Advertisement

Chromogranins A and B and Secretogranin II as Prohormones for Regulatory Peptides from the Diffuse Neuroendocrine System

  • Karen B. Helle
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 50)

Abstract

Chromogranin A (CgA), chromogranin B (CgB), and secretogranin II (SgII) belong to a family of uniquely acidic secretory proteins in elements of the diffuse neuroendocrine system. These “granins” are characterized by numerous pairs of basic amino acids as potential sites for intra- and extragranular processing. In response to adequate stimuli, the granins are coreleased with neurotransmitters and hormones and appear in the circulation as potential modulators of homeostatic processes. This review is directed towards functional aspects of the secreted CgA, CgB, and SgII and their biologically active sequences. Widely different effects and targets have been reported for granin-derived peptides. So far, the CgA peptides vasostatin-I, pancreastatin, and catestatin, the CgB peptides CgB1–41 and secretolytin, and the SgII peptide secretoneurin are the most likely candidates for granin-derived regulatory peptides. Most of their effects fit into patterns of direct or indirect modulations of major functions, in particular associated with inflammatory conditions.

Keywords

Human PMNs Bovine Adrenal Medulla Diffuse Neuroendocrine System Vertebrate Heart Transendothelial Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author is greatly indebted to The Tordis and Fritz Riebers Legacy, Bergen, Norway, for financial support.

References

  1. Aardal S, Helle KB (1992) The vasoinhibitory activity of bovine chromogranin A fragments (vasostatins) and its independence of extracellular calcium in isolated segments of human blood vessels. Regul Pept 41:9–18PubMedGoogle Scholar
  2. Aardal S, Helle KB, Elsayed S et al (1993) Vasostatins, comprising the N-terminal domains of chromogranin A, suppress tension in isolated human blood vessel segments. J Neuroendocrinol 5:105–112Google Scholar
  3. Aardal S, Aardal NP, Larsen TH et al (1996) Human pheochromocytoma: different patterns of catecholamines and chromogranins in the intact tumor, urine and serum in clinically unsuspected cases. J Clin Lab Invest 56:511–523Google Scholar
  4. Amato A, Corti A, Serio R et al (2005) Inhibitory influence of chromogranin A N-terminal fragment (vasostatin-I) on the spontaneous contractions of rat proximal colon. Regul Pept 130:42–47PubMedGoogle Scholar
  5. Angeletti RH, Aardal S, Serck-Hanssen G et al (1994) Vasoinhibitory activity of the synthetic peptides from the amino terminus of the adrenomedullary chromogranin A. Acta Physiol Scand 152:11–19PubMedGoogle Scholar
  6. Angeletti RH, Mints L, Aber C et al (1996) Determination of residues in chromogranin A (16–40) required for inhibition of parathyroid hormone secretion. Endocrinology 137:2918–2922PubMedGoogle Scholar
  7. Angeletti RH, D’Amico TD, Russell J (2000) Regulation of parathyroid secretion. Chromogranins, chemokines and calcium. Adv Exp Med Biol 482:217–223PubMedGoogle Scholar
  8. Angelone T, Quintieri AM, Brar BK et al (2008) The antihypertensive chromogranin a peptide catestatin acs as a novel endocrine/paracrine modulator of cardiac inotropism and lucitropism. Endocrinology 149:4780–4793PubMedGoogle Scholar
  9. Anouar Y, Yon L, Desmoucelles C et al (1998) Identification of a novel secretogranin II-derived peptide in the adult and fetal human adrenal gland. Endocr Res 24:731–736PubMedGoogle Scholar
  10. Arnold R, Wilke A, Rinke A et al (2008) Plasma chromogranin A as a marker for survival in patients with metastatic endocrine gastroenetrohepatic tumors. Clin. Gastroenterol Hepatol 6:820–827PubMedGoogle Scholar
  11. Belloni D, Scabini S, Foglieni C et al (2007) The vasostatin-I fragment of chromogranin A inhibits VEGF-induced endothelial cell proliferation and migration. FASEB J 21:3052–3062PubMedGoogle Scholar
  12. Benjannet S, Leduc R, Adrouche N et al (1987) Chromogranin B (secretogranin I), a putative precursor of two novel pituitary peptides through processing at paired basic residues. FEBS Lett 224:142–148PubMedGoogle Scholar
  13. Biswas N, Vaingankar SM, Mahata M et al (2008) Proteolytic cleavage of human chromogranin A containing catestatin variants: different processing at catestatin region by plasmin. Endocrinology 149:749–757PubMedGoogle Scholar
  14. Blois A, Srebro B, Mandalà M et al (2006) The chromogranin A peptide vasostatin-I inhibits gap formation and signal transduction mediated by inflammatory agents in cultured bovine pulmonary and coronary arterial endothelial cells. Regul Pept 135:78–84PubMedGoogle Scholar
  15. Børglum T, Rehfeld JF, Drivsholm LB et al (2007) Processing-independent quantitation of chromogranin A in plasma from patients with neuroendocrine tumors and small-cell lung carcinomas. Clin Chem 53:438–446PubMedGoogle Scholar
  16. Boutahricht M, Guillemot J, Montero-Hadjadje M et al (2005) Biochemical characterization and immunohistochemical localization of the secretogranin II-derived peptide EM66 in the hypothalamus of the jerboa (Jaculus orientalis): modulation by food deprivation. J Neuroendocrinol 17:372–378PubMedGoogle Scholar
  17. Brekke JF, Osol GJ, Helle KB (2002) N-terminal chromogranin-derived peptides as dilators of bovine coronary resistance arteries. Regul Pept 105:93–100PubMedGoogle Scholar
  18. Briolat J, Wu SD, Mahata SK et al (2005) New antimicrobial activity for the catecholamine release-inhibitory peptide from chromogranin A. Cell Mol Life Sci 62:377–385PubMedGoogle Scholar
  19. Cappello S, Angelone T, Tota B et al (2007) Human recombinant chromogranin A-derived vasostatin1 mimics preconditioning via an adenosine/nitric oxide signalling mechanism. Am J Physiol Heart Circ Physiol 293:H719–H727PubMedGoogle Scholar
  20. Ceconi C, Ferrari R, Bachetti T et al (2002) Chromogranin A in heart failure:a novel neurohumoral factor and a predictor for mortality. Eur Heart J 23:967–974PubMedGoogle Scholar
  21. Cerra MC, De Iuri L, Angelone T et al (2006) Recombinant N-terminal fragments of chromogranin-A modulate cardiac function of the Langendorff-perfused rat heart. Basic Res Cardiol 101:43–52PubMedGoogle Scholar
  22. Cerra MC, Gallo MP, Angelone T et al (2008) The homologous rat chromogranin A1–64 (rCGA1–64) modulates myocardial and coronary function in the rat heart counteracting the adrenergic stimulation through endothelium-derived nitric oxide mechanisms. FASEB J 22:3992–4004PubMedGoogle Scholar
  23. Ciesielski-Treska J, Aunis D (2000) Chromogranin A induces a neurotoxic phenotype in brain microglial cells. Adv Exp Med Biol 482:291–298PubMedGoogle Scholar
  24. Ciesielski-Treska J, Ulrich G, Taupenot L et al (1998) Chromogranin A induces a neurotoxic phenotype in brain microglial cells. J Biol Chem 273:14339–14346PubMedGoogle Scholar
  25. Ciesielski-Treska J, Ulrich G, Chasserot-Golaz S et al (2001) Mechanisms underlying neuronal death induced by chromogranin A-activated microglia. J Biol Chem 276:13113–13120PubMedGoogle Scholar
  26. Cohn DV, Zangerle R, Fischer-Colbrie R et al (1982) Similarity of secretory protein-I from parathyroid gland to chromogranin A from adrenal medulla. Proc Natl Acad Sci USA 79:6036–6059Google Scholar
  27. Corti A, Ferrari R, Ceconi C (2000) Chromogranin A and tumor necrosis factor-alpha (TNF) in chronic heart failure. Adv Exp Med Biol 482:351–359PubMedGoogle Scholar
  28. Corti A, Mannarino C, Mazza R et al (2002) Vasostatins exert negative inotropism in the working heart of the frog. Ann N Y Acad Sci 971:362–365PubMedGoogle Scholar
  29. Corti A, Mannarino C, Mazza R et al (2004a) Chromogranin A N-terminal fragments vasostatin-1 and the synthetic CGA 7–57 peptide acts as cardiostatins on the isolating working frog heart. Gen Comp Endocrinol 136:217–224PubMedGoogle Scholar
  30. Corti A, Ferrero E (2004b) Chromogranin A in tumours; more than a marker for diagnosis and prognosis. Curr Med Chem: Immuno Endocr Metab Agents 4:161–167Google Scholar
  31. Cubeddu LX, O’Connor DT, Parmer RJ (1995) Plasma chromogranin A: a marker of serotonin release and of emesis associated with cisplatin chemotherapy. J Clin Oncol 13:581–587Google Scholar
  32. Curry WJ, Johnston CF, Shaw C et al (1990) Distribution and partial characterization of immunoreactivity to the putative C-terminus of rat pancreastatin. Regul Pept 30:207–219PubMedGoogle Scholar
  33. Curry WJ, Barkatullah SC, Johansson AN et al (2002) WE-14, a chromogranin A-derived neuropeptide. Ann NY Acad Sci 971:311–316PubMedGoogle Scholar
  34. Di Comite G, Marinosci A, Di Matteo P et al (2006) Neuroendocrine modulation induced by selective blockade of TNF-alpha in rheumatoid arthritis. Ann N Y Acad Sci 1069:428–437PubMedGoogle Scholar
  35. Di Comite G, Rossi CM, Marinosci A et al (2009) Circulating chromogranin A reveals extra-articular involvement in patients with rheumatoid arthritis and curbs TNF-{alpha}-elicited endothelial activation. J Leukoc Biol 85:81–87PubMedGoogle Scholar
  36. Drees BM, Hamilton WJ (1992) Pancreastatin and bovine parathyroid cell secretion. Bone Miner 17:335–346PubMedGoogle Scholar
  37. Egger M, Schgoer W, Beer AGE et al (2007) Hypoxia up-regulates the angiogenic cytokine secretoneurin via and HIF-1α- and basic FGF-dependent pathway in muscle cells. FASEB J 21:2906–2917PubMedGoogle Scholar
  38. Egger M, Beer AG, Theurl M et al (2008) Monocyte migration: a novel effect and signaling pathways of catestatin. Eur J Pharmacol 598:104–111PubMedGoogle Scholar
  39. Eiden L (1987) Is chromogranin A a prohormone? Nature 325:301PubMedGoogle Scholar
  40. Fasciotto BH, Trauss CA, Greeley GH et al (1993) Parastatin (porcine chromogranin A347–419), a novel chromogranin A-derived peptide, inhibits parathyroid cell secretion. Endocinol 133:461–466Google Scholar
  41. Fasciotto BH, Denny JC, Greeley GH Jr et al (2000) Processing of chromogranin A in the parathyroid: generation of parastatin-related peptides. Peptides 21:1389–1401PubMedGoogle Scholar
  42. Fasciotto BH, Cohn CV, Gorr SU (2002) N-terminal proteolytic processing of porcine chromogranin A in parathyroid tissue. Regul Pept 103:53–58PubMedGoogle Scholar
  43. Feldman SA, Eiden LE (2003) The chromogranins: their roles in secretion from neuroendocrine cells and as markers for neuroendocrine neoplasia. Endocr Pathol 14:3–23PubMedGoogle Scholar
  44. Ferrero E, Scabini S, Magni E et al (2004) Chromogranin A protects vessels against tumor necrosis factor alpha-induced vascular leakage. FASEB J 18:554–556PubMedGoogle Scholar
  45. Fischer-Colbrie R, Lassmann H, Hagn C et al (1985) Immunological studies on the distribution of chromogranin A and B in endocrine and nervous tissue. Neuroscience 16:547–555PubMedGoogle Scholar
  46. Fischer-Colbrie R, Laslop A, Kirchmair R (1995) Secretogranin II: molecular properties, regulation of biosynthesis and processing to the neuropeptide secretoneurin. Prog Neurobiol 46:49–70PubMedGoogle Scholar
  47. Fischer-Colbrie R, Kirschmair R, Kaler CM et al (2005) Secretoneurin: a new player in angiogenesis and chemotaxis linking nerves, blood vessels and the immune system. Curr Protein Pept Sci 6:373–385PubMedGoogle Scholar
  48. Gadroy P, Stridsberg M, Capon C et al (1998) Phosphorylation and O-glycosylation sites of human chromogranin A (CGA79–439) from urine of patients with carcinoid tumors. J Biol Chem 273:34087–34097PubMedGoogle Scholar
  49. Gallo MP, Levi R, Ramella R et al (2007) Endothelium-derived nictric oxide mediatres the antiadrenergic effect of human vasostatin I (CgA1–76) in rat ventricular myocardium. Am J Physiol Heart Circ Physiol 292:H2906–H2912PubMedGoogle Scholar
  50. Garcia JGN, Wang P, Schaphorst KL et al (2002) Critical involvement of p38 MAP kinase in pertussis-toxin-induced cytoskeletal reorganization and lung permeability. FASEB J 16:1064–1076PubMedGoogle Scholar
  51. Gasparri A, Sidoli A, Sanchez LP et al (1997) Chromogranin A fragments modulate cell adhesion. Identification and characterization of a pro-adhesive domain. J Biol Chem 272:20835–20843PubMedGoogle Scholar
  52. Ghia JE, Crenner F, Metz-Boutigue M-H et al (2004a) The effect of a chromogranin A-derived peptide (CgA4–16) in the writhing nociceptive induced by acetic acids in rats. Life Sci 75:1787–1799PubMedGoogle Scholar
  53. Ghia JE, Crenner F, Rohr S et al (2004b) A role for chromogranin A (4–16), a vasostatin-derived peptide, on human colonic motility. An in vitro study. Regul Pept 121:31–39PubMedGoogle Scholar
  54. Ghia JE, Pradaut I, Crenner F et al (2005) Effect of acetic acid or trypsin application on rat colonic motility in vitro and modulation by two synthetic fragments of chromogranin A. Regul Pept 124:27–35PubMedGoogle Scholar
  55. Giordano T, Brigatti C, Podini P et al (2008) Beta cell chromogranin B is partially segregated in distinct granules and can be released separately from insulin in response to stimulation. Diabetologia 51:997–1007PubMedGoogle Scholar
  56. Glattard E, Angelone T, Strub JM et al (2006) Characterization of natural vasostatin-containing peptides in rat heart. FEBS J 273:3311–3321PubMedGoogle Scholar
  57. Gonzalez-Yanes C, Sanchez-Margalet V (2002) Pancreastatin, a chromogranin A-derived peptide, activates protein synthesis signaling cascade in rat adipocytes. Biochem Biophys Res Commun 299:525–531PubMedGoogle Scholar
  58. Greenwood TA, Rao F, Stridsberg M et al (2006) Pleiotropic effects of novel trans-acting loci influencing human sympathochromaffin secretion. Physiol Genomics 25:470–479PubMedGoogle Scholar
  59. Håkanson R, Ding XQ, Norlen P et al (1995) Circulating pancreastatin is a marker for the enterochromaffin-like cells of the rat stomach. Gastroenterology 108:1445–1452PubMedGoogle Scholar
  60. Helle KB (2004) The granin family of uniquely acidic proteins of the diffuse neuroendocrine system: comparative and functional aspects. Biol Rev (Camb) 79:769–794Google Scholar
  61. Helle KB (2009) The chromogranin A-derived peptides vasostatin-I and catestatin as regulatory peptides for caradiovascular functions. Cardiovasc Res, Aug 18 [E-pub ahead of print]Google Scholar
  62. Helle KB, Aunis D (2000) A physiological role for the granins as prohormones for homeostatically important regulatory peptides? A working hypothesis for future research. Adv Exp Med Biol 482:389–397PubMedGoogle Scholar
  63. Helle KB, Marley PD, Hogue-Angeletti R et al (1993) Chromogranin A:secretion of processed products from the stimulated retrogradely perfused bovine adrenal gland. J Neuroendocrinol 5:413–420PubMedGoogle Scholar
  64. Helle KB, Corti A, Metz-Boutigue M-H et al (2007) The endocrine role for chromogranin A: a prohormone for peptides with regulatory properties. Cell Mol Life Sci 64:2863–2886PubMedGoogle Scholar
  65. Hendy GN, Girard M, Feldstein RC et al (2006) Targeted ablation of the chromogranin A (Chga) gene: normal neuroendocrine dense-xcore secretory granules and increased expression of other granins. Mol Endocrinol 20:1935–1947PubMedGoogle Scholar
  66. Herrero CJ, Ales E, Pintado AJ et al (2002) Modulatory mechanism of the endogenous peptide catetatin on neuronal nicotinic acetylcholine receptors and exocytosis. J Neurosci 22:377–388PubMedGoogle Scholar
  67. Hooper C, Pocock JM (2007) Chromogranin A activates diverse pathways mediating inducible nitric oxide expression and apoptosis in primary microglia. Neurosci Lett 413:227–232PubMedGoogle Scholar
  68. Huttner WB, Gerdes H-H, Rosa P (1991) The granin (chromogranin/secretogranin) family. Trends Biochem Sci 16:27–31PubMedGoogle Scholar
  69. Hutton JC, Nielsen E, Kastern W (1988) The molecular cloning of the chromogranin A-like precursor of beta-granin and pancreastatin from the endocrine pancreas. FEBS Lett 236:269–274PubMedGoogle Scholar
  70. Imbrogno S, Angelone T, Corti A et al (2004) Influence of vasostatins, the chromogranin A-derived peptides, on the working heart of the eel (Anguilla anguilla): negative inotropy and mechanism of action. Gen Comp Endocrinol 139:20–28PubMedGoogle Scholar
  71. Ischia R, Hobisch A, Bauer R et al (2000) Elevated levels of serum secretoneurin in patients with therapy resistant carcinoma of the prostate. J Urol 163:1161–1165PubMedGoogle Scholar
  72. Jansson AM, Røsjø H, Omland T et al. (2009) Prognostic value of circulating chromogranin A levels in acute coronary syndromes. Eur Heart J 30:25–32PubMedGoogle Scholar
  73. Jones S, Howl J (2006) Biochemical applications of the receptor-mimetic peptide mastoparan. Curr Protein Pept Sci 7:501–508PubMedGoogle Scholar
  74. Kähler CM, Fischer-Colbrie R (2000) Secretoneurin – a novel link between the nervous and the immune system. Adv Exp Med Biol 482:279–290PubMedGoogle Scholar
  75. Kähler CM, Kirschmair R, Kaufmann G et al (1997a) Inhibition of proliferation and stimulation of migration of endothelial cells by secretoneurin in vitro. Arterioscler Thromb Vasc Biol 17:932–939PubMedGoogle Scholar
  76. Kähler CM, Schratzberger P, Wiedermann CJ (1997b) Response of vascular smooth muscle cells to the neuropeptide secretoneurin. A functional role for migration and proliferation in vitro. Arterioscler Thromb Vasc Biol 17:2029–2035PubMedGoogle Scholar
  77. Kähler CM, Kaufmann G, Kähler ST et al (1999) A soluble gradient of the neuropeptide secretoneurin promotes the transendothelial migration of monocytes in vitro. Eur J Pharmacol 365:65–75PubMedGoogle Scholar
  78. Kähler CM, Kaufmann G, Kähler ST et al (2002a) The neuropeptide secretoneurin stimulates adhesion of human monocytes to arterial and venous endothelial cells in vitro. Regul Pept 110:65–73PubMedGoogle Scholar
  79. Kähler CM, Schratzberger P, Kaufmann G et al (2002b) Transendothelial migration of leukocytes and signalling mechanisms in response to the neuropeptide secretoneurin. Regul Pept 105:35–46PubMedGoogle Scholar
  80. Kennedy BP, Mahata SK, O’Connor DT et al (1998) Mechanism of cardiovascular actions of the chromogranin A fragment catestatin in vivo. Peptides 19:1241–1248PubMedGoogle Scholar
  81. Kingham PJ, Pocock JM (2000) Microglial apoptosis induced by chromogranin A is mediated by mitochondrial depolarisation and the permeability transition but not by cytochrome c release. J Neurochem 74:1452–1462PubMedGoogle Scholar
  82. Kirchmair R, Hogue-Angeletti R, Gutierrez J et al (1993) Secretoneurin – a neuropeptide generated in brain, adrenal medulla and other endocrine tissues by proteolytic processing of secretogranin II (chromogranin C). Neuroscience 53:359–365PubMedGoogle Scholar
  83. Kirchmair R, Benzer A, Troger J et al (1994) Molecular characterization of immunoreactivities of peptides derived from chromogranin A (GE-25) and from secretogranin II (secretoneurin) in human and bovine cerebrospinal fluid. Neuroscience 63:1179–1187PubMedGoogle Scholar
  84. Kirchmair R, Gander R, Egger M et al (2004a) The neuropeptide secretoneurin acts as a direct angiogenic cytokine in vitro and in vivo. Circulation 109:777–783PubMedGoogle Scholar
  85. Kirchmair R, Egger M, Hanley A et al (2004b) Secretoneurin, an angiogenic neuropeptide, induces postnatal vasculogenesis. Circulation 110:1121–1127PubMedGoogle Scholar
  86. Klimaschewski L, Benndorf K, Kirchmair R et al (1995) Secretoneurin-immunoreactivity in nerve terminals opposing identified preganglionic sympathetic neurons in the rat: co-localization with substance P and enkephalin. J Chem Neuroanat 9:55–63PubMedGoogle Scholar
  87. Koeslag JH, Saunders PT, Wessels JA (1999) The chromogranins and counter-regulatory hormones: do they make homeostatic sense? J Physiol (Lond) 517:643–649Google Scholar
  88. Krűger P-G, Mahata SK, Helle KB (2003) Catestatin (CgA344–364) stimulates rat mast cell release of histamine in a manner comparable to mastoparan and other cationic charged neuropeptides. Regul Pept 114:29–35PubMedGoogle Scholar
  89. Lugardon K, Raffner R, Goumon Y et al (2000) Antibacterial and antifungal activities of vasostatin-1, the N-terminal fragment of chromogranin A. J Biol Chem 275:10745–10753PubMedGoogle Scholar
  90. Lugardon K, Chasserot-Golaz S, Kieffer AE et al (2001) Structural and biological characterization of chromofungin, the antifungal chromogranin A-(47–66)-derived peptide. J Biol Chem 276:35875–35882PubMedGoogle Scholar
  91. Mahapatra NR (2008) Catestatin is a novel endogenous peptide that regulates cardiac function and blood pressure. Cardiovasc Res 80:330–339PubMedGoogle Scholar
  92. Mahapatra NR, O’Connor DT, Vaingankar SM et al (2005) Hypertension from targeted ablation of chromogranin A can be rescued by the human ortholog. J Clin Invest 115:1942–1952PubMedGoogle Scholar
  93. Mahata SK, O’Connor DT, Mahata M et al (1997) Novel autocrine feedback control of catecholamine release. A discrete chromogranin A fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Invest 100:1623–1633PubMedGoogle Scholar
  94. Mahata SK, Mahata M, Parmer RJ et al (1999) Desensitization of catecholamine release: the novel catecholamine-release-inhibitory peptide catestatin (chromogranin A344–364) acts at the receptor to prevent nicotinic cholinergic tolerance. J Biol Chem 274:2920–2928PubMedGoogle Scholar
  95. Marksteiner J, Saria A, Kirchmair R et al (1993) Distribution of secretoneurin-like immunoreactivity in comparison with substance P- and enkephalin-like immunoreactivities in various human forebrain regions. Eur J Neurosci 5:1573–1585PubMedGoogle Scholar
  96. Marksteiner J, Bauer R, Kaufmann WA et al (1999) PE-11, a peptide derived from chromogranin B, in the human brain. Neuroscience 9:155–1170Google Scholar
  97. Mazza R, Gattuso A, Mannarino C et al (2008) Catestatin (chromogranin A344–364) is a novel cardiosuppressive agent: inhibition of isoproterenol and endothelin signaling in the frog heart. Am J Physiol Heart Circ Physiol 295:H113–H1122PubMedGoogle Scholar
  98. Metz-Boutigue M-H, Garcia-Sablone P, Hogue-Angeletti R et al (1993) Intracellular and extracellular processing of chromogranin A. Determination of cleavage sites. Eur J Biochem 217:247–257PubMedGoogle Scholar
  99. Metz-Boutigue M-H, GoumonY LK et al (1998) Antibacterial peptides are present in chromaffin cell secretory granules. Cell Mol Neurobiol 18:249–266PubMedGoogle Scholar
  100. Montero-Hadjadje M, Vaingankar S, Elias S et al (2008) Chromogranins A and B and secretogranin II: evolutionary and functional aspects. Acta Physiol (Oxf) 192:309–324Google Scholar
  101. Montesinos MS, Machado JD, Camacho M et al (2008) The crucial role of chromogranins in storage and exocytosis revealed using chromaffin cells from chromogranin A null mouse. J Neurosci 28:3350–3358PubMedGoogle Scholar
  102. Nikou GC, Marinou K, Thomakos P et al (2008) Chromogranin A in diagnosis, treatment and follow-up of 42 patients with non-functioning pancreatic endocrine tumours. Pancreatology 8:510–519PubMedGoogle Scholar
  103. O’Connor DT, Bernstein K (1984) Radioimmunoassay of chromogranin A in plasma as a measure of exocytotic sympathetoadrenal activity in normal subjects and patients with pheochromocytoma. N Engl J Med 311:764–770PubMedGoogle Scholar
  104. O’Connor DT, Cervenka JH, Stone RA et al (1993) Chromogranin A immunoreactivity in human cerebrospinal fluid: properties, relationship to noradrenergic neuronal activity and variation in neurological disease. Neuroscience 56:999–1007PubMedGoogle Scholar
  105. O’Connor DT, Cadman PE, Smiley C et al (2005) Pancreastatin: multiple actions on human intermediary metabolism in vivo, variation in disease, and naturally occurring functional genetic polymorphism. J Clin Endocrinol Metab 90:5414–5425PubMedGoogle Scholar
  106. Parmer RJ, Mahata SK, Jiang O et al (2000) Tissue plasminogen activator and chromaffin cell function. Adv Exp Med Biol 428:179–191Google Scholar
  107. Pieroni M, Corti A, Tota B et al (2007) Myocardial production of chromogranin A in human heart: a new regulatory peptide of cardiac function. Eur Heart J 28:1117–1127PubMedGoogle Scholar
  108. Portela-Gomes GM, Stridsberg M (2001) Selective processing of chromogranin A in the different islet cells in human pancreas. J Histochem Cytochem 49:483–490PubMedGoogle Scholar
  109. Portela-Gomes GM, Stridsberg M (2002a) Region-specific antibodies to chromogranin B display various immunostaining patterns in human endocrine pancreas. J Histochem Cytochem 50:1023–1030PubMedGoogle Scholar
  110. Portela-Gomes GM, Stridsberg M (2002b) Chromogranin in the human gastrointestinal tract: an immunocytochemical study with region-specific antibodies. J Histochem Cytochem 50: 1487–1492PubMedGoogle Scholar
  111. Portela-Gomes GM, Gayen JR, Grimelius L et al (2008) The importance of chromogranin A in the development and function of endocrine pancreas. Regul Pept 151:19–25PubMedGoogle Scholar
  112. Radek KA, Lopez-Garcia B, Hupe M et al (2008) The neuroendocrine peptide Catestatin is a cutaneous antimicrobial and induced in the skin after injury. J Invest Dermatol 128:1525–1534PubMedGoogle Scholar
  113. Ratti S, Curnis F, Longhi R et al (2000) Structure-activity relationships of chromogranin A in cell adhesion. Identification of an adhesion site for fibroblasts and smooth muscle cells. J Biol Chem 275:29257–29263PubMedGoogle Scholar
  114. Reinich N, Kirchmair R, Kähler CM et al (1993) Attraction of human monocytes by the neuropeptide secretoneurin. FEBS Lett 334:41–44Google Scholar
  115. Rosa P, Hille A, Lee RW et al (1985) Secretogranins I and II: two tyrosine-sulphated secretory proteins common to a variety of cells secreting peptides by the regulated pathway. J Cell Biol 101:1999–2011PubMedGoogle Scholar
  116. Russell J, Gee P, Liu SM et al (1994) Stimulation of parathyroid hormone secretion by low calcium is inhibited by amino terminal chromogranin peptides. Endocrinology 135:337–342PubMedGoogle Scholar
  117. Sanchez-Margalet V, Gonzalez-Yanes C, Santos-Alvarez J et al (2000) Pancreastatin. Biological effects and mechanisms of action. Adv Exp Med Biol 428:247–262Google Scholar
  118. Saria A, Troger J, Kirchmair R et al (1993) Secretoneurin releases dopamine from rat striatal slices: a biological effect of a peptide derived from secretogranin II (chromogranin C). Neuroscience 54:1–4PubMedGoogle Scholar
  119. Schmidt WE, Creutzfeldt W (1991) Pancreastatin – a novel regulatory peptide? Acta Oncol 30:441–449PubMedGoogle Scholar
  120. Siegel EG, Gallwitz B, Fölsch UR et al (1998) Effect of human pancreastatin peptide (hP-16) on oral glucose tolerance in man. Exp Clin Endocrinol Diabetes 106:178–182PubMedGoogle Scholar
  121. Stark M, Danielsson O, Griffith WJ et al (2001) Peptide repertoire of human cerebrospinal fluid: novel proteolytic fragments of neuroendocrine proteins. J Chromatogr B 754:357–367Google Scholar
  122. Steiner HJ, Schmid KW, Fischer-Colbrie R et al (1989) Co-localization of chromogranin A and B, secretogranin II and neuropeptidey in chromaffin granules of rat adrenal medulla studied by electron microscopic immunocytochemistry. Histochemistry 91:473–477PubMedGoogle Scholar
  123. Stridsberg M, Öberg K, Li Q et al (1995) Measurements of chromogranin A, chromogranin B (secretogranin I), chromogranin C (secretogranin II) and pancreastatin in plasma and urine from patients with carcinoid tumours and endocrine pancreatic tumours. J Endocrinol 144:49–59PubMedGoogle Scholar
  124. Stridsberg M, Angeletti RH, Helle KB (2000) Characterization of N-terminal chromogranin A and chromogranin B in mammals by region-specific radioimmunoassays and chromatographic separation methods. J Endocrinol 165:703–714PubMedGoogle Scholar
  125. Stridsberg M, Eriksson B, Öberg K et al (2004) A panel of 11 region-specific radioimmunoassays for measurements of human chromogranin A. Regul Pept 117:219–227PubMedGoogle Scholar
  126. Stridsberg M, Grimelius L, Portela-Gomes GM (2008) Immunohistochemical staining of human islet cells with region-specific antibodies against Sg II and SgIII. J Anat 212:229–234PubMedGoogle Scholar
  127. Strub JM, Garcia-Sablone P, Lønning K et al (1995) Processing of chromogranin B in bovine adenal medulla. Identification of secretolytin, the endogenous C-terminal fragment of residues 614–626 with antibacterial activity. Eur J Biochem 22:356–368Google Scholar
  128. Strub JM, Hubert P, Nullans G et al (1996) Antibacterial activity of secretolytin, a chromogranin B-derived peptide (614–626), is correlated with peptide structure. FEBS Lett 379:273–278PubMedGoogle Scholar
  129. Tatemoto K, Efendic S, Mutt V et al (1986) Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature (Lond.) 324:476–478Google Scholar
  130. Taupenot L, Ciesielski-Treska J, Ulrich G et al (1996) Chromogranin A triggers a phenotypic transformation and the generation of nitric oxide in brain microglial cells. Neuroscience 72:377–389PubMedGoogle Scholar
  131. Taupenot L, Harper KL, O’Connor DT (2003) Mechanisms of disease: the chromogranin-secretogranin family. N Engl J Med 348:1134–1149PubMedGoogle Scholar
  132. Tota B, Mazza R, Angelone T et al (2003) Peptides from the N-terminal domain of chromogranin A (vasostatins) exert negative inotropic effects in the isolated frog heart. Regul Pept 114:123–130PubMedGoogle Scholar
  133. Valeur J, Milde A, Helle KB et al (2008) Low serum chromogranin A in patients with self-reported food hypersensitivity. Scand J Gastroenterol 43:1403–1404PubMedGoogle Scholar
  134. Välimäki S, Höög A, Larsson C et al (2003) High extracellular Ca2+ hyperpolarizes human parathyroid cells via Ca2+ activated K+ channels. J Biol Chem 278:49685–49690PubMedGoogle Scholar
  135. Vaudry H, Conlon JM (1991) Identification of a peptide arising from the specific post-translation processing of secretogranin II. FEBS Lett 284:31–33PubMedGoogle Scholar
  136. Wiedermann CJ (2000) Secretoneurin: a functional neuropeptide in health and disease. Peptides 21:1289–1298PubMedGoogle Scholar
  137. Winkler H, Fischer-Colbrie R (1992) The chromogranins A and B: the first 25 years and future perspectives. Neuroscience 49:497–528PubMedGoogle Scholar
  138. Yajima A, Ikeda M, Miyazaki K et al (2004) Manserin, a novel peptide from secretogranin II in the neuroendocrine system. NeuroReport 15:1755–1759PubMedGoogle Scholar
  139. Yan S, Wang X, Chai H et al (2006) Secretoneurin increases monolayer permeability in human coronary artery endothelial cells. Surgery 140:243–251PubMedGoogle Scholar
  140. Zhang D, Lavaux T, Voegeli AC et al (2008) Prognostic value of chromogranin A at admission in critically ill patients: a cohort study in a medical intensive care unit. Clin Chem 54:1497–1503PubMedGoogle Scholar
  141. Zhang D, Lavaux T, Sapin R et al (2009a) Serum concentrations of chromogranin A at admission: an early biomarker of severity in critically ill patients. Ann Med 41:38–44PubMedGoogle Scholar
  142. Zhang D, Shooshtarizadeh P, Laventie B et al (2009b) Two antimicrobial chromogranin A-derived peptides induce calcium entry in human neutrophils by calmodulin-regulated calcium independent phospholipase A2. PLoS ONE 4:e4501PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2010

Authors and Affiliations

  1. 1.Department of Biomedicine, Division of PhysiologyUniversity of BergenBergenNorway

Personalised recommendations