Far-Field Optical Nanoscopy pp 87-110

Part of the Springer Series on Fluorescence book series (SS FLUOR, volume 14)

Single-Molecule Photocontrol and Nanoscopy

  • Matthew D. Lew
  • Steven F. Lee
  • Michael A. Thompson
  • Hsiao-lu D. Lee
  • W. E. Moerner
Chapter

Abstract

Fluorescence microscopy is a ubiquitous tool in biological studies, but fundamental diffraction limits its resolution to ~200 nm for visible light. To overcome this physical limit, but still retain the advantages of far-field noninvasive fluorescence imaging, single-molecule photocontrol has been utilized to achieve optical nanoscopy. Superlocalization, combined with photocontrol of single molecules, allows individual molecules to be localized to precisions of tens of nanometers as part of a larger biological structure, thereby achieving super-resolution. Photoactivation, photoswitching, and photoinduced blinking are all methods of photocontrol, and critical characterization and performance parameters of photocontrollable fluorophores are discussed. We describe two classes of small molecules for use in photoactivation (azido-dicyanomethylenedihydrofuran molecules) and photoswitching (Cy3–Cy5 covalent heterodimer) studies. Furthermore, the use of the first-reported photoswitchable fluorescent protein, enhanced yellow fluorescent protein (eYFP), is also discussed for photoswitching and for photoinduced blinking experiments. Importantly, all of these methods of photocontrol have demonstrated remarkable usefulness in super-resolution studies of structures in living cells.

Keywords

Photoactivation Photoswitching Photoinduced blinking Single-molecule Super-resolution microscopy 

References

  1. 1.
    Moerner WE (2006) Single-molecule mountains yield nanoscale images. Nat Methods 3:781–782CrossRefGoogle Scholar
  2. 2.
    Moerner WE (2007) New directions in single-molecule imaging and analysis. Proc Natl Acad Sci USA 104:12596–12602CrossRefGoogle Scholar
  3. 3.
    Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158CrossRefGoogle Scholar
  4. 4.
    Ambrose WP, Basché T, Moerner WE (1991) Detection and spectroscopy of single pentacene molecules in a p-terphenyl crystal by means of fluorescence excitation. J Chem Phys 95:7150–7163CrossRefGoogle Scholar
  5. 5.
    Gelles J, Schnapp BJ, Sheetz MP (1988) Tracking kinesin-driven movements with nanometre-scale precision. Nature 4:450–453CrossRefGoogle Scholar
  6. 6.
    Güttler F, Irngartinger T, Plakhotnik T et al (1994) Fluorescence microscopy of single molecules. Chem Phys Lett 217:393CrossRefGoogle Scholar
  7. 7.
    van Oijen AM, Köhler J, Schmidt J et al (1999) Far-field fluorescence microscopy beyond the diffraction limit. J Opt Soc Am A 16:909–915CrossRefGoogle Scholar
  8. 8.
    Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82:2775–2783CrossRefGoogle Scholar
  9. 9.
    Ober RJ, Ram S, Ward ES (2004) Localization accuracy in single-molecule microscopy. Biophys J 86:1185–1200CrossRefGoogle Scholar
  10. 10.
    Michalet X, Weiss S (2006) Using photon statistics to boost microscopy resolution. Proc Natl Acad Sci USA 103:4797–4798CrossRefGoogle Scholar
  11. 11.
    Böhmer M, Enderlein J (2003) Orientation imaging of single molecules by wide-field epifluorescence microscopy. J Opt Soc Am B 20:554–559CrossRefGoogle Scholar
  12. 12.
    Lieb MA, Zavislan JM, Novotny L (2004) Single-molecule orientations determined by direct emission pattern imaging. J Opt Soc Am B 21:1210–1215CrossRefGoogle Scholar
  13. 13.
    Enderlein J, Toprak E, Selvin PR (2006) Polarization effect on position accuracy of fluorophore localization. Opt Express 14:8111–8120CrossRefGoogle Scholar
  14. 14.
    Engelhardt J, Keller J, Hoyer P et al (2011) Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy. Nano Lett 11:209–213CrossRefGoogle Scholar
  15. 15.
    Nyquist H (1928) Certain topics in telegraph transmission theory. Trans AIEE 47:617–644Google Scholar
  16. 16.
    Shannon CE (1949) Communication in the presence of noise. Proc IRE 37:10–21CrossRefGoogle Scholar
  17. 17.
    Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645CrossRefGoogle Scholar
  18. 18.
    Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272CrossRefGoogle Scholar
  19. 19.
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–796CrossRefGoogle Scholar
  20. 20.
    Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci USA 103:18911–18916CrossRefGoogle Scholar
  21. 21.
    Biteen JS, Thompson MA, Tselentis NK et al (2008) Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat Methods 5:947–949CrossRefGoogle Scholar
  22. 22.
    Folling J, Bossi M, Bock H et al (2008) Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat Methods 5:943–945CrossRefGoogle Scholar
  23. 23.
    Steinhauer C, Forthmann C, Vogelsang J et al (2008) Superresolution microscopy on the basis of engineered dark states. J Am Chem Soc 130:16840–16841CrossRefGoogle Scholar
  24. 24.
    Thompson MA, Biteen JS, Lord SJ et al (2010) Molecules and methods for super-resolution imaging. Meth Enzymol 475:27–59CrossRefGoogle Scholar
  25. 25.
    Bates M, Huang B, Dempsey GT et al (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753CrossRefGoogle Scholar
  26. 26.
    Shroff H, Galbraith CG, Galbraith JA et al (2007) Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci USA 104:20308–20313CrossRefGoogle Scholar
  27. 27.
    Dickson RM, Cubitt AB, Tsien RY et al (1997) On/Off blinking and switching behavior of single green fluorescent protein molecules. Nature 388:355–358CrossRefGoogle Scholar
  28. 28.
    Shroff H, Galbraith CG, Galbraith JA et al (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5:417–423CrossRefGoogle Scholar
  29. 29.
    Lord SJ, Lee H-D, Samuel R et al (2010) Azido push–pull fluorogens photoactivate to produce bright fluorescent labels. J Phys Chem B 114:14157–14167CrossRefGoogle Scholar
  30. 30.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer Science, New YorkCrossRefGoogle Scholar
  31. 31.
    Adams SR, Kao JPY, Tsien RY (1989) Biologically useful chelators that take up Ca 2+ upon illumination. J Am Chem Soc 111:7957–7968CrossRefGoogle Scholar
  32. 32.
    Doub L, Vandenbelt JM (1947) The ultraviolet absorption spectra of simple unsaturated compounds. I. Mono- and p-disubstituted benzene derivatives. J Am Chem Soc 69:2714–2723CrossRefGoogle Scholar
  33. 33.
    Stevenson PE (1965) Effects of chemical substitution on the electronic spectra of aromatic compounds: Part I. The effects of strongly perturbing substituents on benzene. J Mol Spectrosc 15:220–256CrossRefGoogle Scholar
  34. 34.
    Hansch C, Leo A, Taft RW (1991) A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 91:165–195CrossRefGoogle Scholar
  35. 35.
    Schriven EFV (1984) Azides and nitrenes: reactivity and utility. Anonymous Academic Press, Orlando, FLGoogle Scholar
  36. 36.
    Soundararajan N, Platz MS (1990) Descriptive photochemistry of polyfluorinated azide derivatives of methyl benzoate. J Org Chem 55:2034–2044CrossRefGoogle Scholar
  37. 37.
    Lord SJ, Conley NR, Lee H-D et al (2008) A photoactivatable push−pull fluorophore for single-molecule imaging in live cells. J Am Chem Soc 130:9204–9205CrossRefGoogle Scholar
  38. 38.
    Pavani SRP, Thompson MA, Biteen JS et al (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci USA 106:2995–2999CrossRefGoogle Scholar
  39. 39.
    Lee H-D, Lord SJ, Iwanaga S et al (2010) Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores. J Am Chem Soc 132:15099–15101CrossRefGoogle Scholar
  40. 40.
    Lord SJ, Conley NR, Lee H-D et al (2009) DCDHF fluorophores for single-molecule imaging in cells. ChemPhysChem 10:55–65CrossRefGoogle Scholar
  41. 41.
    Willets KA, Nishimura SY, Schuck PJ et al (2005) Nonlinear optical chromophores as nanoscale emitters for single-molecule spectroscopy. Acc Chem Res 38:549–556CrossRefGoogle Scholar
  42. 42.
    Dempsey GT, Bates M, Kowtoniuk WE et al (2009) Photoswitching mechanism of cyanine dyes. J Am Chem Soc 131:18192–18193CrossRefGoogle Scholar
  43. 43.
    Heilemann M, Margeat E, Kasper R et al (2005) Carbocyanine dyes as efficient reversible single-molecule optical switch. J Am Chem Soc 127:3801–3806CrossRefGoogle Scholar
  44. 44.
    Heilemann M, van de Linde S, Schüttpelz M et al (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47:6172–6176CrossRefGoogle Scholar
  45. 45.
    Conley NR, Biteen JS, Moerner WE (2008) Cy3–Cy5 covalent heterodimers for single-molecule photoswitching. J Phys Chem B 112:11878–11880CrossRefGoogle Scholar
  46. 46.
    Los GV, Wood K (2007) The HaloTag: a novel technology for cell imaging and protein analysis. Methods Mol Biol 356:195–208Google Scholar
  47. 47.
    Los GV, Encell LP, McDougall MG et al (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3:373–382CrossRefGoogle Scholar
  48. 48.
    Huang B, Jones SA, Brandenburg B et al (2008) Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Methods 5:1047–1052CrossRefGoogle Scholar
  49. 49.
    Geisler C, Schönle A, von Middendorff C et al (2007) Resolution of λ/10 in fluorescence microscopy using fast single molecule photo-switching. Appl Phys A 88:223–226CrossRefGoogle Scholar
  50. 50.
    Niu L, Yu P (2008) Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. Biophys J 95:2009–2016CrossRefGoogle Scholar
  51. 51.
    Stiel AC, Andresen M, Bock H et al (2008) Generation of monomeric reversibly switchable red fluorescent proteins for far-field nanoscopy. Biophys J 95(6):2989–2997CrossRefGoogle Scholar
  52. 52.
    Subach FV, Patterson GH, Manley S et al (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6:153–159CrossRefGoogle Scholar
  53. 53.
    Carballido-López R, Errington J (2003) The bacterial cytoskeleton: in vivo dynamics of the actin-like protein Mbl of Bacillus subtilis. Dev Cell 4:19–28CrossRefGoogle Scholar
  54. 54.
    Figge RM, Divakaruni AV, Gober JW (2004) MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol 51:1321–1332CrossRefGoogle Scholar
  55. 55.
    Gitai Z, Dye N, Shapiro L (2004) An actin-like gene can determine cell polarity in bacteria. Proc Natl Acad Sci USA 101:8643–8648CrossRefGoogle Scholar
  56. 56.
    Kim SY, Gitai Z, Kinkhabwala A et al (2006) Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus. Proc Natl Acad Sci USA 103:10929–10934CrossRefGoogle Scholar
  57. 57.
    Biteen JS, Thompson MA, Tselentis NK et al (2009) Superresolution imaging in live Caulobacter crescentus cells using photoswitchable enhanced yellow fluorescent protein. Proc SPIE 7185:71850ICrossRefGoogle Scholar
  58. 58.
    Lew MD, Lee SF, Ptacin JL et al (2011) Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus. Proc Natl Acad Sci USA 108:E1102–E1110CrossRefGoogle Scholar
  59. 59.
    Ptacin JL, Lee SF, Garner EC et al (2010) A spindle-like apparatus guides bacterial chromosome segregation. Nat Cell Biol 12:791–798CrossRefGoogle Scholar
  60. 60.
    Lee SF, Thompson MA, Schwartz MA et al (2011) Super-resolution imaging of the nucleoid-associated protein HU in Caulobacter crescentus. Biophys J 100:L31–L33CrossRefGoogle Scholar
  61. 61.
    Donnert G, Keller J, Medda R et al (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci USA 103:11440–11445CrossRefGoogle Scholar
  62. 62.
    Huang B, Wang W, Bates M et al (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813CrossRefGoogle Scholar
  63. 63.
    Juette MF, Gould TJ, Lessard MD et al (2008) Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Methods 5:527–529CrossRefGoogle Scholar
  64. 64.
    Schermelleh L, Carlton PM, Haase S et al (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320:1332–1336CrossRefGoogle Scholar
  65. 65.
    Shtengel G, Galbraith JA, Galbraith CG et al (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci USA 106:3125–3130CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Matthew D. Lew
    • 1
    • 2
  • Steven F. Lee
    • 1
    • 3
  • Michael A. Thompson
    • 1
  • Hsiao-lu D. Lee
    • 1
  • W. E. Moerner
    • 1
  1. 1.Department of ChemistryStanford UniversityStanfordUSA
  2. 2.Department of Electrical EngineeringStanford UniversityStanfordUSA
  3. 3.Department of ChemistryUniversity of CambridgeCambridgeUK

Personalised recommendations