Fluorescence of Fullerenes

  • Susana Nascimento
  • Carlos Baleizão
  • Mário N. Berberan-Santos
Chapter

Abstract

The photophysical properties of fullerenes are selectively reviewed, with an emphasis on fluorescence.It is shown that fullerenes display several unusual photophysical properties, such as their fluorescenceanisotropy, and also that they can be used for a more complete understanding of general photophysicalprocesses like charge-transfer complexation and the heavy-atom effect. In spite of the work already carriedout, knowledge of the photophysics of fullerenes and derivatives is still incomplete, and much remains tobe done in this area.

Fullerenes C60 C70 Fluorescence anisotropy Heavy-atom effect Contact charge-transfer complex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Foote CS (1994) Photophysical and photochemical properties of fullerenes. Top Curr Chem 169:347–363 CrossRefGoogle Scholar
  2. 2.
    Sun YP (1997) In: Ramamurthy V, Shanze KS (eds) Molecular and Supramolecular Photochemistry, vol. 1, Organic Photochemistry. Marcel Dekker, New York, pp 325–390 Google Scholar
  3. 3.
    Sun YP, Riggs JE, Guo Z, Rollins HW (2000) In: Shinar J, Vardeny ZV, Kafafi ZH (eds) Optical and Electronic Properties of Fullerenes and Fullerene-Based Materials. Marcel Dekker, New York, pp 43–81 Google Scholar
  4. 4.
    Evans J (1955) Absorption spectra of iodine and bromine in the gas phase and inert solvents. I. Iodine. J Chem Phys 23:1424–1426 CrossRefGoogle Scholar
  5. 5.
    Orgel LE, Mulliken RS (1957) Molecular complexes and their spectra. VII. The spectrophotometric study of molecular complexes in solution; Contact charge-transfer spectra. J Am Chem Soc 79:4839–4846 CrossRefGoogle Scholar
  6. 6.
    Gooding EA, Serak KR, Ogilby PR (1991) Ground-state benzene-oxygen complex. J Phys Chem 95:7868–7871 CrossRefGoogle Scholar
  7. 7.
    Fowler PW, Ceulemans A (1995) Electron deficiency of the fullerenes. J Phys Chem 99:508–510 CrossRefGoogle Scholar
  8. 8.
    Sibley SP, Campbell RL, Silber HB (1995) Solution and solid state interactions of C60 with substituted anilines. J Phys Chem 99:5274–5276 CrossRefGoogle Scholar
  9. 9.
    Ichida M, Sohda T, Nakamura A (1999) Optical transition and ionicity of C60/amine charge-transfer complexes studied by optical spectroscopy. Chem Phys Lett 310:373–378 CrossRefGoogle Scholar
  10. 10.
    Rath MC, Pal H, Mukherjee T (1999) Interaction of ground and excited (S1) states of C60 and C70 with aromatic amines: Exciplex and charge-transfer emissions. J Phys Chem A 103:4993–5002 CrossRefGoogle Scholar
  11. 11.
    Ichida M, Sohda T, Nakamura A (2000) Third-order nonlinear optical properties of C60 CT complexes with aromatic amines. J Phys Chem B 104:7082–7084 CrossRefGoogle Scholar
  12. 12.
    Bhattacharya S, Nayak SK, Chattopadhyay S, Banerjee M, Mukherjee AK (2002) Absorption spectroscopic study of the complexation of C70 with aniline and substituted anilines. J Phys Chem A 106:6710–6713 CrossRefGoogle Scholar
  13. 13.
    Saha A, Nayak SK, Chattopadhyay S, Mukherjee AK (2004) Evidence of reverse micellization of a calix[4]arene through a study of its charge transfer and host-guest complexation with [60]fullerene. J Phys Chem B 108:7688–7693 CrossRefGoogle Scholar
  14. 14.
    Bhattacharya S, Nayak SK, Semwal A, Chattopadhyay S, Banerjee M (2004) Study of host-guest interaction of [70]fullerene with substituted calix[6]arenes by absorption spectrometric method. J Phys Chem A 108:9064–9068 CrossRefGoogle Scholar
  15. 15.
    Bhattacharya S, Nayak SK, Chattopadhyay S, Banerjee M, Mukherjee AK (2001) Spectrophotometric and thermodynamic study of supramolecular complexes of [60]- and [70]fullerenes with a number of calix[n]arenes. J Chem Soc, Perkin Trans 2 2292–2297 Google Scholar
  16. 16.
    Saha A, Nayak SK, Chattopadhyay S, Mukherjee AK (2004) Study of charge transfer interactions of a resorcin [4]arene with [60]- and [70]fullerenes by the absorption spectrometric method. J Phys Chem A 108:8223–8228 CrossRefGoogle Scholar
  17. 17.
    Saha A, Nayak SK, Chattopadhyay S, Mukherjee AK (2003) Spectrophotometric study of complexation of dicyclohexano-24-crown-8 with [60]- and [70]Fullerenes and other acceptors. J Phys Chem B 107:11889–11892 CrossRefGoogle Scholar
  18. 18.
    Datta K, Banerjee M, Mukherjee AK (2004) Comparative study of the host-guest complexes of [60]- and [70]-fullerenes with N,N′-Dibenzyl-1,4,10,13-tetraoxa-7,16-diaza-cyclooctadecane in different solvents. J Phys Chem B 108:16100–16106 CrossRefGoogle Scholar
  19. 19.
    Bourdelande JL, Font J, González-Moreno R (1996) Inclusion complex of β-cyclodextrin-C60: photophysical properties in the solid state using diffuse reflectance laser flash photolysis (DRLFP). J Photochem Photobiol A 94:215–216 CrossRefGoogle Scholar
  20. 20.
    Masuhara A, Fujitsuka M, Ito O (2000) Photoinduced electron-transfer of inclusion complexes of fullerenes (C60 and C70) in β-cyclodextrin. Bull Chem Soc Jpn 73:2199–2206 CrossRefGoogle Scholar
  21. 21.
    Scurlock RD, Ogilby PR (1995) Excited-state charge-transfer complexes formed between C60 and substituted naphthalenes. J Photochem Photobiol A 91:21–25 CrossRefGoogle Scholar
  22. 22.
    Sibley SP, Nguyen YT, Campbell RL, Silber HB (1997) Spectrophotometric studies of complexation of C60 with aromatic hydrocarbons. Spectrochim Acta Part A 53:679–684 CrossRefGoogle Scholar
  23. 23.
    Datta K, Banerjee M, Seal BK, Mukherjee AK (2000) Ground state EDA complex formation between [60]fullerene and a series of polynuclear aromatic hydrocarbons. J Chem Soc, Perkin Trans 2 531–534 Google Scholar
  24. 24.
    Bhattacharya S, Nayak SK, Chattopadhyay SK, Banerjee M, Mukherjee AK (2001) Absorption spectroscopic study of EDA complexes of [70]fullerene with a series of methyl benzenes. Spectrochim Acta Part A 57:309–313 CrossRefGoogle Scholar
  25. 25.
    Bhattacharya S, Banerjee M, Mukherjee AK (2001) Study of the formation equilibria of electron donor–acceptor complexes between [60]fullerene and methylbenzenes by absorption spectrometric method. Spectrochim Acta Part A 57:1463–1470 CrossRefGoogle Scholar
  26. 26.
    Bhattacharya S, Nayak SK, Chattopadhyay S, Banerjee M, Mukherjee AK (2002) Study of ground state EDA complex formation between [70]fullerene and a series of polynuclear aromatic hydrocarbons. Spectrochim Acta Part A 58:289–298 CrossRefGoogle Scholar
  27. 27.
    Sarova G, Berberan-Santos MN (2004) Stable charge-transfer complexes versus contact complexes. Application to the interaction of fullerenes with aromatic hydrocarbons. J Phys Chem B 108:17261–17268 CrossRefGoogle Scholar
  28. 28.
    Foster R (1969) Charge-Transfer Complexes. Academic Press, London Google Scholar
  29. 29.
    Birks JB (1970) Photophysics of Aromatic Molecules. Wiley-Interscience, London Google Scholar
  30. 30.
    Sarova G, Berberan-Santos MN (2004) Kinetics of the Diels–Alder reaction between C60 and acenes. Chem Phys Lett 397:402–407 CrossRefGoogle Scholar
  31. 31.
    Jablonski A (1960) On the notion of emission anisotropy. Bull Acad Polon Sci, Ser Math Astr Phys 8:259–264 Google Scholar
  32. 32.
    Berberan-Santos MN (2001) Pioneering contributions of Jean and Francis Perrin to molecular luminescence, In: Valeur B, Brochon J-C (eds) New Trends in Fluorescence Spectroscopy. Applications to Chemical and Life Sciences. Springer, Berlin Google Scholar
  33. 33.
    Perrin F (1929) La fluorescence des solutions. Induction moléculaire – Polarisation et durée d'émission – Photochimie. Ann Phys (Paris) 12:169–275 Google Scholar
  34. 34.
    Jablonski A (1961) Über die Abklingungsvorgänge polarisierter Photolumineszenz. Z Naturforsch A 16:1–4 Google Scholar
  35. 35.
    Feofilov PP (1961) The Physical Basis of Polarized Emission. Consultants Bureau, New York Google Scholar
  36. 36.
    Dorr F (1966) Spectroscopy with polarized light. Angew Chem Int Ed Engl 5:478–495 CrossRefGoogle Scholar
  37. 37.
    Hall RD, Valeur B, Weber G (1985) Polarization of the fluorescence of triphenylene. A planar molecule with three-fold symmetry. Chem Phys Lett 116:202–205 CrossRefGoogle Scholar
  38. 38.
    Taylor R, Hare JP, Abdul-Sada AK, Kroto HW (1990) Isolation, separation and characterisation of the fullerenes C60 and C70: the third form of carbon. Chem Commun 1423–1425 Google Scholar
  39. 39.
    Ajie H, Alvarez MM, Anz SJ, Beck RD, Diederich F, Fostiropoulos K, Huffman DR, Kraetschmer W, Rubin Y, Schriver KE, Sensharma D, Whetten RL (1990) Characterization of the soluble all-carbon molecules C60 and C70. J Phys Chem 94:8630–8633 CrossRefGoogle Scholar
  40. 40.
    Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354 CrossRefGoogle Scholar
  41. 41.
    Bethune DS, Meijer G, Tang WC, Rosen HJ, Golden WG, Seki H, Brown CA, Vries MS (1991) Vibrational Raman and infrared spectra of chromatographically separated C60 and C70 fullerene clusters. Chem Phys Lett 179:181–186 CrossRefGoogle Scholar
  42. 42.
    Reber C, Yee L, McKiernan J, Zink JI, Williams RS, Tong WM, Ohlberg DAA, Whetten RL, Diederich F (1991) Luminescence and absorption spectra of carbon (C60) films. J Phys Chem 95:2127–2129 CrossRefGoogle Scholar
  43. 43.
    Sibley SP, Argentine SM, Francis AH (1992) A photoluminescence study of C60 and C70. Chem Phys Lett 188:187–193 CrossRefGoogle Scholar
  44. 44.
    Wang YJ (1992) Photophysical properties of fullerenes and fullerene/N,N-diethylaniline charge-transfer complexes. J Phys Chem 96:764–767 CrossRefGoogle Scholar
  45. 45.
    Kim D, Lee M, Suh YD, Kim SK (1992) Observation of fluorescence emission from solutions of C60 and C70 fullerenes and measurement of their excited-state lifetimes. J Am Chem Soc 114:4429–4430 CrossRefGoogle Scholar
  46. 46.
    Berberan-Santos MN, Valeur B (1994) Intrinsically unpolarized fluorescence of C60. J Chem Soc Faraday Trans 90:2623–2625 CrossRefGoogle Scholar
  47. 47.
    Fedorov A, Berberan-Santos MN, Lefèvre JP, Valeur B (1997) Picosecond time-resolved and steady-state studies of the polarization of the fluorescence of C60 and C70. Chem Phys Lett 267:467–471 CrossRefGoogle Scholar
  48. 48.
    Shumway J, Satpathy S (1993) Polarization-dependent optical properties of C70. Chem Phys Lett 211:595–600 CrossRefGoogle Scholar
  49. 49.
    Orlandi G, Negri F (2002) Electronic states and transitions in C60 and C70 fullerenes. Photochem Photobiol Sci 1:289–308 CrossRefGoogle Scholar
  50. 50.
    Cioslowski J (1995) Electronic structure calculations on fullerenes and their derivatives. Oxford University Press, New York, Oxford Google Scholar
  51. 51.
    Gigante B, Santos C, Fonseca T, Curto MJM, Luftmann H, Bergander K, Berberan-Santos MN (1999) Diels–Alder adducts of C60 and resin acid derivatives: synthesis, electrochemical and fluorescence properties. Tetrahedron 55:6175–6182 CrossRefGoogle Scholar
  52. 52.
    Foley S, Berberan-Santos MN, Fedorov A, McGarvey DJ, Santos C, Gigante B (1999) Photophysical properties of pseudo-dihydro derivatives of C70. J Phys Chem A 103:8173–8178 CrossRefGoogle Scholar
  53. 53.
    Foley S, Berberan-Santos MN, Fedorov A, Bensasson RV, Leach S, Gigante B (2001) Effect of halogenated compounds on the photophysics of C70: some implications on optical limiting behaviour. Chem Phys 263:437–447 CrossRefGoogle Scholar
  54. 54.
    Diederich F, Thilgen C (1996) Covalent fullerene chemistry. Science 271:317–323 CrossRefGoogle Scholar
  55. 55.
    Hermann A, Diederich F, Thilgen C, ter Meer H-U, Müller WH (1994) Chemistry of the higher fullerenes: preparative isolation of C76 by HPLC and synthesis, separation, and characterization of Diels–Alder monoadducts of C70 and C76. Helv Chim Acta 77:1689–1706 CrossRefGoogle Scholar
  56. 56.
    Texier I, Berberan-Santos MN, Fedorov A, Brettreich M, Schönberger H, Hirsch A, Leach S, Bensasson RV (2001) Photophysics and photochemistry of a water-soluble C60 dendrimer: fluorescence quenching by halides and photoinduced oxidation of I. J Phys Chem A 105:10278–10285 CrossRefGoogle Scholar
  57. 57.
    Rae M, Fedorov A, Berberan-Santos MN (2003) Fluorescence quenching with exponential distance dependence. Application to the external heavy-atom effect. J Chem Phys 119:2223–2231 CrossRefGoogle Scholar
  58. 58.
    Bodunov EN, Berberan-Santos MN (2004) Short-range order effects on resonance energy transfer in rigid solution. Chem Phys 301:9–14 CrossRefGoogle Scholar
  59. 59.
    Rae M, Perez-Balderas F, Baleizão C, Fedorov A, Cavaleiro JAS, Tomé AC, Berberan-Santos MN (2006) Intra and intermolecular heavy atom effects on the fluorescence properties of brominated C60 polyads. J Phys Chem B 110:12809–12814 CrossRefGoogle Scholar
  60. 60.
    Berberan-Santos MN, Garcia JMM (1996) Unusually strong delayed fluorescence of C70. J Am Chem Soc 118:9391–9394 CrossRefGoogle Scholar
  61. 61.
    Salazar FA, Fedorov A, Berberan-Santos MN (1997) A study of thermally activated delayed fluorescence in C60. Chem Phys Lett 271:361–366 CrossRefGoogle Scholar
  62. 62.
    Baleizão C, Berberan-Santos MN (2006) A molecular thermometer based on the delayed fluorescence of C70 dispersed in a polystyrene film. J Fluoresc 16:215–219 CrossRefGoogle Scholar
  63. 63.
    Baleizão C, Nagl S, Borisov SM, Schäferling M, Wolfbeis OS, Berberan-Santos MN (2007) Optical thermometer based on the delayed fluorescence of C70. Chem Eur J 13:3643–3651 CrossRefGoogle Scholar
  64. 64.
    Nagl S, Baleizão C, Borisov SM, Schäferling M, Berberan-Santos MN, Wolfbeis OS (2007) Optical Sensing and Imaging of Trace Oxygen with Record Response. Angew Chem Int Ed 46:2317–2319 CrossRefGoogle Scholar
  65. 65.
    Baleizão C, Berberan-Santos MN (2007) Thermally activated delayed fluorescence as a cycling process between excited singlet and triplet states. Application to the fullerenes. J Chem Phys 126:204510 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Susana Nascimento
    • 1
  • Carlos Baleizão
    • 1
  • Mário N. Berberan-Santos
    • 1
  1. 1.Centro de Química-Física MolecularInstituto Superior TécnicoLisboaPortugal

Personalised recommendations