2008) Fluorescence nanoscopy with optical sectioning by two- photon induced molecular switching using continuous- wave lasers. ChemPhysChem 9(2):321–326CrossRefGoogle Scholar
  61. 61.
    Testa I, Schonle A, Middendorff CV, Geisler C, Medda R, Wurm CA, Stiel AC, Jakobs S, Bossi M, Eggeling C, Hell SW, Egner A (2008) Nanoscale separation of molecular species based on their rotational mobility. Opt Express 16(25):21093–21104CrossRefGoogle Scholar
  62. 62.
    Guglielmetti R (1990) 4n + 2 Systems: spiropyrans. In: Dürr H, Bouas-Laurent H (eds) Photochromism: molecules and systems, 1st edn. Elsevier, Amsterdam, pp 314–466Google Scholar
  63. 63.
    Tomasulo M, Deniz E, Alvarado RJ, Raymo FM (2008) Photoswitchable fluorescent assemblies based on hydrophilic BODIPY-spiropyran conjugates. J Phys Chem C 112(21):8038–8045CrossRefGoogle Scholar
  64. 64.
    Medintz IL, Trammell SA, Mattoussi H, Mauro JM (2003) Reversible modulation of quantum dot photoluminescence using a protein- bound photochromic fluorescence resonance energy transfer acceptor. J Am Chem Soc 126(1):30–31CrossRefGoogle Scholar
  65. 65.
    Hu DH, Tian ZY, Wu WW, Wan W, Li ADQ (2008) Photoswitchable nanoparticles enable high-resolution cell imaging: PULSAR microscopy. J Am Chem Soc 130(46):15279–15281CrossRefGoogle Scholar
  66. 66.
    Zhu M-Q, Zhu L, Han JJ, Wu W, Hurst JK, Li ADQ (2006) Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence. J Am Chem Soc 128(13):4303–4309CrossRefGoogle Scholar
  67. 67.
    Tian Z, Wu W, Wan W, Li ADQ (2009) Single-chromophore-based photoswitchable nanoparticles enable dual-alternating-color fluorescence for unambiguous live cell imaging. J Am Chem Soc 131(12):4245–4252CrossRefGoogle Scholar
  68. 68.
    Tomasulo M, Sortino S, Raymo FM (2005) A fast and stable photochromic switch based on the opening and closing of an oxazine ring. Org Lett 7(6):1109–1112CrossRefGoogle Scholar
  69. 69.
    Tomasulo M, Sortino S, White AJP, Raymo FM (2005) Fast and stable photochromic oxazines. J Org Chem 70(20):8180–8189CrossRefGoogle Scholar
  70. 70.
    Deniz E, Tomasulo M, Sortino S, Raymo FM (2009) Substituent effects on the photochromism of bichromophoric oxazines. J Phys Chem C 113(19):8491–8497CrossRefGoogle Scholar
  71. 71.
    Deniz E, Tomasulo M, Cusido J, Yildiz I, Petriella M, Sortino S, Bossi ML, Sortino S, Raymo FM (2012) Photoactivatable Fluorophores for Super-Resolution Imaging Based on Oxazine Auxochromes. J Phys Chem C 116(10), 6058–6068Google Scholar
  72. 72.
    Andresen M, Wahl MC, Stiel AC, Grater F, Schafer LV, Trowitzsch S, Weber G, Eggeling C, Grubmuller H, Hell SW, Jakobs S (2005) Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proc Natl Acad Sci USA 102(37):13070–13074CrossRefGoogle Scholar
  73. 73.
    Brakemann T, Weber G, Andresen M, Groenhof G, Stiel AC, Trowitzsch S, Eggeling C, Grubmüller H, Hell SW, Wahl MC, Jakobs S (2010) Molecular basis of the light-driven switching of the photochromic fluorescent protein Padron. J Biol Chem 285(19):14603–14609CrossRefGoogle Scholar
  74. 74.
    Chudakov DM, Feofanov AV, Mudrik NN, Lukyanov S, Lukyanov KA (2003) Chromophore environment provides clue to “kindling fluorescent protein” riddle. J Biol Chem 278(9):7215–7219CrossRefGoogle Scholar
  75. 75.
    Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9(12):929–943CrossRefGoogle Scholar
  76. 76.
    Bretschneider S, Eggeling C, Hell SW (2007) Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys Rev Lett 98(21):218103CrossRefGoogle Scholar
  77. 77.
    Folling J, Bossi M, Bock H, Medda R, Wurm CA, Hein B, Jakobs S, Eggeling C, Hell SW (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5(11):943–945CrossRefGoogle Scholar
  78. 78.
    Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47(33):6172–6176CrossRefGoogle Scholar
  79. 79.
    Vogelsang J, Kasper R, Steinhauer C, Person B, Heilemann M, Sauer M, Tinnefeld P (2008) A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew Chem Int Ed 47(29):5465–5469CrossRefGoogle Scholar
  80. 80.
    Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed 48(37):6903–6908CrossRefGoogle Scholar
  81. 81.
    Vogelsang J, Cordes T, Forthmann C, Steinhauer C, Tinnefeld P (2009) Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy. Proc Natl Acad Sci USA 106(20):8107–8112CrossRefGoogle Scholar
  82. 82.
    Dertinger T, Heilemann M, Vogel R, Sauer M, Weiss S (2010) Superresolution optical fluctuation imaging with organic dyes. Angew Chem Int Ed 49(49):9441–9443CrossRefGoogle Scholar
  83. 83.
    Gensch T, Böhmer M, Aramendía PF (2005) Single molecule blinking and photobleaching separated by wide-field fluorescence microscopy. J Phys Chem A 109(30):6652–6658CrossRefGoogle Scholar
  84. 84.
    Heilemann M, Dedecker P, Hofkens J, Sauer M (2009) Photoswitches: key molecules for subdiffraction-resolution fluorescence imaging and molecular quantification. Laser Photonics Rev 3(1–2):180–202CrossRefGoogle Scholar
  85. 85.
    Vogelsang J, Steinhauer C, Forthmann C, Stein IH, Person-Skegro B, Cordes T, Tinnefeld P (2010) Make them blink: probes for super-resolution microscopy. ChemPhysChem 11(12):2475–2490CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.INQUIMAE—Departamento de Química Inorgánica, Analítica y Química Física, FCENUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations