Mitochondrial Transport Dynamics in Axons and Dendrites

  • Konrad E. ZinsmaierEmail author
  • Milos Babic
  • Gary J. Russo
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 48)


Mitochondrial dynamics and transport have emerged as key factors in the regulation of neuronal differentiation and survival. Mitochondria are dynamically transported in and out of axons and dendrites to maintain neuronal and synaptic function. Transport proceeds through a controlled series of plus- and minus-end directed movements along microtubule tracks (MTs) that are often interrupted by short stops. This bidirectional motility of mitochondria is facilitated by plus end-directed kinesin and minus end-directed dynein motors, and may be coordinated and controlled by a number of mechanisms that integrate intracellular signals to ensure efficient transport and targeting of mitochondria. In this chapter, we discuss our understanding of mechanisms that facilitate mitochondrial transport and delivery to specific target sites in dendrites and axons.


Actin Filament Motor Coordination Hereditary Spastic Paraplegia Mitochondrial Fusion Cytoplasmic Dynein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams I, Jones DG (1982) Quantitative ultrastructural changes in rat cortical synapses during early-, mid- and late-adulthood. Brain Res 239:349–363PubMedCrossRefGoogle Scholar
  2. Baas PW, Deitch JS, Black MM, Banker GA (1988) Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc Natl Acad Sci USA 85:8335–8339PubMedCrossRefGoogle Scholar
  3. Babcock DF, Hille B (1998) Mitochondrial oversight of cellular Ca2+ signaling. Curr Opin Neurobiol 8:398–404PubMedCrossRefGoogle Scholar
  4. Beck M, Brickley K, Wilkinson HL, Sharma S, Smith M, Chazot PL, Pollard S, Stephenson FA (2002) Identification, molecular cloning, and characterization of a novel GABAA receptor-associated protein, GRIF-1. J Biol Chem 277:30079–30090PubMedCrossRefGoogle Scholar
  5. Belles B, Hescheler J, Trube G (1987) Changes of membrane currents in cardiac cells induced by long whole-cell recordings and tolbutamide. Pflugers Arch 409:582–588PubMedCrossRefGoogle Scholar
  6. Beltran-Parrazal L, Lopez-Valdes HE, Brennan KC, Diaz-Munoz M, de Vellis J, Charles AC (2006) Mitochondrial transport in processes of cortical neurons is independent of intracellular calcium. Am J Physiol Cell Physiol 291:C1193–1197PubMedCrossRefGoogle Scholar
  7. Benshalom G, Reese TS (1985) Ultrastructural observations on the cytoarchitecture of axons processed by rapid-freezing and freeze-substitution. J Neurocytol 14:943–960PubMedCrossRefGoogle Scholar
  8. Bowman AB, Patel-King RS, Benashski SE, McCaffery JM, Goldstein LS, King SM (1999) Drosophila roadblock and Chlamydomonas LC7: a conserved family of dynein-associated proteins involved in axonal transport, flagellar motility, and mitosis. J Cell Biol 146:165–180PubMedGoogle Scholar
  9. Brady ST, Pfister KK, Bloom GS (1990) A monoclonal antibody against kinesin inhibits both anterograde and retrograde fast axonal transport in squid axoplasm. Proc Natl Acad Sci USA 87:1061–1065PubMedCrossRefGoogle Scholar
  10. Brickley K, Smith MJ, Beck M, Stephenson FA (2005) GRIF-1 and OIP106, members of a novel gene family of coiled-coil domain proteins: association in vivo and in vitro with kinesin. J Biol Chem 280:14723–14732PubMedCrossRefGoogle Scholar
  11. Bridgman PC (2009) Myosin motor proteins in the cell biology of axons and other neuronal compartments. Results Probl Cell Differ. doi: 10.1007/400_2009_10
  12. Brooks AS, Bertoli-Avella AM, Burzynski GM, Breedveld GJ, Osinga J, Boven LG, Hurst JA, Mancini GM, Lequin MH, de Coo RF et al (2005) Homozygous nonsense mutations in KIAA1279 are associated with malformations of the central and enteric nervous systems. Am J Hum Genet 77:120–126PubMedCrossRefGoogle Scholar
  13. Brough D, Schell MJ, Irvine RF (2005) Agonist-induced regulation of mitochondrial and endoplasmic reticulum motility. Biochem J 392:291–297PubMedCrossRefGoogle Scholar
  14. Cai Q, Gerwin C, Sheng ZH (2005) Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. J Cell Biol 170:959–969PubMedCrossRefGoogle Scholar
  15. Cameron HA, Kaliszewski CK, Greer CA (1991) Organization of mitochondria in olfactory bulb granule cell dendritic spines. Synapse 8:107–118PubMedCrossRefGoogle Scholar
  16. Chada SR, Hollenbeck PJ (2003) Mitochondrial movement and positioning in axons: the role of growth factor signaling. J Exp Biol 206:1985–1992PubMedCrossRefGoogle Scholar
  17. Chada SR, Hollenbeck PJ (2004) Nerve growth factor signaling regulates motility and docking of axonal mitochondria. Curr Biol 14:1272–1276PubMedCrossRefGoogle Scholar
  18. Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99PubMedCrossRefGoogle Scholar
  19. Chang DT, Reynolds IJ (2006) Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol 80:241–268PubMedCrossRefGoogle Scholar
  20. Chang DT, Honick AS, Reynolds IJ (2006) Mitochondrial trafficking to synapses in cultured primary cortical neurons. J Neurosci 26:7035–7045PubMedCrossRefGoogle Scholar
  21. Chicurel ME, Harris KM (1992) Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J Comp Neurol 325:169–182PubMedCrossRefGoogle Scholar
  22. Colin E, Zala D, Liot G, Rangone H, Borrell-Pages M, Li XJ, Saudou F, Humbert S (2008) Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons. EMBO J 27:2124–2134PubMedCrossRefGoogle Scholar
  23. Cox RT, Spradling AC (2006) Milton controls the early acquisition of mitochondria by Drosophila oocytes. Development 133:3371–3377PubMedCrossRefGoogle Scholar
  24. Danial NN, Gramm CF, Scorrano L, Zhang CY, Krauss S, Ranger AM, Datta SR, Greenberg ME, Licklider LJ, Lowell BB et al (2003) BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424:952–956PubMedCrossRefGoogle Scholar
  25. Das S, Boczan J, Gerwin C, Zald PB, Sheng ZH (2003) Regional and developmental regulation of syntaphilin expression in the brain: a candidate molecular element of synaptic functional differentiation. Brain Res Mol Brain Res 116:38–49PubMedCrossRefGoogle Scholar
  26. De Vos K, Goossens V, Boone E, Vercammen D, Vancompernolle K, Vandenabeele P, Haegeman G, Fiers W, Grooten J (1998) The 55-kDa tumor necrosis factor receptor induces clustering of mitochondria through its membrane-proximal region. J Biol Chem 273:9673–9680PubMedCrossRefGoogle Scholar
  27. De Vos K, Severin F, Van Herreweghe F, Vancompernolle K, Goossens V, Hyman A, Grooten J (2000) Tumor necrosis factor induces hyperphosphorylation of kinesin light chain and inhibits kinesin-mediated transport of mitochondria. J Cell Biol 149:1207–1214PubMedCrossRefGoogle Scholar
  28. De Vos KJ, Sable J, Miller KE, Sheetz MP (2003) Expression of phosphatidylinositol (4, 5) bisphosphate-specific pleckstrin homology domains alters direction but not the level of axonal transport of mitochondria. Mol Biol Cell 14:3636–3649PubMedCrossRefGoogle Scholar
  29. Deacon SW, Serpinskaya AS, Vaughan PS, Lopez Fanarraga M, Vernos I, Vaughan KT, Gelfand VI (2003) Dynactin is required for bidirectional organelle transport. J Cell Biol 160:297–301PubMedCrossRefGoogle Scholar
  30. Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta doi: S0005-2728(09)00012-7 [pii] 10.1016/j.bbabio.2009.01.00, (in press)Google Scholar
  31. Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8:870–879PubMedCrossRefGoogle Scholar
  32. Echeverri CJ, Paschal BM, Vaughan KT, Vallee RB (1996) Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J Cell Biol 132:617–633PubMedCrossRefGoogle Scholar
  33. Fagarasanu A, Rachubinski RA (2007) Orchestrating organelle inheritance in Saccharomyces cerevisiae. Curr Opin Microbiol 10:528–538PubMedCrossRefGoogle Scholar
  34. Fahim MA, Robbins N (1982) Ultrastructural studies of young and old mouse neuromuscular junctions. J Neurocytol 11:641–656PubMedCrossRefGoogle Scholar
  35. Falnikar A, Baas PW (2009) Critical roles for microtubules in axonal development and disease. Results Probl Cell Differ. doi: 10.1007/400_2009_2
  36. Fichera M, Lo Giudice M, Falco M, Sturnio M, Amata S, Calabrese O, Bigoni S, Calzolari E, Neri M (2004) Evidence of kinesin heavy chain (KIF5A) involvement in pure hereditary spastic paraplegia. Neurology 63:1108–1110PubMedGoogle Scholar
  37. Finsterer J (2006) Central nervous system manifestations of mitochondrial disorders. Acta Neurol Scand 114:217–238PubMedCrossRefGoogle Scholar
  38. Fransson A, Ruusala A, Aspenstrom P (2003) Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis. J Biol Chem 278:6495–6502PubMedCrossRefGoogle Scholar
  39. Fransson S, Ruusala A, Aspenstrom P (2006) The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Bioch Biophys Res Com 344:500–510CrossRefGoogle Scholar
  40. Frederick RL, McCaffery JM, Cunningham KW, Okamoto K, Shaw JM (2004) Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway. J Cell Biol 167:87–98PubMedCrossRefGoogle Scholar
  41. Frederick RL, Okamoto K, Shaw JM (2008) Multiple pathways influence mitochondrial inheritance in budding yeast. Genetics 178:825–837PubMedCrossRefGoogle Scholar
  42. Gilbert SL, Zhang L, Forster ML, Anderson JR, Iwase T, Soliven B, Donahue LR, Sweet HO, Bronson RT, Davisson MT et al (2006) Trak1 mutation disrupts GABA(A) receptor homeostasis in hypertonic mice. Nat Genet 38:245–250PubMedCrossRefGoogle Scholar
  43. Gindhart JG Jr, Desai CJ, Beushausen S, Zinn K, Goldstein LS (1998) Kinesin light chains are essential for axonal transport in Drosophila. J Cell Biol 141:443–454PubMedCrossRefGoogle Scholar
  44. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E et al (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736PubMedCrossRefGoogle Scholar
  45. Glater EE, Megeath LJ, Stowers RS, Schwarz TL (2006) Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol 173:545–557PubMedCrossRefGoogle Scholar
  46. Goldstein LS (2001) Kinesin molecular motors: transport pathways, receptors, and human disease. Proc Natl Acad Sci USA 98:6999–7003PubMedCrossRefGoogle Scholar
  47. Goldstein LS (2003) Do disorders of movement cause movement disorders and dementia? Neuron 40:415–425PubMedCrossRefGoogle Scholar
  48. Gorska-Andrzejak J, Stowers RS, Borycz J, Kostyleva R, Schwarz TL, Meinertzhagen IA (2003) Mitochondria are redistributed in Drosophila photoreceptors lacking milton, a kinesin-associated protein. J Comp Neurol 463:372–388PubMedCrossRefGoogle Scholar
  49. Gross SP (2003) Dynactin: coordinating motors with opposite inclinations. Curr Biol 13:15CrossRefGoogle Scholar
  50. Gross SP, Welte MA, Block SM, Wieschaus EF (2000) Dynein-mediated cargo transport in vivo. A switch controls travel distance. J Biol 148:945–956Google Scholar
  51. Gross SP, Tuma MC, Deacon SW, Serpinskaya AS, Reilein AR, Gelfand VI (2002a) Interactions and regulation of molecular motors in Xenopus melanophores. J Cell Biol 156:855–865PubMedCrossRefGoogle Scholar
  52. Gross SP, Welte MA, Block SM, Wieschaus EF (2002b) Coordination of opposite-polarity microtubule motors. J Cell Biol 156:715–724PubMedCrossRefGoogle Scholar
  53. Gross SP, Guo Y, Martinez JE, Welte MA (2003) A determinant for directionality of organelle transport in Drosophila embryos. Curr Biol 13:1660–1668PubMedCrossRefGoogle Scholar
  54. Gross SP, Vershinin M, Shubeita GT (2007) Cargo transport: two motors are sometimes better than one. Curr Biol 17:R478–486PubMedCrossRefGoogle Scholar
  55. Guo X, Macleod GT, Wellington A, Hu F, Panchumarthi S, Schoenfield M, Marin L, Charlton MP, Atwood HL, Zinsmaier KE (2005) The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 47:379–393PubMedCrossRefGoogle Scholar
  56. Habermann A, Schroer TA, Griffiths G, Burkhardt JK (2001) Immunolocalization of cytoplasmic dynein and dynactin subunits in cultured macrophages: enrichment on early endocytic organelles. J Cell Sci 114:229–240PubMedGoogle Scholar
  57. Haghnia M, Cavalli V, Shah SB, Schimmelpfeng K, Brusch R, Yang G, Herrera C, Pilling A, Goldstein LS (2007) Dynactin is required for coordinated bidirectional motility, but not for dynein membrane attachment. Mol Biol Cell 18:2081–2089PubMedCrossRefGoogle Scholar
  58. Hajnoczky G, Robb-Gaspers LD, Seitz MB, Thomas AP (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82:415–424PubMedCrossRefGoogle Scholar
  59. He Y, Francis F, Myers KA, Yu W, Black MM, Baas PW (2005) Role of cytoplasmic dynein in the axonal transport of microtubules and neurofilaments. J Cell Biol 168:697–703PubMedCrossRefGoogle Scholar
  60. Hirokawa N (1982) Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J Cell Biol 94:129–142PubMedCrossRefGoogle Scholar
  61. Hirokawa N, Yorifuji H (1986) Cytoskeletal architecture of reactivated crayfish axons, with special reference to crossbridges among microtubules and between microtubules and membrane organelles. Cell Motil Cytoskeleton 6:458–468CrossRefGoogle Scholar
  62. Hirokawa N, Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 6:201–214PubMedCrossRefGoogle Scholar
  63. Hirokawa N, Noda Y (2008) Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol Rev 88:1089–1118PubMedCrossRefGoogle Scholar
  64. Hollenbeck PJ (1996) The pattern and mechanisms of mitochondrial transport in axons. Front Biosci 1:d91–d102PubMedGoogle Scholar
  65. Hook P, Vallee RB (2006) The dynein family at a glance. J Cell Sci 119:4369–4371PubMedCrossRefGoogle Scholar
  66. Hubley MJ, Locke BR, Moerland TS (1996) The effects of temperature, pH, and magnesium on the diffusion coefficient of ATP in solutions of physiological ionic strength. Biochim Biophys Acta 1291:115–121PubMedCrossRefGoogle Scholar
  67. Hurd DD, Saxton WM (1996) Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila. Genetics 144:1075–1085PubMedGoogle Scholar
  68. Iyer SP, Akimoto Y, Hart GW (2003) Identification and cloning of a novel family of coiled-coil domain proteins that interact with O-GlcNAc transferase. J Biol Chem 278:5399–5409PubMedCrossRefGoogle Scholar
  69. Jung D, Filliol D, Miehe M, Rendon A (1993) Interaction of brain mitochondria with microtubules reconstituted from brain tubulin and MAP2 or TAU. Cell Motil Cytoskeleton 24:245–255PubMedCrossRefGoogle Scholar
  70. Kageyama GH, Wong-Riley MT (1984) The histochemical localization of cytochrome oxidase in the retina and lateral geniculate nucleus of the ferret, cat, and monkey, with particular reference to retinal mosaics and ON/OFF-center visual channels. J Neurosci 4:2445–2459PubMedGoogle Scholar
  71. Kanai Y, Okada Y, Tanaka Y, Harada A, Terada S, Hirokawa N (2000) KIF5C, a novel neuronal kinesin enriched in motor neurons. J Neurosci 20:6374–6384PubMedGoogle Scholar
  72. Kang JS, Tian JH, Pan PY, Zald P, Li C, Deng C, Sheng ZH (2008) Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132:137–148PubMedCrossRefGoogle Scholar
  73. Kann O, Kovacs R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292:C641–657PubMedCrossRefGoogle Scholar
  74. Kim Y, Sung JY, Ceglia I, Lee KW, Ahn JH, Halford JM, Kim AM, Kwak SP, Park JB, Ho Ryu S et al (2006) Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology. Nature 442:814–817PubMedCrossRefGoogle Scholar
  75. King SJ, Schroer TA (2000) Dynactin increases the processivity of the cytoplasmic dynein motor. Nat Cell Biol 2:20–24PubMedCrossRefGoogle Scholar
  76. King MJ, Atwood HL, Govind CK (1996) Structural features of crayfish phasic and tonic neuromuscular terminals. J Comp Neurol 372:618–626PubMedCrossRefGoogle Scholar
  77. Koushika SP, Schaefer AM, Vincent R, Willis JH, Bowerman B, Nonet ML (2004) Mutations in Caenorhabditis elegans cytoplasmic dynein components reveal specificity of neuronal retrograde cargo. J Neurosci 24:3907–3916PubMedCrossRefGoogle Scholar
  78. Krendel M, Sgourdas G, Bonder EM (1998) Disassembly of actin filaments leads to increased rate and frequency of mitochondrial movement along microtubules. Cell Motil Cytoskeleton 40:368–378PubMedCrossRefGoogle Scholar
  79. Kumar J, Yu H, Sheetz MP (1995) Kinectin, an essential anchor for kinesin-driven vesicle motility. Science 267:1834–1837PubMedCrossRefGoogle Scholar
  80. Kural C, Kim H, Syed S, Goshima G, Gelfand VI, Selvin PR (2005) Kinesin and dynein move a peroxisome in vivo: a tug-of-war or coordinated movement? Science 308:1469–1472PubMedCrossRefGoogle Scholar
  81. Lai C, Lin X, Chandran J, Shim H, Yang WJ, Cai H (2007) The G59S mutation in p150(glued) causes dysfunction of dynactin in mice. J Neurosci 27:13982–13990PubMedCrossRefGoogle Scholar
  82. LaMonte BH, Wallace KE, Holloway BA, Shelly SS, Ascano J, Tokito M, Van Winkle T, Howland DS, Holzbaur EL (2002) Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34:715–727PubMedCrossRefGoogle Scholar
  83. Langford GM (2002) Myosin-V, a versatile motor for short-range vesicle transport. Traffic 3:859–865PubMedCrossRefGoogle Scholar
  84. Lao G, Scheuss V, Gerwin CM, Su Q, Mochida S, Rettig J, Sheng ZH (2000) Syntaphilin: a syntaxin-1 clamp that controls SNARE assembly. Neuron 25:191–201PubMedCrossRefGoogle Scholar
  85. Lee CW, Peng HB (2006) Mitochondrial clustering at the vertebrate neuromuscular junction during presynaptic differentiation. J Neurobiol 66:522–536PubMedCrossRefGoogle Scholar
  86. Leterrier JF, Rusakov DA, Linden M (1994a) Statistical analysis of the surface distribution of microtubule-associated proteins (MAPs) bound in vitro to rat brain mitochondria and labelled by 10 nm gold-coupled antibodies. Bull Assoc Anat (Nancy) 78:47–51Google Scholar
  87. Leterrier JF, Rusakov DA, Nelson BD, Linden M (1994b) Interactions between brain mitochondria and cytoskeleton: evidence for specialized outer membrane domains involved in the association of cytoskeleton-associated proteins to mitochondria in situ and in vitro. Microsc Res Tech 27:233–261PubMedCrossRefGoogle Scholar
  88. Levy JR, Holzbaur EL (2006) Cytoplasmic dynein/dynactin function and dysfunction in motor neurons. Int J Dev Neurosci 24:103–111PubMedCrossRefGoogle Scholar
  89. Li SH, Gutekunst CA, Hersch SM, Li XJ (1998) Interaction of huntingtin-associated protein with dynactin P150Glued. J Neurosci 18:1261–1269PubMedGoogle Scholar
  90. Li Z, Okamoto K, Hayashi Y, Sheng M (2004) The importance of dentritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119:873–887PubMedCrossRefGoogle Scholar
  91. Ligon LA, Steward O (2000a) Movement of mitochondria in the axons and dendrites of cultured hippocampal neurons. J Comp Neurol 427:340–350PubMedCrossRefGoogle Scholar
  92. Ligon LA, Steward O (2000b) Role of microtubules and actin filaments in the movement of mitochondria in the axons and dendrites of cultured hippocampal neurons. J Comp Neurol 427:351–361PubMedCrossRefGoogle Scholar
  93. Ligon LA, Tokito M, Finklestein JM, Grossman FE, Holzbaur EL (2004) A direct interaction between cytoplasmic dynein and kinesin I may coordinate motor activity. J Biol Chem 279:19201–19208PubMedCrossRefGoogle Scholar
  94. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795PubMedCrossRefGoogle Scholar
  95. Linden M, Nelson BD, Leterrier JF (1989a) The specific binding of the microtubule-associated protein 2 (MAP2) to the outer membrane of rat brain mitochondria. Biochem J 261:167–173PubMedGoogle Scholar
  96. Linden M, Nelson BD, Loncar D, Leterrier JF (1989b) Studies on the interaction between mitochondria and the cytoskeleton. J Bioenerg Biomembr 21:507–518PubMedCrossRefGoogle Scholar
  97. Louie K, Russo GJ, Salkoff DB, Wellington A, Zinsmaier KE (2008) Effects of imaging conditions on mitochondrial transport and length in larval motor axons of Drosophila. Comp Biochem Physiol A Mol Integr Physiol 151:159–172PubMedCrossRefGoogle Scholar
  98. Lyons DA, Naylor SG, Mercurio S, Dominguez C, Talbot WS (2008) KBP is essential for axonal structure, outgrowth and maintenance in zebrafish, providing insight into the cellular basis of Goldberg-Shprintzen syndrome. Development 135:599–608PubMedCrossRefGoogle Scholar
  99. MacAskill AF, Brickley K, Stephenson FA, Kittler JT (2009a) GTPase dependent recruitment of Grif-1 by Miro1 regulates mitochondrial trafficking in hippocampal neurons. Mol Cell Neurosci 40:301–312PubMedCrossRefGoogle Scholar
  100. MacAskill AF, Rinholm JE, Twelvetrees AE, Arancibia-Carcamo IL, Muir J, Fransson A, Aspenstrom P, Attwell D, Kittler JT (2009b) Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61:541–555PubMedCrossRefGoogle Scholar
  101. Mallik R, Petrov D, Lex SA, King SJ, Gross SP (2005) Building complexity: an in vitro study of cytoplasmic dynein with in vivo implications. Curr Biol 15:2075–2085PubMedCrossRefGoogle Scholar
  102. Martin M, Iyadurai SJ, Gassman A, Gindhart JG Jr, Hays TS, Saxton WM (1999) Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport. Mol Biol Cell 10:3717–3728PubMedGoogle Scholar
  103. Mather WH, Fox RF (2006) Kinesin’s biased stepping mechanism: amplification of neck linker zippering. Biophys J 91:2416–2426PubMedCrossRefGoogle Scholar
  104. Mattson MP (2007) Mitochondrial regulation of neuronal plasticity. Neurochem Res 32:707–715PubMedCrossRefGoogle Scholar
  105. Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60:748–766PubMedCrossRefGoogle Scholar
  106. Miller KG, Sheetz MP (2004) Axonal mitochondrial transport and potential are correlated. J Cell Sci 117:2791–2804PubMedCrossRefGoogle Scholar
  107. Mironov SL (2006) Spontaneous and evoked neuronal activities regulate movements of single neuronal mitochondria. Synapse 59:403–411PubMedCrossRefGoogle Scholar
  108. Misgeld T, Kerschensteiner M, Bareyre FM, Burgess RW, Lichtman JW (2007) Imaging axonal transport of mitochondria in vivo. Nat Methods 4:559–561PubMedCrossRefGoogle Scholar
  109. Mok H, Shin H, Kim S, Lee JR, Yoon J, Kim E (2002) Association of the kinesin superfamily motor protein KIF1Balpha with postsynaptic density-95 (PSD-95), synapse-associated protein-97, and synaptic scaffolding molecule PSD-95/discs large/zona occludens-1 proteins. J Neurosci 22:5253–5258PubMedGoogle Scholar
  110. Morris RL, Hollenbeck PJ (1993) The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J Cell Sci 104:917–927PubMedGoogle Scholar
  111. Morris RL, Hollenbeck PJ (1995) Axonal transport of mitochondria along microtubules and F- actin in living vertebrate neurons. J Cell Biol 131:1315–1326PubMedCrossRefGoogle Scholar
  112. Muller MJ, Klumpp S, Lipowsky R (2008) Tug-of-war as a cooperative mechanism for bidirectional cargo transport by molecular motors. Proc Natl Acad Sci USA 105:4609–4614PubMedCrossRefGoogle Scholar
  113. Nan X, Sims PA, Chen P, Xie XS (2005) Observation of individual microtubule motor steps in living cells with endocytosed quantum dots. J Phys Chem B 109:24220–24224PubMedCrossRefGoogle Scholar
  114. Nangaku M, Sato-Yoshitake R, Okada Y, Noda Y, Takemura R, Yamazaki H, Hirokawa N (1994) KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79:1209–1220PubMedCrossRefGoogle Scholar
  115. Ong LL, Lim AP, Er CP, Kuznetsov SA, Yu H (2000) Kinectin-kinesin binding domains and their effects on organelle motility. J Biol Chem 275:32854–32860PubMedCrossRefGoogle Scholar
  116. Overly CC, Rieff HI, Hollenbeck PJ (1996) Organelle motility and metabolism in axons vs dendrites of cultured hippocampal neurons. J Cell Sci 109(Pt 5):971–980PubMedGoogle Scholar
  117. Pannese E, Ledda M (1991) Ribosomes in myelinated axons of the rabbit spinal ganglion neurons. J Submicrosc Cytol Pathol 23:33–38PubMedGoogle Scholar
  118. Pannese E, Procacci P, Ledda M, Arcidiacono G, Frattola D, Rigamonti L (1986) Association between microtubules and mitochondria in myelinated axons of Lacerta muralis. A quantitative analysis. Cell Tissue Res 245:1–8PubMedCrossRefGoogle Scholar
  119. Peters A, Palay S, Webster H (1991) The fine structure of the nervous system: the neurons and supporting cells. Oxford University Press, New YorkGoogle Scholar
  120. Pilling AD, Horiuchi D, Lively CM, Saxton WM (2006) Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Mol Biol Cell 17:2057–2068PubMedCrossRefGoogle Scholar
  121. Plitz T, Pfeffer K (2001) Intact lysosome transport and phagosome function despite kinectin deficiency. Mol Cell Biol 21:6044–6055PubMedCrossRefGoogle Scholar
  122. Price RL, Lasek RJ, Katz MJ (1991) Microtubules have special physical associations with smooth endoplasmic reticula and mitochondria in axons. Brain Res 540:209–216PubMedCrossRefGoogle Scholar
  123. Reeve AK, Krishnan KJ, Turnbull D (2008) Mitochondrial DNA mutations in disease, aging, and neurodegeneration. Ann N Y Acad Sci 1147:21–29PubMedCrossRefGoogle Scholar
  124. Rintoul GL, Filiano AJ, Brocard JB, Kress GJ, Reynolds IJ (2003) Glutamate decreases mitochondrial size and movement in primary forebrain neurons. J Neurosci 23:7881–7888PubMedGoogle Scholar
  125. Rodionov V, Yi J, Kashina A, Oladipo A, Gross SP (2003) Switching between microtubule- and actin-based transport systems in melanophores is controlled by cAMP levels. Curr Biol 13:1837–1847PubMedCrossRefGoogle Scholar
  126. Ross JL, Wallace K, Shuman H, Goldman YE, Holzbaur EL (2006) Processive bidirectional motion of dynein-dynactin complexes in vitro. Nat Cell Biol 8:562–570PubMedCrossRefGoogle Scholar
  127. Rowland KC, Irby NK, Spirou GA (2000) Specialized synapse-associated structures within the calyx of Held. J Neurosci 20:9135–9144Google Scholar
  128. Russo GJ, Louie K, Wellington A, Macleod GT, Hu F, Panchumarthi S, Zinsmaier KE (2009) Drosophila Miro is required for both anterograde and retrograde axonal mitochondrial transport. J Neurosci 29:5443–5455PubMedCrossRefGoogle Scholar
  129. Ruthel G, Hollenbeck PJ (2003) Response of mitochondrial traffic to axon determination and differential branch growth. J Neurosci 23:8618–8624PubMedGoogle Scholar
  130. Safieddine S, Ly CD, Wang YX, Wang CY, Kachar B, Petralia RS, Wenthold RJ (2002) Ocsyn, a novel syntaxin-interacting protein enriched in the subapical region of inner hair cells. Mol Cell Neurosci 20:343–353PubMedCrossRefGoogle Scholar
  131. Salinas S, Bilsland LG, Schiavo G (2008) Molecular landmarks along the axonal route: axonal transport in health and disease. Curr Opin Cell Biol 20:445–453PubMedCrossRefGoogle Scholar
  132. Santama N, Er CP, Ong LL, Yu H (2004) Distribution and functions of kinectin isoforms. J Cell Sci 117:4537–4549PubMedCrossRefGoogle Scholar
  133. Saotome M, Safiulina D, Szabadkai G, Das S, Fransson A, Aspenstrom P, Rizzuto R, Hajnoczky G (2008) Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci USA 105:20728–20733PubMedCrossRefGoogle Scholar
  134. Saxton WM, Hicks J, Goldstein LSB, Raff EC (1991) Kinesins heavy chain is essential for viability and neuromuscular functions in Drosophila, but mutants show no defects in mitosis. Cell 64:1093–1102PubMedCrossRefGoogle Scholar
  135. Scheffler IE (2008) Mitochondria, 2nd edn. J. Wiley and Sons, Inc., Hoboken, New JerseyGoogle Scholar
  136. Schroer TA (2004) Dynactin. Annu Rev Cell Dev Biol 20:759–779PubMedCrossRefGoogle Scholar
  137. Sheetz MP, Dai J (1996) Modulation of membrane dynamics and cell motility by membrane tension. Trends Cell Biol 6:85–89PubMedCrossRefGoogle Scholar
  138. Shepherd GM, Greer CA (1988) In: Lasek RS, Black MM (eds) Intrinsic determinants of neuronal form and function. Liss, New York, pp 245–262Google Scholar
  139. Shepherd GM, Harris KM (1998) Three-dimensional structure and composition of CA3−−>CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. J Neurosci 18:8300–8310PubMedGoogle Scholar
  140. Smith DS, Jarlfors U, Cayer ML (1977) Structural cross-bridges between microtubules and mitochondria in central axons of an insect (Periplaneta americana). J Cell Sci 27:255–272PubMedGoogle Scholar
  141. Smith GA, Gross SP, Enquist LW (2001) Herpesviruses use bidirectional fast-axonal transport to spread in sensory neurons. Proc Natl Acad Sci USA 98:3466–3470PubMedCrossRefGoogle Scholar
  142. Stowers RS, Megeath LJ, Gorska-Andrzejak J, Meinertzhagen IA, Schwarz TL (2002) Axonal transport of mitochondria to synapses depends on Milton, a novel Drosophila protein. Neuron 36:1063–1077PubMedCrossRefGoogle Scholar
  143. Su Q, Cai Q, Gerwin C, Smith CL, Sheng ZH (2004) Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. Nat Cell Biol 6:941–953PubMedCrossRefGoogle Scholar
  144. Sung JY, Engmann O, Teylan MA, Nairn AC, Greengard P, Kim Y (2008) WAVE1 controls neuronal activity-induced mitochondrial distribution in dendritic spines. Proc Natl Acad Sci USA 105:3112–3116PubMedCrossRefGoogle Scholar
  145. Suomalainen M, Nakano MY, Keller S, Boucke K, Stidwill RP, Greber UF (1999) Microtubule- dependent plus- and minus end-directed motilities are competing processes for nuclear targeting of adenovirus. J Cell Biol 144:657–672PubMedCrossRefGoogle Scholar
  146. Tanaka Y, Kanai Y, Okada Y, Nonaka S, Takeda S, Harada A, Hirokawa N (1998) Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93:1147–1158PubMedCrossRefGoogle Scholar
  147. Toyoshima I, Yu H, Steuer ER, Sheetz MP (1992) Kinectin, a major kinesin-binding protein on ER. J Cell Biol 118:1121–1131PubMedCrossRefGoogle Scholar
  148. Twig G, Hyde B, Shirihai OS (2008) Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 1777:1092–1097PubMedCrossRefGoogle Scholar
  149. Vale RD (2003) The molecular toolbox for intracellular transport. Cell 112:467–480PubMedCrossRefGoogle Scholar
  150. Valetti C, Wetzel DM, Schrader M, Hasbani MJ, Gill SR, Kreis TE, Schroer TA (1999) Role of dynactin in endocytic traffic: effects of dynamitin overexpression and colocalization with CLIP-170. Mol Biol Cell 10:4107–4120PubMedGoogle Scholar
  151. Verburg J, Hollenbeck PJ (2008) Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphorin signaling. J Neurosci 28:8306–8315PubMedCrossRefGoogle Scholar
  152. Wagner OI, Lifshitz J, Janmey PA, Linden M, McIntosh TK, Leterrier JF (2003) Mechanisms of mitochondria-neurofilament interactions. J Neurosci 23:9046–9058PubMedGoogle Scholar
  153. Wang Z, Sheetz MP (1999) One-dimensional diffusion on microtubules of particles coated with cytoplasmic dynein and immunoglobulins. Cell Struct Funct 24:373–383PubMedCrossRefGoogle Scholar
  154. Wang X, Schwarz TL (2009) The mechanism of Ca2+-dependent regulation of kinesin- mediated mitochondrial motility. Cell 136:163–174PubMedCrossRefGoogle Scholar
  155. Waterman-Storer CM, Karki SB, Kuznetsov SA, Tabb JS, Weiss DG, Langford GM, Holzbaur EL (1997) The interaction between cytoplasmic dynein and dynactin is required for fast axonal transport. Proc Natl Acad Sci USA 94:12180–12185PubMedCrossRefGoogle Scholar
  156. Wattenberg B, Lithgow T (2001) Targeting of C-terminal (tail)-anchored proteins: understanding how cytoplasmic activities are anchored to intracellular membranes. Traffic 2:66–71PubMedCrossRefGoogle Scholar
  157. Welte MA (2004) Bidirectional transport along microtubules. Curr Biol 14:13CrossRefGoogle Scholar
  158. Welte MA, Gross SP, Postner M, Block SM, Wieschaus EF (1998) Developmental regulation of vesicle transport in Drosophila embryos: forces and kinetics. Cell 92:547–557PubMedCrossRefGoogle Scholar
  159. Welte MA, Cermelli S, Griner J, Viera A, Guo Y, Kim DH, Gindhart JG, Gross SP (2005) Regulation of lipid-droplet transport by the perilipin homolog LSD2. Curr Biol 15:1266–1275PubMedCrossRefGoogle Scholar
  160. Wozniak MJ, Melzer M, Dorner C, Haring HU, Lammers R (2005) The novel protein KBP regulates mitochondria localization by interaction with a kinesin-like protein. BMC Cell Biol 6:35PubMedCrossRefGoogle Scholar
  161. Xia CH, Roberts EA, Her LS, Liu X, Williams DS, Cleveland DW, Goldstein LS (2003) Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A. J Cell Biol 161:55–66PubMedCrossRefGoogle Scholar
  162. Yi M, Weaver D, Hajnoczky G (2004) Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol 167:661–672PubMedCrossRefGoogle Scholar
  163. Yildiz A, Tomishige M, Vale RD, Selvin PR (2004) Kinesin walks hand-over-hand. Science 303:676–678PubMedCrossRefGoogle Scholar
  164. Zhao C, Takita J, Tanaka Y, Setou M, Nakagawa T, Takeda S, Yang HW, Terada S, Nakata T, Takei Y et al (2001) Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell 105:587–597PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Konrad E. Zinsmaier
    • 1
    • 2
    Email author
  • Milos Babic
    • 3
    • 4
  • Gary J. Russo
    • 5
    • 6
  1. 1.Arizona Research Laboratories, Division of NeurobiologyUniversity of ArizonaTucsonUSA
  2. 2.Department of Molecular and Cellular BiologyUniversity of ArizonaTucsonUSA
  3. 3.Arizona Research Laboratories, Division of NeurobiologyUniversity of ArizonaTucsonUSA
  4. 4.Graduate Program in Biochemistry and Molecular & Cellular BiologyUniversity of ArizonaTucsonUSA
  5. 5.Arizona Research Laboratories, Division of NeurobiologyUniversity of ArizonaTucsonUSA
  6. 6.Graduate Interdisciplinary Program in NeuroscienceUniversity of ArizonaTucsonUSA

Personalised recommendations