Advertisement

Squeezing Fluorescent Dyes into Nanoscale Containers—The Supramolecular Approach to Radiative Decay Engineering

  • Werner M. Nau
  • Andreas Hennig
  • Apurba L. Koner
Chapter
Part of the Springer Series on Fluorescence book series (SS FLUOR, volume 4)

Abstract

Supramolecular radiative decay engineering allows systematic variations of the radiative decayrates, and therefore changes in the fluorescence lifetimes and intensities. Depending on whetherfluorescent dyes are immersed in macrocyclic host molecules with low or high polarizability, reducedor enhanced fluorescence lifetimes may result. Solvatochromic probes to “measure” thepolarizability inside such molecular container compounds are now at hand. Cucurbiturils, for example,are water-soluble host molecules, which possess a cavity with an exceptionally low polarizability,close to the gas phase. Placing fluorescent dyes inside cucurbiturils allows one to create in aqueoussolution a unique microenvironment, which approaches that of the gas phase and leads to unprecedentedphotophysical behavior. Accordingly, complexation by cucurbituril leads to prolonged fluorescencelifetimes, for 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) up to 1 μs, the same as that foundin the gas phase.

Keywords

Oscillator Strength Radiative Decay Supramolecular Assembly Radiative Decay Rate Macrocyclic Host 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amos RM, Barnes WL (1997) Phys Rev B 55:7249 CrossRefGoogle Scholar
  2. 2.
    Lakowicz JR (2001) Anal Biochem 298:1 CrossRefGoogle Scholar
  3. 3.
    Lakowicz JR, Shen Y, D'Auria S, Malicka J, Fang J, Gryczynski Z, Gryczynski I (2002) Anal Biochem 301:261 CrossRefGoogle Scholar
  4. 4.
    Marquez C, Nau WM (2001) Angew Chem Int Ed 40:4387 CrossRefGoogle Scholar
  5. 5.
    Mohanty J, Nau WM (2005) Angew Chem Int Ed 44:3750 CrossRefGoogle Scholar
  6. 6.
    Nau WM, Mohanty J (2005) Int J Photoenerg 7:133 CrossRefGoogle Scholar
  7. 7.
    Mohanty J, Nau WM (2004) Photochem Photobiol Sci 3:1026 CrossRefGoogle Scholar
  8. 8.
    Mock WL (1996) In: Vögtle F (ed) Comprehensive Supramolecular, vol 2. Elsevier, New York, p 477 Google Scholar
  9. 9.
    Marquez C, Hudgins RR, Nau WM (2004) J Am Chem Soc 126:5806 CrossRefGoogle Scholar
  10. 10.
    Lee JW, Samal S, Selvapalam N, Kim H-J, Kim K (2003) Acc Chem Res 36:621 CrossRefGoogle Scholar
  11. 11.
    Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L (2005) Angew Chem Int Ed 44:4844 CrossRefGoogle Scholar
  12. 12.
    Cram DJ (1988) Angew Chem Int Ed Engl 27:1009 CrossRefGoogle Scholar
  13. 13.
    Lehn J-M (1988) Angew Chem Int Ed Engl 27:89 CrossRefGoogle Scholar
  14. 14.
    Pedersen CJ (1988) Angew Chem Int Ed Engl 27:1021 CrossRefGoogle Scholar
  15. 15.
    de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Chem Rev 97:1515 CrossRefGoogle Scholar
  16. 16.
    Wiskur SL, Ait-Haddou H, Lavigne JJ, Anslyn EV (2001) Acc Chem Res 34:963 CrossRefGoogle Scholar
  17. 17.
    Martínez-Máñez R, Sancenón F (2003) Chem Rev 103:4419 CrossRefGoogle Scholar
  18. 18.
    Lehn J-M (1995) Supramolecular Chemistry. VCH, Weinheim CrossRefGoogle Scholar
  19. 19.
    Atwood JL, Orr GW, Robinson KD, Hamada F (1993) Supramol Chem 2:309 CrossRefGoogle Scholar
  20. 20.
    Breslow R, Dong SD (1998) Chem Rev 98:1997 CrossRefGoogle Scholar
  21. 21.
    Shinkai S (1990) In: Vicens J, Böhmer V (eds) Calixarenes. Kluwer, Dordrecht, p 173 Google Scholar
  22. 22.
    Palmer LC, Rebek J Jr (2004) Org Biomol Chem 2:3051 CrossRefGoogle Scholar
  23. 23.
    Purse BW, Rebek J Jr (2005) Proc Natl Acad Sci USA 102:10777 CrossRefGoogle Scholar
  24. 24.
    Castro R, Berardi MJ, Cordova E, Ochoa de Olza M, Kaifer AE, Evanseck JD (1996) J Am Chem Soc 118:10257 CrossRefGoogle Scholar
  25. 25.
    Odermatt S, Alonso-Gomez JL, Seiler P, Cid MM, Diederich F (2005) Angew Chem Int Ed 44:5074 CrossRefGoogle Scholar
  26. 26.
    Cram DJ (1992) Nature 356:29 CrossRefGoogle Scholar
  27. 27.
    Cram DJ, Karbach S, Kim YH, Baczynskyj L, Kallemeyn GW (1985) J Am Chem Soc 107:2575 CrossRefGoogle Scholar
  28. 28.
    Fujita M, Tominaga M, Hori A, Therrien B (2005) Acc Chem Res 38:369 CrossRefGoogle Scholar
  29. 29.
    Fiedler D, Leung DH, Bergman RG, Raymond KN (2005) Acc Chem Res 38:358 CrossRefGoogle Scholar
  30. 30.
    Rebek J Jr (2005) Angew Chem Int Ed 44:2068 CrossRefGoogle Scholar
  31. 31.
    Wagner BD (2003) In: Nalwa HS (ed) Handbook of photochemistry and photobiology, vol 3. American Scientific Publishers, Stevenson Ranch, California, p 1 Google Scholar
  32. 32.
    Wagner BD, MacDonald PJ (1998) J Photochem Photobiol A 114:151 CrossRefGoogle Scholar
  33. 33.
    Wagner BD, Fitzpatrick SJ (2000) J Incl Phenom Macro Chem 38:467 CrossRefGoogle Scholar
  34. 34.
    Arimura T, Nagasaki T, Shinkai S, Matsuda T (1989) J Org Chem 54:3766 CrossRefGoogle Scholar
  35. 35.
    Nau WM, Wang XJ (2002) Chem Phys Chem 3:393 CrossRefGoogle Scholar
  36. 36.
    Gramlich G, Zhang J, Nau WM (2002) J Am Chem Soc 124:11252 CrossRefGoogle Scholar
  37. 37.
    Gramlich G, Zhang J, Nau WM (2004) J Am Chem Soc 126:5482 CrossRefGoogle Scholar
  38. 38.
    Sonnen AF-P, Bakirci H, Netscher T, Nau WM (2005) J Am Chem Soc 127:15575 CrossRefGoogle Scholar
  39. 39.
    Hudgins RR, Huang F, Gramlich G, Nau WM (2002) J Am Chem Soc 124:556 CrossRefGoogle Scholar
  40. 40.
    Huang F, Nau WM (2003) Angew Chem Int Ed 42:2269 CrossRefGoogle Scholar
  41. 41.
    Huang F, Hudgins RR, Nau WM (2004) J Am Chem Soc 126:16665 CrossRefGoogle Scholar
  42. 42.
    Wang XJ, Nau WM (2004) J Am Chem Soc 126:808 CrossRefGoogle Scholar
  43. 43.
    Nau WM, Huang F, Wang XJ, Bakirci H, Gramlich G, Marquez C (2003) Chimia 57:161 CrossRefGoogle Scholar
  44. 44.
    Nau WM, Zhang XY (1999) J Am Chem Soc 121:8022 CrossRefGoogle Scholar
  45. 45.
    Zhang XY, Gramlich G, Wang XJ, Nau WM (2002) J Am Chem Soc 124:254 CrossRefGoogle Scholar
  46. 46.
    Zhang XY, Nau WM (2000) Angew Chem Int Ed 39:544 CrossRefGoogle Scholar
  47. 47.
    Bakirci H, Zhang XY, Nau WM (2005) J Org Chem 70:39 CrossRefGoogle Scholar
  48. 48.
    Bakirci H, Nau WM (2005) J Org Chem 70:4506 CrossRefGoogle Scholar
  49. 49.
    Bakirci H, Nau WM (2005) J Photochem Photobiol A 173:340 CrossRefGoogle Scholar
  50. 50.
    Bakirci H, Nau WM (2006) Adv Funct Mater 16:237 CrossRefGoogle Scholar
  51. 51.
    Bakirci H, Koner AL, Nau WM (2005) Chem Commun 2005:5411 CrossRefGoogle Scholar
  52. 52.
    Bakirci H, Koner AL, Nau WM (2005) J Org Chem 70:9960 CrossRefGoogle Scholar
  53. 53.
    Marquez C, Pischel U, Nau WM (2003) Org Lett 5:3911 CrossRefGoogle Scholar
  54. 54.
    Marquez C, Huang F, Nau WM (2004) IEEE Trans Nanobiosci 3:39 CrossRefGoogle Scholar
  55. 55.
    Reichardt C (2003) Solvents and Solvent Effects in Organic Chemistry. Wiley-VCH, Weinheim Google Scholar
  56. 56.
    Pina F, Parola AJ, Ferreira E, Maestri M, Armaroli N, Ballardini R, Balzani V (1995) J Phys Chem 99:12701 CrossRefGoogle Scholar
  57. 57.
    Schmidtchen FP (1981) Angew Chem Int Ed Engl 20:466 CrossRefGoogle Scholar
  58. 58.
    McCurdy A, Jimenez L, Stauffer DA, Dougherty DA (1992) J Am Chem Soc 114:10314 CrossRefGoogle Scholar
  59. 59.
    Ngola SM, Dougherty DA (1996) J Org Chem 61:4355 CrossRefGoogle Scholar
  60. 60.
    Warmuth R, Kerdelhué J-L, Carrera SS, Langenwalter KJ, Brown N (2002) Angew Chem Int Ed 41:96 CrossRefGoogle Scholar
  61. 61.
    Carrera SS, Kerdelhué J-L, Langenwalter KJ, Brown N, Warmuth R (2005) Eur J Org Chem 2005:2239 CrossRefGoogle Scholar
  62. 62.
    Halls MD, Schlegel HB (2002) J Phys Chem B 106:1921 CrossRefGoogle Scholar
  63. 63.
    Halls MD, Raghavachari K (2005) Nano Lett 5:1861 CrossRefGoogle Scholar
  64. 64.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer Academic/Plenum, New York CrossRefGoogle Scholar
  65. 65.
    Strickler SJ, Berg RA (1962) J Chem Phys 37:814 CrossRefGoogle Scholar
  66. 66.
    Toptygin D, Brand L (1993) Biophys Chem 48:205 CrossRefGoogle Scholar
  67. 67.
    Lamouche G, Lavallard P, Gacoin T (1998) J Luminesc 76/77:662 CrossRefGoogle Scholar
  68. 68.
    Lamouche G, Lavallard P, Gacoin T (1999) Phys Rev A 59:4668 CrossRefGoogle Scholar
  69. 69.
    Lavallard P, Rosenbauer M, Gacoin T (1996) Phys Rev A 54:5450 CrossRefGoogle Scholar
  70. 70.
    Suhling K, Siegel J, Phillips D, French PMW, Lévêque-Fort S, Webb SED, Davis DM (2002) Biophys J 83:3589 CrossRefGoogle Scholar
  71. 71.
    Toptygin D, Savtchenko RS, Meadow ND, Roseman S, Brand L (2002) J Phys Chem B 106:3724 CrossRefGoogle Scholar
  72. 72.
    Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Curr Opin Biotech 16:55 CrossRefGoogle Scholar
  73. 73.
    Gersten JI, Nitzan A (1984) Chem Phys Lett 104:31 CrossRefGoogle Scholar
  74. 74.
    Liu Y, Han B-H, Chen Y-T (2002) J Phys Chem B 106:4678 CrossRefGoogle Scholar
  75. 75.
    Mohanty J, Bhasikuttan AC, Nau WM, Pal H (2006) J Phys Chem B 110:5132 CrossRefGoogle Scholar
  76. 76.
    Suhling K, French PMW, Phillips D (2005) Photochem Photobiol Sci 4:13 CrossRefGoogle Scholar
  77. 77.
    Hemmilä I, Webb S (1997) Drug Discov Today 2:373 CrossRefGoogle Scholar
  78. 78.
    Saha AK, Kross K, Kloszewski ED, Upson DA, Toner JL, Snow RA, Black CDV, Desai VC (1993) J Am Chem Soc 115:11032 CrossRefGoogle Scholar
  79. 79.
    Karvinen J, Laitala V, Mäkinen ML, Mulari O, Tamminen J, Hermonen J, Hurskainen P, Hemmilä I (2004) Anal Chem 76:1429 CrossRefGoogle Scholar
  80. 80.
    Sadler TM, Achilleos M, Ragunathan S, Pitkin A, LaRocque J, Morin J, Annable R, Greenberger LM, Frost P, Zhang YX (2004) Anal Biochem 326:106 CrossRefGoogle Scholar
  81. 81.
    Johansson MK, Cook RM, Xu JD, Raymond KN (2004) J Am Chem Soc 126:16451 CrossRefGoogle Scholar
  82. 82.
    Hennig A, Florea M, Roth D, Enderle T, Nau WM (2007) Anal Biochem 360:255 CrossRefGoogle Scholar
  83. 83.
    Smith JA, West RM, Allen M (2004) J Fluoresc 14:151 CrossRefGoogle Scholar
  84. 84.
    Sauer M, Han K-T, Müller R, Schulz A, Tadday R, Seeger S, Wolfrum J, Arden-Jacob J, Deltau G, Marx NJ, Drexhage KH (1993) J Fluoresc 3:131 CrossRefGoogle Scholar
  85. 85.
    Nunnally BK, He H, Li L-C, Tucker SA, McGown LB (1997) Anal Chem 69:2392 CrossRefGoogle Scholar
  86. 86.
    Flanagan JH Jr, Owens CV, Romero SE, Waddell E, Kahn SH, Hammer RP, Soper SA (1998) Anal Chem 70:2676 CrossRefGoogle Scholar
  87. 87.
    Cosa G, Focsaneanu K-S, McClean JRN, Scaiano JC (2000) Chem Commun 8:689 CrossRefGoogle Scholar
  88. 88.
    Drexhage KH, Hänsch TW, Ippen EP, Schäfer FP, Shank CV, Snavely BB (1973) Dye Lasers. Springer, Berlin Heidelberg New York Google Scholar
  89. 89.
    Eggeling C, Widengren J, Rigler R, Seidel CAM (1998) Anal Chem 70:2651 CrossRefGoogle Scholar
  90. 90.
    Dörre K, Brakmann S, Brinkmeier M, Han K-T, Riebeseel K, Schwille P, Stephan J, Wetzel T, Lapczyna M, Stuke M, Bader R, Hinz M, Seliger H, Holm J, Eigen M, Rigler R (1997) Bioimaging 5:139 CrossRefGoogle Scholar
  91. 91.
    Enderlein J, Goodwin PM, van Orden A, Ambrose WP, Erdmann R, Keller RA (1997) Chem Phys Lett 270:464 CrossRefGoogle Scholar
  92. 92.
    Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB (2000) Chem Rev 100:1973 CrossRefGoogle Scholar
  93. 93.
    Arunkumar E, Forbes CC, Smith BD (2005) Eur J Org Chem 2005:4051 CrossRefGoogle Scholar
  94. 94.
    Sinha S, Ray AK, Kundu S, Sasikumar S, Dasgupta K (2002) Appl Phys B 75:85 CrossRefGoogle Scholar
  95. 95.
    Magde D, Wong R, Seybold PG (2002) Photochem Photobiol 75:327 CrossRefGoogle Scholar
  96. 96.
    Rao TVS, Huff JB, Bieniarz C (1998) Tetrahedron 54:10627 CrossRefGoogle Scholar
  97. 97.
    Politzer IR, Crago KT, Hampton T, Joseph J, Boyer JH, Shah M (1989) Chem Phys Lett 159:258 CrossRefGoogle Scholar
  98. 98.
    Acemioglu B, Arik M, Onganer Y (2002) J Luminesc 97:153 CrossRefGoogle Scholar
  99. 99.
    Tatikolov AS, Costa SMB (2002) Photochem Photobiol Sci 1:211 CrossRefGoogle Scholar
  100. 100.
    Eggeling C, Widengren J, Rigler R, Seidel CAM (1999) In: Rettig W, Strehmel B, Schrader S, Seifert H (eds) Applied Fluorescence in Chemistry, Biology and Medicine. Springer, Berlin Heidelberg New York, p 193 CrossRefGoogle Scholar
  101. 101.
    Mohanty J, Pal H, Ray AK, Kumar S, Nau WM (2007) Chem Phys Chem 8:54 CrossRefGoogle Scholar
  102. 102.
    Koner AL, Nau WM (2007) Supramol Chem 19:55 CrossRefGoogle Scholar
  103. 103.
    Hennig A, Bakirci H, Nau WM (2007) Nat Method 4:629 CrossRefGoogle Scholar
  104. 104.
    Hennig A, Ghale G, Nau WM (2007) Chem Commun 2007:1614 CrossRefGoogle Scholar
  105. 105.
    Bhasikuttan AC, Mohanty J, Nau WM, Pal H (2007) Angew Chem Int Ed 46:4120 CrossRefGoogle Scholar
  106. 106.
    Martyn TA, Moore JL, Halterman RL, Yip WT (2007) J Am Chem Soc 129:10338 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Werner M. Nau
    • 1
  • Andreas Hennig
    • 1
  • Apurba L. Koner
    • 1
  1. 1.School of Engineering and ScienceJacobs University BremenBremenGermany

Personalised recommendations