Evaluation of Time-Resolved Fluorescence Data: Typical Methods and Problems

Part of the Springer Series on Fluorescence book series (SS FLUOR, volume 5)


The temporal characterisation of the light emission by fluorescing molecules can be used to extract a variety of different parameters, such as intramolecular distances or environmental changes. However, deriving a set of lifetimes from given raw data may prove to be a complex task, depending on influences such as the dynamics of the underlying process, the separation of the lifetime parameters or the statistical properties of the measurement. Whereas nowadays computational power provides the possibility to extract the lifetime parameters with sufficient speed, aspects like parameter accuracy and the interpretation of the extracted values can still be challenging. In this contribution, the underlying mathematical approaches to the analysis of time-resolved fluorescence data are outlined with emphasis on time-correlated single photon counting (TCSPC). Some peculiarities of these approaches are discussed with respect to their impact on recently emerging techniques like fluorescence lifetime imaging (FLIM).

Data analysis FLIM TCSPC Time-resolved fluorescence  


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berberan-Santos MN, Bodunov EN, Valeur B (2005) Chem Phys 315:171 CrossRefGoogle Scholar
  2. 2.
    Lindsay CP, Patterson GD (1980) J Chem Phys 73:3348 CrossRefGoogle Scholar
  3. 3.
    Crutzen M, Ameloot M, Boens N, Negri RM, De Schryver FC (1993) J Chem Phys 97:8133 CrossRefGoogle Scholar
  4. 4.
    Yang H, Xie XS (2002) J Chem Phys 117:10965 CrossRefGoogle Scholar
  5. 5.
    Yang H, Luo G, Karnchanaphanurach P, Louie T-M, Rech I, Cova S, Xun L, Xie XS (2003) Science 302:262 CrossRefGoogle Scholar
  6. 6.
    Straume M, Frasier-Cadoret SG, Johnson ML (1991) Least-squares analysis of fluorescence data. In: Lakowicz JR (ed) Topics in Fluorescence Spectroscopy, vol 2, Principles. Plenum Press, New York Google Scholar
  7. 7.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in C, 2nd edn. Cambridge University Press, New York Google Scholar
  8. 8.
    Marquardt DW (1963) J Soc Ind Appl Math 11:431 CrossRefGoogle Scholar
  9. 9.
    Nelder JA, Mead R (1965) Comput J 7:308 Google Scholar
  10. 10.
    Johnson ML (1994) Methods Enzymol 240:1 CrossRefGoogle Scholar
  11. 11.
    Lakowicz JR (1999) Principles of Fluorescence Spectroscopy, 2nd edn. Kluver Academic/Plenum Press, New York Google Scholar
  12. 12.
    Box GEP (1960) Ann NY Acad Sci 86:792 CrossRefGoogle Scholar
  13. 13.
    Efron B (1982) CBMS-NSF Regional Conf Ser in Appl Math 38 Google Scholar
  14. 14.
    Beecham JM, Knutson JR, Ross JBA, Turner BW, Brand L (1983) Biochemistry 22:6045 Google Scholar
  15. 15.
    Beecham JM, Ameloot M, Brand L (1985) Chem Phys Lett 120:466 CrossRefGoogle Scholar
  16. 16.
    Knutson JR, Beecham JM, Brand L (1983) Chem Phys Lett 102:501 CrossRefGoogle Scholar
  17. 17.
    Beecham JM (1989) Chem Phys Lipids 50:237 CrossRefGoogle Scholar
  18. 18.
    Beechem JM, Gratton E, Ameloot M, Knutson JR, Brand L (1991) The global analysis of fluorescence intensity and anisotropy decay data: Second-generation theory and programs. In: Lakowicz JR (ed) Topics in Fluorescence Spectroscopy, vol 2, Principles. Plenum Press, New York, p 241 Google Scholar
  19. 19.
    Beecham JM (1992) Methods Enzymol 210:37 CrossRefGoogle Scholar
  20. 20.
    Wahl M, Erdmann R, Lauritsen K, Rahn H-J (1998) Proc SPIE 3259:173 CrossRefGoogle Scholar
  21. 21.
    Böhmer M, Wahl M, Rahn H-J, Erdmann R, Enderlein J (2002) Chem Phys Lett 353:439 CrossRefGoogle Scholar
  22. 22.
    Benda A, Hof M, Wahl M, Patting M, Erdmann R, Kapusta P (2005) Rev Sci Instrum 76:033106 CrossRefGoogle Scholar
  23. 23.
    Enderlein J, Gregor I (2005) Rev Sci Instrum 76:033102 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.PicoQuant GmbHBerlinGermany

Personalised recommendations