Smelling, Tasting, Learning: Drosophila as a Study Case

Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 47)


Understanding brain function is to account for how the sensory system is integrated with the organism's needs to organize behaviour. We review what is known about these processes with regard to chemosensation and chemosensory learning in Drosophila. We stress that taste and olfaction are organized rather differently. Given that, e.g., sugars are nutrients and should be eaten (irrespective of the kind of sugar) and that toxic substances should be avoided (regardless of the kind of death they eventually cause), tastants are classified into relatively few behavioural matters of concern. In contrast, what needs to be done in response to odours is less evolutionarily determined. Thus, discrimination ability is warranted between different kinds of olfactory input, as any difference between odours may potentially be or become important. Therefore, the olfactory system has a higher dimensionality than gustation, and allows for more sensory—motor flexibility to attach acquired behavioural ‘meaning’ to odours. We argue that, by and large, larval and adult Drosophila are similar in these kinds of architecture, and that additionally there are a number of similarities to vertebrates, in particular regarding the cellular architecture of the olfactory pathway, the functional slant of the taste and smell systems towards classification versus discrimination, respectively, and the higher plasticity of the olfactory sensory—motor system. From our point of view, the greatest gap in understanding smell and taste systems to date is not on the sensory side, where indeed impressive advances have been achieved; also, a satisfying account of associative odour-taste memory trace formation seems within reach. Rather, we lack an understanding as to how sensory and motor formats of processing are centrally integrated, and how adaptive motor patterns actually are selected. Such an understanding, we believe, will allow the analysis to be extended to the motivating factors of behaviour, eventually leading to a comprehensive account of those systems which make Drosophila do what Drosophila's got to do.


Behaviour Drosophila Learning Olfaction Punishment Reward Taste 



We express cordial thanks to the members and colleagues at our research institutions, and to the students in our groups, for the critique and discussions that shaped this review. Our research programmes are supported by the Volkswagen Foundation, the German-Israeli Foundation and the Deutsche Forschungsgemeinschaft (Heisenberg Fellowship, SFB 554, GK 1156 to B.G.), by the Swiss National Funds (grants nos. 31-63447.00 and 3100A0-105517 to R.F.S. and A.S.T.) and by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan (to T.T.). E. Balamurugan from the Springer production team deserves our gratitude for extended patience.


  1. Abrams TW, Yovell Y, Onyike CU, Cohen JE, Jarrard, HE. (1998) Analysis of sequence-dependent interactions between transient calcium and transmitter stimuli in activating adenylyl cyclase in Aplysia: possible contribution to CS-US sequence requirement during conditioning. Learn Mem 4:496–509PubMedGoogle Scholar
  2. Aceves-Pina EO, Quinn WG. (1979) Learning in normal and mutant Drosophila larvae. Science 206:93–96PubMedGoogle Scholar
  3. Ache BW, Young JM. (2005) Olfaction: diverse species, conserved principles. Neuron 48:417–430PubMedGoogle Scholar
  4. Awasaki T, Kimura K. (1997) Pox-neuro is required for development of chemosensory bristles in Drosophila. J Neurobiol 32:707–721PubMedGoogle Scholar
  5. Bader R, Colomb J, Pankratz B, Schröck A, Stocker RF, Pankratz MJ. (2007) Genetic dissection of neural circuit anatomy underlying feeding behavior in Drosophila: distinct classes of hugin expressing neurons. J Comp Neurol 502:848–856PubMedGoogle Scholar
  6. Benton R, Sachse S, Michnick SW, Vosshall LB. (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLloS Biol 4:e20.PubMedGoogle Scholar
  7. Benton R, Vannice KS, Vosshall LB. (2007) An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450:289–293PubMedGoogle Scholar
  8. Blenau W, Baumann A. (2001) Molecular and pharmacological properties of insect biogenic amine receptors: lessons from Drosophila melanogaster and Apis mellifera. Arch Insect Biochem Physiol 48:13–38PubMedGoogle Scholar
  9. Boulianne GL, Livne-Bar I, Humphreys JM, Liang Y, Lin C, Rogaev E, St George-Hyslop, P. (1997) Cloning and characterization of the Drosophila presenilin homologue. Neuroreport 8:1025–1029PubMedGoogle Scholar
  10. Buck L, Axel R. (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187PubMedGoogle Scholar
  11. Carle E. (1969) The very hungry caterpillar. Penguin, New YorkGoogle Scholar
  12. Chen Q, He G, Qin W, Chen QY, Zhao XZ, Duan SW, Liu XM, Feng GY, Xu YF, St Clair D, Li M, Wang JH, Xing YL, Shi JG, He L. (2004) Family-based association study of synapsin II and schizophrenia. Am J Hum Genet 75:873–877PubMedGoogle Scholar
  13. Chu IW, Axtell RC. (1971) Fine structure of the dorsal organ of the house fly larva, Musca domestica L. Z Zellforsch Mikrosk Anat 117:17–34PubMedGoogle Scholar
  14. Chu-Wang IW, Axtell RC. (1972) Fine structure of the terminal organ of the house fly larva, Musca domestica L. Z Zellforsch Mikrosk Anat 127:287–305PubMedGoogle Scholar
  15. Chyb S, Dahanukar A, Wickens A, Carlson, JR. (2003) Drosophila Gr5a encodes a taste receptor tuned to trehalose. Proc Natl Acad Sci USA 100:14526–14530PubMedGoogle Scholar
  16. Clyne PJ, Warr CG, Carlson JR. (2000) Candidate taste receptors in Drosophila. Science 287:1830–1834PubMedGoogle Scholar
  17. Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR. (1999) A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22:327–338PubMedGoogle Scholar
  18. Cobb M. (1999) What and how do maggots smell? Biol Rev 74:425–459Google Scholar
  19. Cole SH, Carney GE, McClung CA, Willard SS, Taylor BJ, Hirsh J. (2005) Two functional but noncomplementing Drosophila tyrosine decarboxylase genes: distinct roles for neural tyramine and octopamine in female fertility. J Biol Chem 280:14948–14955PubMedGoogle Scholar
  20. Colomb J, Grillenzoni N, Ramaekers A, Stocker RF. (2007) Architecture of the primary taste center of Drosophila melanogaster larvae. J Comp Neurol 502:834–847PubMedGoogle Scholar
  21. Connolly JB, Roberts IJ, Armstrong JD, Kaiser K, Forte M, Tully T, O'Kane CJ. (1996) Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science 274:2104–2107PubMedGoogle Scholar
  22. Couto A, Alenius M, Dickson BJ. (2005) Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr Biol 15:1535–1547PubMedGoogle Scholar
  23. Crittenden JR, Skoulakis EM, Han KA, Kalderon D, Davis RL. (1998) Tripartite mushroom body architecture revealed by antigenic markers. Learn Mem 5:38–51PubMedGoogle Scholar
  24. Dahanukar A, Foster K, van der Goes van Naters WM, Carlson JR. (2001) A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila. Nat Neurosci 4 :1182–1186PubMedGoogle Scholar
  25. Dahanukar A, Lei Y-T, Kwon JY, Carlson JR. (2007) Two Gr genes underlie sugar reception in Drosophila. Neuron 56:503–516PubMedGoogle Scholar
  26. Datta, S.R., Vasconcelos, M.L., Ruta, V., Luo, S., Wong, A., Demir, E., Flores, J., Balonze, K., Dickson, B.J., and Axel, R. (2008). The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452, 473–477Google Scholar
  27. Davis RL. (2005) Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Annu Rev Neurosci 28:275–302PubMedGoogle Scholar
  28. Dean C, Dresbach T. (2006) Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function. Trends Neurosci 29:21–29PubMedGoogle Scholar
  29. De Belle JS, Heisenberg M. (1994) Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263:692–695PubMedGoogle Scholar
  30. De Bruyne M, Clyne PJ, Carlson JR. (1999) Odor coding in a model olfactory organ: the Drosophila maxillary palp. J Neurosci 19:4520–4532PubMedGoogle Scholar
  31. De Bruyne M, Foster K, Carlson JR. (2001) Odor coding in the Drosophila antenna. Neuron 30:537–552PubMedGoogle Scholar
  32. De Strooper B. (2007) Loss-of-function presenilin mutations in Alzheimer disease. Talking pPoint on the role of presenilin mutations in Alzheimer disease. EMBO Rep 8:141–146Google Scholar
  33. Dethier VG, Hanson FE. (1964) Taste papillae of the blowfly. J Cell Comp Physiol 65:93–100Google Scholar
  34. Dickinson A. (2001) Causal learning-an associative analysis. Q J Exp Psychol 54B:3–25Google Scholar
  35. Dobritsa AA, van der Goes van Naters W, Warr CG, Steinbrecht RA, Carlson JR. (2003) Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37:827–841PubMedGoogle Scholar
  36. Dubnau J, Grady L, Kitamoto T, Tully T. (2001) Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411:476–480PubMedGoogle Scholar
  37. Dudai Y, Corfas G, Hazvi S. (1988) What is the possible contribution of Ca2+-stimulated adenylate cyclase to acquisition, consolidation and retention of an associative olfactory memory in Drosophila. J Comp Physiol [A] 162:101–109PubMedGoogle Scholar
  38. Dudai Y, Jan YN, Byers D, Quinn WG, Benzer S. (1976) dunce, a mutant of Drosophila deficient in learning. Proc Natl Acad Sci USA 73:1684–1688PubMedGoogle Scholar
  39. Duerr JS, Quinn WG. (1982) Three Drosophila mutations that block associative learning also affect habituation and sensitization. Proc Natl Acad Sci USA 79:3646–3650PubMedGoogle Scholar
  40. Elsner B, Hommel B. (2001) Effect anticipation and action control. J Exp Psychol Hum Percept Perform 27:229–240PubMedGoogle Scholar
  41. Erber J, Masuhr TH, Menzel R. (1980) Localization of short-term memory in the brain of the bee, Apis mellifera. Physiol Entomol 5:343–358Google Scholar
  42. Faber T, Joerges J, Menzel R. (1999) Associative learning modifies neural representations of odors in the insect brain. Nat Neurosci 2:74–78PubMedGoogle Scholar
  43. Falk R, Bleiseravivi N, Atidia J. (1976) Labellar taste organs of Drosophila melanogaster. J Morphol 150:327–341Google Scholar
  44. Farooqui T, Robinson K, Vaessin H, Smith BH. (2003) Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J Neurosci 23:5370–5380PubMedGoogle Scholar
  45. Faucher C, Forstreuter M, Hilker M, de Bruyne M (2006) Behavioral responses of Drosophila to biogenic levels of carbon dioxide depend on life-stage, sex and olfactory context. J Exp Biol 209:2739–2748PubMedGoogle Scholar
  46. Ferveur JF (2005) Cuticular hydrocarbons their evolution and roles in Drosophila pheromonal communication. Behav Genet 35:279–295PubMedGoogle Scholar
  47. Feeny P, Rosenberg L, Carter M (1983) Chemical aspects of oviposition behavior in butterflies. In: Ahmad S (ed) Herbivorous insects: host-seeking behavior and mechanisms. Academic, New York, pp 27–76Google Scholar
  48. Fiala A, Spall T, Diegelmann S, Eisermann B, Sachse S, Devaud JM, Buchner E, Galizia CG (2002) Genetically expressed cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons. Curr Biol 12:1877–1884PubMedGoogle Scholar
  49. Fischler W, Kong P, Marella S, Scott K (2007) The detection of carbonation by the Drosophila gustatory system. Nature 30:1054–1057Google Scholar
  50. Fishilevich E, Domingos AI, Asahina K, Naef F, Vosshall LB, Louis M (2005) Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. Curr Biol 15:2086–2096PubMedGoogle Scholar
  51. Fishilevich E, Vosshall LB (2005) Genetic and functional subdivision of the Drosophila antennal lobe. Curr Biol 15:1548–1553PubMedGoogle Scholar
  52. Foelix RF, Stocker RF, Steinbrecht RA (1989) Fine structure of a sensory organ in the arista of Drosophila melanogaster and some other dipterans. Cell Tissue Res 258:277–287PubMedGoogle Scholar
  53. Forbes B (1993) Larval learning and memory in Drosophila melanogaster. Diploma thesis, University of WürzburgGoogle Scholar
  54. Friggi-Grelin F, Coulom H, Meller M, Gomez D, Hirsh J, Birman S (2003) Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J Neurobiol 54:618–627PubMedGoogle Scholar
  55. Fujishiro N, Kijima H, Morita H (1984) Impulse frequency and action potential amplitude in labellar chemosensory neurones of Drosophila melanogaster. J Insect Physiol 30:317–325Google Scholar
  56. Gao Q, Chess A (1999) Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60:31–39PubMedGoogle Scholar
  57. Gao Q, Yuan B, Chess A (2000) Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Nat Neurosci 3:780–785PubMedGoogle Scholar
  58. Garcia CC, Blair HJ, Seager M, Coulthard A, Tennant S, Buddles M, Curtis A, Goodship JA (2004) Identification of a mutation in synapsin I, a synaptic vesicle protein, in a family with epilepsy. J Med Genet 41:183–186PubMedGoogle Scholar
  59. Gendre N, Lüer K, Friche S, Grillenzoni N, Ramaekers A, A Technau GM, Stocker RF (2004) Integration of complex larval chemosensory organs into the adult nervous system of Drosophila. Development 131:83–92PubMedGoogle Scholar
  60. Gerber B, Hendel T (2006) Outcome expectations drive learned behaviour in larval Drosophila. Proc R Soc Lond B 273:2965–2968Google Scholar
  61. Gerber B, Scherer S, Neuser K, Michels B, Hendel T, Stocker RF, Heisenberg M (2004) Visual learning in individually assayed Drosophila larvae. J Exp Biol 207:179–188PubMedGoogle Scholar
  62. Gerber B, Stocker RF (2007) The Drosophila larva as a model for studying chemosensation and chemosensory learning: a review. Chem Senses 32:65–89PubMedGoogle Scholar
  63. Gerber B, Tanimoto H, Heisenberg M (2004) An engram found? Evaluating the evidence from fruit flies. Curr Opin Neurobiol 14:737–744PubMedGoogle Scholar
  64. Gitler D, Takagishi Y, Feng J, Ren Y, Rodriguiz RM, Wetsel WC, Greengard P, Augustine GJ (2004) Different presynaptic roles of synapsins at excitatory and inhibitory synapses. J Neurosci 24:11368–11380PubMedGoogle Scholar
  65. Godenschwege TA, Reisch D, Diegelmann S, Eberle K, Funk N, Heisenberg M, Hoppe V, Hoppe J, Klagges BRE, Martin JR, Nikitina EA, Putz G, Reifegerste R, Reisch N, Rister J, Schaupp M, Scholz H, Schwärzel M, Werner U, Zars T, Buchner S, Buchner E (2004) Flies lacking all synapsins are unexpectedly healthy but are impaired in complex behaviour. Eur J Neurosci 20:611–622PubMedGoogle Scholar
  66. Goldman AL,van der Goes van Naters W, Lessing D, Warr CG, Carlson JR (2005) Coexpression of two functional odor receptors in one neuron. Neuron 45:661–666PubMedGoogle Scholar
  67. Grillenzoni N, de Vaux V, Meuwly J, Vuichard S, Gendre N, Stocker RF (2007) Role of proneural genes in the formation of the larval olfactory organ of Drosophila. Dev Genes Evol 217:209–219PubMedGoogle Scholar
  68. Ha TS, Smith DP (2006) A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila. J Neurosci 26:8727–8733PubMedGoogle Scholar
  69. Hallem EA, Carlson JR (2006) Coding of odors by a receptor repertoire. Cell 125:143–160PubMedGoogle Scholar
  70. Krashes MJ, Waddell S (2008) Rapid consolidation to a radish and protein synthesis-dependent long-term memory after single-session appetitive olfactory conditioning in Drosophila. J Neuro Sci. 28:3103–3113Google Scholar
  71. Hallem EA, Ho MG, Carlson JR (2004) The molecular basis of odor coding in the Drosophila antenna. Cell 117:965–979PubMedGoogle Scholar
  72. Hammer M (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366:59–63Google Scholar
  73. Hammer M, Menzel R (1998) Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn Mem 5:146–156PubMedGoogle Scholar
  74. Han PL, Levin LR, Reed RR, Davis RL (1992) Preferential expression of the Drosophila rutabaga gene in mushroom bodies, neural centers for learning in insects. Neuron 9:619–627PubMedGoogle Scholar
  75. Han KA, Millar NS, Grotewiel MS, Davis RL (1996) DAMB, a novel dompamine receptor expressed specifically in Drosophila mushroom bodies. Neuron 16(6):1127–1135PubMedGoogle Scholar
  76. Heimbeck G, Bugnon V, Gendre N, Häberlin C, Stocker RF (1999) Smell and taste perception in D. melanogaster larva: toxin expression studies in chemosensory neurons. J Neurosci 19:6599–6609PubMedGoogle Scholar
  77. Heimbeck G, Bugnon V, Gendre N, Keller A, Stocker RF (2001) A central neural circuit for experience-independent olfactory and courtship behavior in Drosophila melanogaster. Proc Natl Acad Sci USA 98:15336–15341PubMedGoogle Scholar
  78. Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4:266–275PubMedGoogle Scholar
  79. Heisenberg M, Borst A, Wagner S, Byers D (1985) Drosophila mushroom body mutants are deficient in olfactory learning. J Neurogen 2:1–30Google Scholar
  80. Heisenberg M, Gerber B. Behavioral Analysis of Learning and Memory in Drosophila. In R. Menzel (Ed.), Learning Theory and Behavior. Vol. [1] of Learning and Memory: A Comprehensive Reference, 4 vols. (J. Byrne Editor), pp. [549–560] Oxford: ElsevierGoogle Scholar
  81. Hendel T, Michels B, Neuser K, Schipanski A, Kaun K, Sokolowski MB, Marohn F, Michel R, Heisenberg M, Gerber B (2005) The carrot, not the stick: appetitive rather than aversive gustatory stimuli support associative olfactory learning in individually assayed Drosophila larvae. J Comp Physiol A 191:265–279Google Scholar
  82. Hildebrand JG, Shepherd G (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595–631PubMedGoogle Scholar
  83. Hilfiker S, Pieribone VA, Czernik AJ, Kao H-T, Augustine GJ, Greengard P (1999) Synapsins as regulators of neurotransmitter release. Philos Trans R Soc Lond B 354:269–279Google Scholar
  84. Hiroi M, Marion-Poll F, Tanimura T (2002) Differentiated nerve response to sugars among labellar chemosensilla in Drosophila. Zool Sci 19:1009–1018PubMedGoogle Scholar
  85. Hiroi M, Meunier N, Marion-Poll F, Tanimura T (2004) Two antagonistic gustatory receptor neurons responding to sweet-salty and bitter taste in Drosophila. J Neurobiol 61:333–342PubMedGoogle Scholar
  86. Hoffmann J (2003) Anticipatory behavioral control. In: Butz MV, Sigaud O, Gerad P (eds) Anticipatory behavior in adaptive learning systems. Springer, Heidelberg, pp 44–65Google Scholar
  87. Honjo K, Furukubo-Tokunaga K (2005) Induction of cAMP response element-binding protein-dependent medium-term memory by appetitive gustatory reinforcement in Drosophila larvae. J Neurosci 25:7905–7913PubMedGoogle Scholar
  88. Inoshita T, Tanimura T (2006) Cellular identification of water gustatory receptor neurons and their central projection pattern in Drosophila. Proc Natl Acad Sci USA 103:1094–1099PubMedGoogle Scholar
  89. Ishimoto H, Tanimura T (2004) Molecular neurophysiology of taste in Drosophila. Cell Mol Life Sci 61:10–18PubMedGoogle Scholar
  90. Ito K, Awano W, Suzuki K, Hiromi Y, Yamamoto D (1997) The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124:761–771PubMedGoogle Scholar
  91. Ito K, Suzuki K, Estes P, Ramaswami M, Yamamoto D, Strausfeld NJ (1998) The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen. Learn Mem 5:52–77PubMedGoogle Scholar
  92. Jefferis GSXE, Potter CJ, Chan AM, Marin EC, Rohlfing T, Maurer CR Jr, Luo L (2007) Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128:1187–1203PubMedGoogle Scholar
  93. Jiao Y, Moon SJ, Montell C (2007) A Drosophila gustatory receptor required for the responses to sucrose glucose and maltose identified by mRNA tagging. Proc Natl Acad Sci USA 104:14110–14115PubMedGoogle Scholar
  94. Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB (2007) Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445:86–90PubMedGoogle Scholar
  95. Kaas JH (2005) The future of mapping sensory cortex in primates: three of many remaining issues. Philos Trans R Soc Lond B 360:653–664Google Scholar
  96. Kaun KR, Hendel T, Gerber B, Sokolowski MB (2007) Natural variation in Drosophila larval reward learning and memory due to a cGMP-dependent protein kinase. Learn Mem 14:342–349PubMedGoogle Scholar
  97. Keene AC, Stratmann M, Keller A, Perrat PN, Vosshall LB, Waddell S (2004) Diverse odor-conditioned memories require uniquely timed dorsal paired medial neuron output. Neuron 44:521–533PubMedGoogle Scholar
  98. Keene AC, Waddell S (2007) Drosophila olfactory memory: single genes to complex neural circuits. Nat Rev Neurosci 8:341–354PubMedGoogle Scholar
  99. Keene AC, Krashes MJ, Leung B, Bernard JA, Waddell S (2006) Drosophila dorsal paired medial neurons provide a general mechanism for memory consolidation. Curr Biol 16:1524–1530PubMedGoogle Scholar
  100. Kim YC, Lee HG, Seong CS, Han KA (2003) Expression of a D1 dopamine receptor dDA1/DmDOP1 in the central nervous system of Drosophila melanogaster. Gene Expr Patterns 3:237–245PubMedGoogle Scholar
  101. Kim YC, Lee HG, Han KA (2007) D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila. J Neurosci 27:7640–7647PubMedGoogle Scholar
  102. Kittel RJ, Wichmann C, Rasse TM, Fouquet W, Schmidt M, Schmid A, Wagh DA, Pawlu C, Kellner RR, Willig KI, Hell SW, Buchner E, Heckmann M, Sigrist SJ (2006) Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312:1051–1054PubMedGoogle Scholar
  103. Klagges B, Heimbeck G, Godenschwege TA, Hofbauer A, Pflugfelder GO, Reifegerste R, Reisch D, Schaupp M, Buchner S, Buchner E (1996) Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. J Neurosci 16:3154–3165PubMedGoogle Scholar
  104. Knight D, Iliadi K, Charlton MP, Atwood HL, Boulianne GL (2007) Presynaptic plasticity and associative learning are impaired in a Drosophila presenilin null mutant. Dev Neurobiol 67:1598–1613PubMedGoogle Scholar
  105. Kondoh Y, Kaneshiro KY, Kimura K, Yamamoto D (2003) Evolution of sexual dimorphism in the olfactory brain of Hawaiian Drosophila. Proc R Soc Lond B 270:1005–1013Google Scholar
  106. Krashes MJ, Keene AC, Leung B, Armstrong JD, Waddell S (2007) Sequential use of mushroom body neuron subsets during Drosophila odor memory processing. Neuron 53:103–115PubMedGoogle Scholar
  107. Kreher SA, Kwon AY, Carlson JR (2005) The molecular basis of odor coding in the Drosophila larva. Neuron 46:445–456PubMedGoogle Scholar
  108. Kreher, S.A, Mathew, D, Kim, J, Carlson, JR, (2008) Translation of sensory input into behavioral output via an olfactory system. Neuron 59: 110–124 PubMedGoogle Scholar
  109. Kurtovic A, Widmer A, Dickson BJ (2007) A single class of olfactory neurons mediates behavioural responses to Drosophila sex pheromone. Nature 446:542–546PubMedGoogle Scholar
  110. Kwon JY, Dahanukar A, Weiss LA, Carlson JR (2007) The molecular basis of CO2 reception in Drosophila. Proc Natl Acad Sci USA 104:3574–3578PubMedGoogle Scholar
  111. Laissue PP, Reiter C, Hiesinger PR, Halter S, Fischbach KF, Stocker RF (1999) Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J Comp Neurol 405:543–552PubMedGoogle Scholar
  112. Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB (2004) Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43:703–714PubMedGoogle Scholar
  113. Lacaille F, Hiroi M, Twele R, Inoshita T, Umemoto D, Manière G, Marion-Poll F, Ozaki M, Francke W, Everaerts C, Tanimura T, Ferveur J-F (2007) A inhibitory sex pheromone tastes bitter for males. PLoS ONE 2:e661PubMedGoogle Scholar
  114. Laurent G (1996) Odor images and tunes. Neuron 16:473–476PubMedGoogle Scholar
  115. Lee T, Lee A, Luo L (1999) Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126:4065–4076PubMedGoogle Scholar
  116. Levin LR, Han PL, Hwang PM, Feinstein PG, Davis RL, Reed RR (1992) The Drosophila learning and memory gene rutabaga encodes a Ca2+/calmodulin-responsive adenylyl cyclase. Cell 68:479–489PubMedGoogle Scholar
  117. Li J, Ashley J, Budnik V, Bhat MA (2007) Crucial role of Drosophila neurexin in proper active zone apposition to postsynaptic densities, synaptic growth, and synaptic transmission. Neuron 55:741–755PubMedGoogle Scholar
  118. Lienhard MC, Stocker RF (1987) Sensory projection patterns of supernumerary legs and aristae in D. melanogaster. J Exp Zool 244:187–201Google Scholar
  119. Lin HH, Lai JS, Chin AL, Chen YC, Chiang AS (2007) A map of olfactory representation in the Drosophila mushroom body. Cell 128:1205–1217PubMedGoogle Scholar
  120. Lindemann B (2001) Receptors and transduction in taste. Nature 413:219–225 PubMedGoogle Scholar
  121. Liu L, Leonard AS, Motto DG, Feller MA, Price MP, Johnson WA, Welsh MJ (2003a) Contribution of Drosophila DEG/ENaC genes to salt taste. Neuron 39:133–146Google Scholar
  122. Liu L, Yermolaieva O, Johnson WA, Abboud FM, Welsh MJ (2003b) Identification and function of thermosensory neurons in Drosophila larvae. Nat Neurosci 6:267–273Google Scholar
  123. Liu G, Seiler H, Wen A, Zars T, Ito K, Wolf R, Heisenberg M, Liu L (2006) Distinct memory traces for two visual features in the Drosophila brain. Nature 439:551–556PubMedGoogle Scholar
  124. Louis M, Huber T, Benton R, Sakmar TP, Vosshall LB (2008) Bilateral olfactory sensory input enhances chemotaxis behavior. Nat Neurosci 11:187–199 PubMedGoogle Scholar
  125. Manoli DS, Foss M, Villella A, Taylor BJ, Hall JC, Baker BS (2005) Male-specific fruitless specifies the neural substrates of Drosophila courtship behavior. Nature 436:395–400PubMedGoogle Scholar
  126. Mao Z, Roman G, Zong L, Davis RL (2004) Pharmacogenetic rescue in time and space of the rutabaga memory impairment by using Gene-Switch. Proc Natl Acad Sci USA 101:198–203PubMedGoogle Scholar
  127. Marella S, Fischler W, Kong P, Asgarian S, Rueckert E, Scott K (2006) Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49:285–295PubMedGoogle Scholar
  128. Margulies C, Tully T, Dubnau J (2005) Deconstructing memory in Drosophila. Curr Biol 15:R700-R713PubMedGoogle Scholar
  129. Marin EC, Jefferis GSXE, Komiyama T, Zhu H, Luo L (2002) Representation of the glomerular olfactory map in the Drosophila brain. Cell 109:243–255PubMedGoogle Scholar
  130. Marin EC, Watts RJ, Tanaka NK, Ito K, Luo L (2005) Developmentally programmed remodeling of the Drosophila olfactory circuit. Development 132:725–737PubMedGoogle Scholar
  131. Masuda-Nakagawa LM, Tanaka NK, O'Kane CJ (2005) Stereotypic and random patterns of connectivity in the larval mushroom body calyx of Drosophila. Proc Natl Acad Sci USA 102:19027–19032PubMedGoogle Scholar
  132. Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y (2007) Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol 5:e118PubMedGoogle Scholar
  133. McGuire SE, Le PT, Davis RL (2001) The role of Drosophila mushroom body signaling in olfactory memory. Science 293:1330–1333PubMedGoogle Scholar
  134. McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302:1765–1768PubMedGoogle Scholar
  135. McGuire SE, Deshazer M, Davis RL (2005) Thirty years of olfactory learning and memory research in Drosophila melanogaster. Prog Neurobiol 76:328–347PubMedGoogle Scholar
  136. Melcher C, Pankratz MJ (2005) Candidate gustatory interneurons modulating feeding behavior in the Drosophila brain. PLoS Biol 3:e305PubMedGoogle Scholar
  137. Meunier N, Ferveur JF, Marion-Poll F. (2000) Sex-specific non-pheromonal taste receptors in Drosophila. Curr Biol 10:1583–1586PubMedGoogle Scholar
  138. Meunier N, Marion-Poll F, Rospars JP, Tanimura T. (2003) Peripheral coding of bitter taste in Drosophila. J Neurobiol 56:139–152PubMedGoogle Scholar
  139. Miyakawa Y. (1982) Behavioral evidence for the existence of sugar, salt and amino acid recptor cells and some of their properties in Drosophila larvae. J Insect Physiol 28:405–410Google Scholar
  140. Michels B, Diegelmann S, Tanimoto H, Schwenkert I, Buchner E, Gerber B. (2005) A role of synapsin for associative learning: The Drosophila larva as a study case. Learn Mem 12:224–231PubMedGoogle Scholar
  141. Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R. (1996) Visualizing an olfactory sensory map. Cell 87:675–686PubMedGoogle Scholar
  142. Moon SJ, Kottgen M, Jiao Y, Xu H, Montell C. (2006) A taste receptor required for the caffeine response in vivo. Curr Biol 16:1812–1817PubMedGoogle Scholar
  143. Murthy M, Fiete I, Laurent G (2008) Testing odor response stereotypy in the Drosophila mushroom body. Neuron 59:1009–1023PubMedGoogle Scholar
  144. Nayak SV, Singh RN. (1983) Sensilla on the tarsal segments and mouthparts of adult Drosophila melanogaster Meigen (Diptera Drosophilidae). Int J Insect Morphol Embryol 12:273–291Google Scholar
  145. Neuser K, Husse J, Stock P, Gerber B. (2005) Appetitive olfactory learning in Drosophila larvae: effects of repetition, reward strength, age, gender, assay type, and memory span. Anim Behav 69:891–898Google Scholar
  146. Ng M, Roorda RD, Lima SQ, Zemelman BV, Morcillo P, Miesenböck G. (2002) Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36:463–474PubMedGoogle Scholar
  147. Niewalda T, Singhal N, Fiala A, Saumweber T, Wegener S, Gerber B (2008) Salt processing in larval Drosophila: Choice, feeding, and learning shift from appetitive to aversive in a concentration-dependent way. Chem Senses 33:685–692PubMedGoogle Scholar
  148. Olsen SR, Bhandawat V, Wilson RI. (2007) Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe. Neuron 54:89–103PubMedGoogle Scholar
  149. Osborne KA, Robicho A, Burgess E, Butland S, Shaw RA, Coulthard A, Pereira HS, Greenspan RJ, Sokolowski MB (1997) Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science 277:834–836PubMedGoogle Scholar
  150. Ozaki M, Wada-Katsumata A, Fujikawa K, Iwasaki M, Yokohari F, Satoji Y, Nisimura T, Yamaoka R. (2005) Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309:311–314PubMedGoogle Scholar
  151. Park SK, Mann KJ, Lin H, Starostina E, Kolski-Andreaco A, Pikielny CW. (2006) A Drosophila protein specific to pheromone-sensing gustatory hairs delays males' copulation attempts. Curr Biol 16:1154–1159PubMedGoogle Scholar
  152. Peele P, Ditzen M, Menzel R, Galizia CG. (2006) Appetitive odor learning does not change olfactory coding in a subpopulation of honeybee antennal lobe neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol [A] 192:1083–1103Google Scholar
  153. Pelz D, Roeske T, Syed Z, de Bruyne M, Galizia CG. (2006) The molecular receptive range of an olfactory receptor in vivo (Drosophila melanogaster Or22a). J Neurobiol 66:1544–1563PubMedGoogle Scholar
  154. Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI, Laurent G. (2002) Oscillations and sparsening of odor representations in the mushroom body. Science 297:359–365PubMedGoogle Scholar
  155. Perisse E, Portelli G, Le Goas S, Teste E, Le Bourg E. (2007) Further characterization of an aversive learning task in Drosophila melanogaster: intensity of the stimulus, relearning, and use of rutabaga mutants. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193:1139–1149PubMedGoogle Scholar
  156. Python F, Stocker RF. (2002) Adult-like complexity of the larval antennal lobe of D. melanogaster despite markedly low numbers of odorant receptor neurons. J Comp Neurol 445:374–387PubMedGoogle Scholar
  157. Quinn WG, Harris WA, Benzer S. (1974) Conditioned behavior in Drosophila melanogaster. Proc Natl Acad Sci USA 71:708–712PubMedGoogle Scholar
  158. Ramaekers A, Magnenat E, Marin EC, Gendre N, Jefferis GSXE, Luo L, Stocker RF. (2005) Glomerular maps without cellular redundancy at successive levels of the Drosophila larval olfactory circuit. Curr Biol 15:982–992PubMedGoogle Scholar
  159. Ressler KJ, Sullivan SL, Buck LB. (1994) Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79:1245–1255PubMedGoogle Scholar
  160. Riemensperger T, Voller T, Stock P, Buchner E, Fiala A. (2005) Punishment prediction by dopaminergic neurons in Drosophila. Curr Biol 15:1953–1960PubMedGoogle Scholar
  161. Robertson HM, Warr CG, Carlson JR. (2003) Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci USA 100:14537–14542PubMedGoogle Scholar
  162. Rodrigues V. (1980) Olfactory behavior of Drosophila melanogaster. In: Siddiqi O, Babu P, Hall LM, Hall JC (eds) Development and nNeurobiology of Drosophila. Plenum, New York, London: Plenum, pp 361–371Google Scholar
  163. Rodrigues V, Siddiqi O. (1978) Genetic-analysis of chemosensory pathway. Proc Indian Acad Sci Sect B Biol Sci 87:147–160Google Scholar
  164. Root CM, Semmelhack JL, Wong AM, Flores J, Wang JW. (2007) Propagation of olfactory information in Drosophila. Proc Natl Acad Sci USA 104:11826–11831PubMedGoogle Scholar
  165. Sachse, S., Rueckert, E., Keller, A., Okada, R., Tanaka, N.K., Ito, K., and Vosshall, L.B. (2007). Activity-dependent plasticity in an olfactory circuit. Neuron 56, 838–850 PubMedGoogle Scholar
  166. Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K (2008) Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452:1002–1006. PubMedGoogle Scholar
  167. Scherer S, Stocker RF, Gerber B. (2003) Olfactory learning in individually assayed Drosophila larvae. Learn Mem 10:217–225PubMedGoogle Scholar
  168. Schipanski A. (2007) Reinforcement processing in larval Drosophila melanogaster. Diploma thesis,. Universität University of Würzburg.Google Scholar
  169. Schipanski A, Yarali A, Niewalda T, Gerber B (2008) Behavioral analyses of sugar processing in choice, feeding, and learning in larval Drosophila. Chem Senses 33:563–573PubMedGoogle Scholar
  170. Schroll1 C, Riemensperger T, Bucher D, Ehmer J, Völler T, Erbgut K, Gerber B, Hendel T, Nagel G, Buchner E, Fiala A. (2006) Light-induced activation of distinct modulatory neurons substitutes for appetitive or aversive reinforcement during associative learning in larval Drosophila. Curr Biol 16:1741–1747PubMedGoogle Scholar
  171. Schlief, M.L., and Wilson, R.I. (2007). Olfactory processing and behavior downstream from highly selective receptor neurons. Nat Neurosci 10, 623–630 PubMedGoogle Scholar
  172. Schwaerzel M, Heisenberg M, Zars T. (2002) Extinction antagonizes olfactory memory at the subcellular level. Neuron 35:951–960PubMedGoogle Scholar
  173. Schwaerzel M. (2003) Localizing engrams of olfactory memories in Drosophila. PhD Thesis, Würzburg: Universitäty of WürzburgGoogle Scholar
  174. Schwaerzel M, Monastirioti M, Scholz H, Friggi-Grelin F, Birman S, Heisenberg M. (2003) Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J Neurosci 23:10495–10502PubMedGoogle Scholar
  175. Schwaerzel M, Jaeckel A, Mueller U. (2007) Signaling at A-kinase anchoring proteins organizes anesthesia-sensitive memory in Drosophila. J Neurosci 27:1229–1233PubMedGoogle Scholar
  176. Scott K, Brady R Jr, Cravchik A, Morozov P, Rzhetsky A, Zuker C, Axel R. (2001) A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104:661–673PubMedGoogle Scholar
  177. Shanbhag SR, Müller B, Steinbrecht RA. (1999) Atlas of olfactory organs of Drosophila melanogaster. 1. Types, external organization, innervation and distribution of olfactory sensilla. Int J Insect Morphol Embryol 28:377–397Google Scholar
  178. Shanbhag SR, Park SK, Pikielny CW, Steinbrecht RA. (2001) Gustatory organs of Drosophila melanogaster fine structure and expression of the putative odorant-binding protein PBPRP2. Cell Tissue Res 304:423–437PubMedGoogle Scholar
  179. Shang Y, Claridge-Chang A, Sjulson L, Pypaert M, Miesenböck G. (2007) Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 128:601–612PubMedGoogle Scholar
  180. Sinakevitch I, Strausfeld NJ. (2006) Comparison of octopamine-like immunoreactivity in the brains of the fruit fly and blow fly. J Comp Neurol 494:460–475PubMedGoogle Scholar
  181. Singh RN. (1998) Neurobiology of the gustatory systems of Drosophila and some terrestrial insects. Microsc Res Techn 39:547–563Google Scholar
  182. Singh RN, Singh K. (1984) Fine structure of the sensory organs of Drosophila melanogaster Meigen lLarva (Diptera: Drosophilidae). Int J Insect Morphol Embryol 13:255–273Google Scholar
  183. Slone J, Daniels J, Amrein H. (2007) Sugar receptors in Drosophila. Curr Biol 17:1809–1816PubMedGoogle Scholar
  184. Sone M, Suzuki E, Hoshino M, Hou D, Kuromi H, Fukata M, Kuroda S, Kaibuchi K, Nabeshima Y, Hama C. (2000) Synaptic development is controlled in the periactive zones of Drosophila synapses. Development 127:4157–4168PubMedGoogle Scholar
  185. Stocker RF. (1994) The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tiss Res 275:3–26Google Scholar
  186. Stocker RF. (2001) Drosophila as a focus in olfactory research: mapping of olfactory sensilla by fine structure, odor specificity, odorant receptor expression and central connectivity. Microsc Res Techn 55:284–296PubMedGoogle Scholar
  187. Stocker RF, Heimbeck G, Gendre N, de Belle JS. (1997) Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. J Neurobiol 32:443–456PubMedGoogle Scholar
  188. Stocker RF, Singh RN, Schorderet M, Siddiqi O. (1983) Projection patterns of different types of antennal sensilla in the antennal glomeruli of Drosophila melanogaster. Cell Tissue Res 232:237–248PubMedGoogle Scholar
  189. Stockinger P, Kvitsiani D, Rotkopf S, Tirian L, Dickson BJ. (2005) Neural circuitry that governs Drosophila male courtship behavior. Cell 121:795–807PubMedGoogle Scholar
  190. Strausfeld NJ, Hildebrand JG. (1999) Olfactory systems: common design, uncommon origins? Curr Opin Neurobiol 9:634–639PubMedGoogle Scholar
  191. Strausfeld NJ, Sinakevitch I, Vilinsky I. (2003) The mushroom bodies of Drosophila melanogaster: an immunocytological and Golgi study of Kenyon cell organization in the calyces and lobes. Microsc Res Tech 62:151–169PubMedGoogle Scholar
  192. Suh GSB, Wong AM, Hergarden AC, Wang JW, Simon AF, Benzer S, Axel R, Anderson DJ. (2004) A single population of olfactory sensory neurons mediates an innate avoidance behavior in Drosophila. Nature 431:854–859PubMedGoogle Scholar
  193. Tamura T, Chiang AS, Ito N, Liu HP, Horiuchi J, Tully T, Saitoe M. (2003) Aging specifically impairs amnesiac-dependent memory in Drosophila. Neuron 40:1003–1011PubMedGoogle Scholar
  194. Tanaka NK, Awasaki T, Shimada T, Ito K. (2004) Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr Biol 14:449–457PubMedGoogle Scholar
  195. Tanaka, N.K., Tanimoto, H., and Ito, K. (2008). Neuronal assemblies of the Drosophila mushroom body. J Comp Neurol 508, 711–755PubMedGoogle Scholar
  196. Tanimura T, Isono K, Takamura T, Shimada I. (1982) Genetic dimorphism in the taste sensitivity to trehalose in Drosophila melanogaster. J Comp Physiol [A] 147:433–437Google Scholar
  197. Tanimura T, Isono K, Yamamoto M-T. (1988) Taste sensitivity to trehalose and its alteration by gene dosage in Drosophila melanogaster. Genetics 119:366–406Google Scholar
  198. Tempel BL, Bonini N, Dawson DR, Quinn WG. (1983) Reward learning in normal and mutant Drosophila. Proc Natl Acad Sci USA 80:1482–1486PubMedGoogle Scholar
  199. Thorne N, Chromey C, Bray S, Amrein H. (2004) Taste perception and coding in Drosophila. Curr Biol 14:1065–1079PubMedGoogle Scholar
  200. Thum AS, Jenett A, Ito K, Heisenberg M, Tanimoto H. (2007) Multiple memory traces for olfactory reward learning in Drosophila. J Neurosci 27:11132–11138PubMedGoogle Scholar
  201. Tully T, Quinn WG. (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol [A] 157:263–277PubMedGoogle Scholar
  202. Tully T, Cambiazo V, Kruse L. (1994) Memory through metamorphosis in normal and mutant Drosophila. J Neurosci 14:68–74PubMedGoogle Scholar
  203. Trehalose sensitivity in Drosophila correlates with mutations in and expression of the gustatory receptor gene Gr5a. Curr Biol 11:1451–1455PubMedGoogle Scholar
  204. Van der Goes van Naters W, Carlson JR. (2007) Receptors and neurons for fly odors in Drosophila. Curr Biol 17:606–612Google Scholar
  205. Vassar R, Chao SK, Sitcheran R, Nunez JM, Vosshall LB, Axel R. (1994) Topographic organization of sensory projections to the olfactory bulb. Cell 79:981–991PubMedGoogle Scholar
  206. Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R. (1999) A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96:725–736PubMedGoogle Scholar
  207. Vosshall LB, Wong AM, Axel R. (2000) An olfactory sensory map in the fly brain. Cell 102:147–159.PubMedGoogle Scholar
  208. Vosshall LB, Stocker RF. (2007) Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci 30:505–533PubMedGoogle Scholar
  209. Waddell S, Armstrong JD, Kitamoto T, Kaiser K, Quinn WG. (2000) The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical for memory. Cell 103:805–813PubMedGoogle Scholar
  210. Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, Durrbeck H, Buchner S, Dabauvalle MC, Schmidt M, Qin G, Wichmann C, Kittel R, Sigrist SJ, Buchner E. (2006) Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49:833–844PubMedGoogle Scholar
  211. Wang Y, Guo HF, Pologruto TA, Hannan F, Hakker I, Svoboda K, Zhong Y. (2004a) Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging. J Neurosci 24:6507–6514Google Scholar
  212. Wang Z, Singhvi A, Kong P, Scott K. (2004b) Taste representations in the Drosophila brain. Cell 117:981–991Google Scholar
  213. Wicher D, Schafer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, Hansson BS(2008) Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452:1007–1011 PubMedGoogle Scholar
  214. Wilson RI, Laurent G. (2005) Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci 25:9069–9079PubMedGoogle Scholar
  215. Wilson RI, Turner GC, Laurent G. (2004) Transformation of olfactory representations in the Drosophila antennal lobe. Science 303:366–370PubMedGoogle Scholar
  216. Wolfe MS. (2007) When loss is gain: reduced presenilin proteolytic function leads to increased Abeta42/Abeta40. Talking pPoint on the role of presenilin mutations in Alzheimer disease. EMBO Rep 8:136–140PubMedGoogle Scholar
  217. Wong AM, Wang JW, Axel R. (2002) Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109:229–241PubMedGoogle Scholar
  218. Wustmann G, Rein K, Wolf R, Heisenberg M. (1996) A new paradigm for operant conditioning of Drosophila melanogaster. J Comp Physiol [A] 179:429–436PubMedGoogle Scholar
  219. Yao CA, Ignell R, Carlson JR. (2005) Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna. J Neurosci 25:8359–8367PubMedGoogle Scholar
  220. Yarali T, Hendel B, Gerber B. (2007) Olfactory learning and behaviour are ‘insulated’ against visual processing in larval Drosophila. J Comp Physiol [A] 192:1133–1145Google Scholar
  221. Yasuyama K, Meinertzhagen IA, Schürmann FW. (2002) Synaptic organization of the mushroom body calyx in Drosophila melanogaster. J Comp Neurol 445:211–226PubMedGoogle Scholar
  222. Yu D, Ponomarev A, Davis RL (2004) Altered representation of the spatial code for odors after olfactory classical conditioning: memory trace formation by synaptic recruitment. Neuron 42:437–449PubMedGoogle Scholar
  223. Yu D, Keene AC, Srivatsan A, Waddell S, Davis RL. (2005) Drosophila DPM neurons form a delayed and branch-specific memory trace after olfactory classical conditioning. Cell 123:945–957PubMedGoogle Scholar
  224. Zars T. (2000) Behavioral functions of the insect mushroom bodies. Curr Opin Neurobiol 10:790–795PubMedGoogle Scholar
  225. Zars T, Fischer M, Schulz R, Heisenberg M. (2000) Localization of a short-term memory in Drosophila. Science 288:672–675PubMedGoogle Scholar
  226. Zeng X, Sun M, Liu L, Chen F, Wei L, Xie W. (2007) Neurexin-1 is required for synapse formation and larvae associative learning in Drosophila. FEBS Lett 581:2509–2516PubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2009

Authors and Affiliations

  • B. Gerber
    • 1
  • R.F. Stocker
    • 2
  • T. Tanimura
    • 3
  • A.S. Thum
    • 2
  1. 1.Universität WürzburgWürzburgGermany
  2. 2.Department of BiologyUniversity of FribourgFribourgSwitzerland
  3. 3.Department of Biology, Graduate School of SciencesKyushu UniversityRopponmatsuJapan

Personalised recommendations