The Role of TNF in Cancer

  • Harald Wajant
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 49)


Tumor necrosis factor (TNF) is an extraordinarily pleiotropic cytokine with a central role in immune homeostasis, inflammation, and host defense. Dependent on the cellular context, it can induce such diverse effects as apoptosis, necrosis, angiogenesis, immune cell activation, differentiation, and cell migration. These processes are of great relevance in tumor immune surveillance, and also play crucial roles in tumor development and tumor progression. It is therefore no surprise that TNF in a context-dependent manner displays pro- and antitumoral effects. Modulation of the activity of the TNF–TNF receptor system thus offers manifold possibilities for cancer therapy. In fact, TNF in combination with melphalan is already an established treatment option in the therapy of advanced soft tissue sarcoma of the extremities and many preclinical data suggest that TNF neutralization could also be exploited to fight cancer or cancer-associated complications.


Tumor Necrosis Factor Tumor Necrosis Factor Receptor Isolate Limb Perfusion Transient Receptor Potential Channel Vanilloid Tumor Necrosis Factor Receptor Superfamily 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





Antigen presenting cell




Cellular inhibitor of apoptosis protein-1/2




Dextran sulfate sodium salt


Epithelial–mesenchymal transition


Extracellular-regulated kinase


Fas-associated death domain


Glycogen synthase kinase


Isolated limb perfusion


cJun N-terminal kinase


Lymphocytic choriomeningitis virus




Monocyte chemoattractant protein-1


Multidrug resistance p-glycoprotein 2


Matrix metalloprotease-9


Ocadaic acid


Pancreatic ductal adenocarcinoma

p38 MAPK

p38 mitogen-activated protein (MAP) kinase


Receptor activator of NF-kappaB




Transient receptor potential channel vanilloid type 1


Vascular endothelial growth factor (VEGF) receptor


  1. Adam-Klages S, Adam D, Wiegmann K, Struve S, Kolanus W, Schneider-Mergener J, Krönke M (1996) FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell 86:937–947CrossRefPubMedGoogle Scholar
  2. Arnott CH, Scott KA, Moore RJ, Hewer A, Phillips DH, Parker P, Balkwill FR, Owens DM (2002) Tumour necrosis factor-alpha mediates tumour promotion via a PKC alpha- and AP-1-dependent pathway. Oncogene 21:4728–4738CrossRefPubMedGoogle Scholar
  3. Arnott CH, Scott KA, Moore RJ, Robinson SC, Thompson RG, Balkwill FR (2004) Expression of both TNF-alpha receptor subtypes is essential for optimal skin tumour development Oncogene 23:1902–1910CrossRefPubMedGoogle Scholar
  4. Bates RC, Mercurio AM (2003) Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol Biol Cell 14:1790–1800CrossRefPubMedGoogle Scholar
  5. Beutler B, Greenwald D, Hulmes JD, Chang M, Pan YC, Mathison J, Ulevitch R, Cerami A (1985) Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316:552–554CrossRefPubMedGoogle Scholar
  6. Binder RL, Gallagher PM, Johnson GR, Stockman SL, Smith BJ, Sundberg JP, Conti CJ (1997) Evidence that initiated keratinocytes clonally expand into multiple existing hair follicles during papilloma histogenesis in SENCAR mouse skin. Mol Carcinog 20:151–158CrossRefPubMedGoogle Scholar
  7. Bodmer JL, Schneider P, Tschopp J (2002) The molecular architecture of the TNF superfamily. Trends Biochem Sci 27:19–26CrossRefPubMedGoogle Scholar
  8. Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling Arch Biochem Biophys 473:139–146CrossRefPubMedGoogle Scholar
  9. Brown ER, Charles KA, Hoare SA, Rye RL, Jodrell DI, Aird RE, Vora R, Prabhakar U, Nakada M, Corringham RE, DeWitte M, Sturgeon C, Propper D, Balkwill FR, Smyth JF (2008) A clinical study assessing the tolerability and biological effects of infliximab, a TNF-alpha inhibitor, in patients with advanced cancer. Ann Oncol 19:1340–1346CrossRefPubMedGoogle Scholar
  10. Calzascia T, Pellegrini M, Hall H, Sabbagh L, Ono N, Elford AR, Mak TW, Ohashi PS (2007) TNF-alpha is critical for antitumor but not antiviral T cell immunity in mice. J Clin Invest 117:3833–3845PubMedGoogle Scholar
  11. Chan FK, Lenardo MJ (2000) A crucial role for p80 TNF-R2 in amplifying p60 TNF-R1 apoptosis signals in T lymphocytes. Eur J Immunol 30:652–660CrossRefPubMedGoogle Scholar
  12. Choo MK, Sakurai H, Koizumi K, Saiki I (2005) Stimulation of cultured colon 26 cells with TNF-alpha promotes lung metastasis through the extracellular signal-regulated kinase pathway. Cancer Lett 230:47–56CrossRefPubMedGoogle Scholar
  13. Chuang MJ, Sun KH, Tang SJ, Deng MW, Wu YH, Sung JS, Cha TL, Sun GH (2008) Tumor-derived tumor necrosis factor-alpha promotes progression and epithelial-mesenchymal transition in renal cell carcinoma cells. Cancer Sci 99:905–913CrossRefPubMedGoogle Scholar
  14. Constantin CE, Mair N, Sailer CA, Andratsch M, Xu ZZ, Blumer MJ, Scherbakov N, Davis JB, Bluethmann H, Ji RR, Kress M (2008) Endogenous tumor necrosis factor alpha (TNFalpha) requires TNF receptor type 2 to generate heat hyperalgesia in a mouse cancer model J Neurosci 28:5072–5081CrossRefPubMedGoogle Scholar
  15. Correa P (2003) Helicobacter pylori infection and gastric cancer. Cancer Epidemiol Biomarkers Prev 12:238s–241sPubMedGoogle Scholar
  16. Cubillos S, Scallon B, Feldmann M, Taylor P (1997) Effect of blocking TNF on IL-6 levels and metastasis in a B16-BL6 melanoma/mouse model. Anticancer Res 17:2207–2211PubMedGoogle Scholar
  17. Egberts JH, Cloosters V, Noack A, Schniewind B, Thon L, Klose S, Kettler B, von Forstner C, Kneitz C, Tepel J, Adam D, Wajant H, Kalthoff H, Trauzold A (2008) Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res Mar 68:1443–1450CrossRefGoogle Scholar
  18. Fotin-Mleczek M, Henkler F, Samel D, Reichwein M, Hausser A, Parmryd I, Scheurich P, Schmid JA, Wajant H (2002) Apoptotic crosstalk of TNF receptors: TNF-R2-induces depletion of TRAF2 and IAP proteins and accelerates TNF-R1-dependent activation of caspase-8. J Cell Sci 115:2757–2770PubMedGoogle Scholar
  19. Grell M, Douni E, Wajant H, Löhden M, Clauss M, Maxeiner B, Georgopoulos S,Lesslauer W, Kollias G, Pfizenmaier K, Scheurich P (1995) The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83:793–802CrossRefPubMedGoogle Scholar
  20. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer Cell 118:285–296CrossRefPubMedGoogle Scholar
  21. Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS Jr (2000) NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289:2363–2366CrossRefPubMedGoogle Scholar
  22. Harrison ML, Obermueller E, Maisey NR, Hoare S, Edmonds K, Li NF, Chao D, Hall K, Lee C, Timotheadou E, Charles K, Ahern R, King DM, Eisen T, Corringham R, DeWitte M, Balkwill F, Gore M (2007) Tumor necrosis factor alpha as a new target for renal cell carcinoma: two sequential phase II trials of infliximab at standard and high dose. J Clin Oncol 25:4542–4549CrossRefPubMedGoogle Scholar
  23. Hong S, Lim S, Li AG, Lee C, Lee YS, Lee EK, Park SH, Wang XJ, Kim SJ (2007) Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2. Nat Immunol 8:504–513CrossRefPubMedGoogle Scholar
  24. van Horssen R, Ten Hagen TL, Eggermont AM (2006) TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist 11:397–408CrossRefPubMedGoogle Scholar
  25. Knight B, Yeoh GC, Husk KL, Ly T, Abraham LJ, Yu C, Rhim JA, Fausto N (2000) Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice. J Exp Med 192:1809–1818CrossRefPubMedGoogle Scholar
  26. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Morinaga T, Higashio K, Martin TJ, Suda T (2000) Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 191:275–286CrossRefPubMedGoogle Scholar
  27. Li X, Yang Y, Ashwell JD (2002) TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 416:345–347CrossRefPubMedGoogle Scholar
  28. Lin Y, Devin A, Rodriguez Y, Liu ZG (1999) Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev 13:2514–2526CrossRefPubMedGoogle Scholar
  29. Lin Y, Choksi S, Shen HM, Yang QF, Hur GM, Kim YS, Tran JH, Nedospasov SA, Liu ZG (2004) Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem 279:10822–10828CrossRefPubMedGoogle Scholar
  30. Luo JL, Maeda S, Hsu LC, Yagita H, Karin M (2004) Inhibition of NF-kappaB in cancer cells converts inflammation- induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell 6:297–305CrossRefPubMedGoogle Scholar
  31. Monk JP, Phillips G, Waite R, Kuhn J, Schaaf LJ, Otterson GA, Guttridge D, Rhoades C, Shah M, Criswell T, Caligiuri MA, Villalona-Calero MA (2006) Assessment of tumor necrosis factor alpha blockade as an intervention to improve tolerability of dose-intensive chemotherapy in cancer patients. J Clin Oncol 24:1852–1859CrossRefPubMedGoogle Scholar
  32. Moore RJ, Owens DM, Stamp G, Arnott C, Burke F, East N, Holdsworth H, Turner L, Rollins B, Pasparakis M, Kollias G, Balkwill F (1999) Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat Med 5:828–831CrossRefPubMedGoogle Scholar
  33. Muppidi JR, Tschopp J, Siegel RM (2004) Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity 21:461–465CrossRefPubMedGoogle Scholar
  34. Müller-Hermelink N, Braumüller H, Pichler B, Wieder T, Mailhammer R, Schaak K, Ghoreschi K, Yazdi A, Haubner R, Sander CA, Mocikat R, Schwaiger M, Förster I, Huss R, Weber WA, Kneilling M, Röcken M (2008) TNFR1 signaling and IFN-gamma signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell 13:507–518CrossRefPubMedGoogle Scholar
  35. Oguma K, Oshima H, Aoki M, Uchio R, Naka K, Nakamura S, Hirao A, Saya H, Taketo MM, Oshima M (2008) Activated macrophages promote Wnt signalling through tumour necrosis factor-alpha in gastric tumour cells. EMBO J 27:1671–1681CrossRefPubMedGoogle Scholar
  36. Orosz P, Echtenacher B, Falk W, Rüschoff J, Weber D, Männel DN (1993) Enhancement of experimental metastasis by tumor necrosis factor. J Exp Med 177:1391–1398CrossRefPubMedGoogle Scholar
  37. Ouyang W, Hu Y, Li J, Ding M, Lu Y, Zhang D, Yan Y, Song L, Qu Q, Desai D, Amin S, Huang C (2007) Direct evidence for the critical role of NFAT3 in benzo[a]pyrene diol-epoxide-induced cell transformation through mediation of inflammatory cytokine TNF induction in mouse epidermal Cl41 cells. Carcinogenesis 28:2218–2226CrossRefPubMedGoogle Scholar
  38. Pan S, An P, Zhang R, He X, Yin G, Min W (2002) Etk/Bmx as a tumor necrosis factor receptor type 2-specific kinase: role in endothelial cell migration and angiogenesis. Mol Cell Biol 22:7512–7523CrossRefPubMedGoogle Scholar
  39. Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8:49–62CrossRefPubMedGoogle Scholar
  40. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431:461–466CrossRefPubMedGoogle Scholar
  41. Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S, Oshima M, Fujii C, Mukaida N (2008). Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 118:560–570PubMedGoogle Scholar
  42. Qin Z, Krüger-Krasagakes S, Kunzendorf U, Hock H, Diamantstein T, Blankenstein T (1993) Expression of tumor necrosis factor by different tumor cell lines results either in tumor suppression or augmented metastasis. J Exp Med 178:355–360CrossRefPubMedGoogle Scholar
  43. Rothe M, Wong SC, Henzel WJ, Goeddel DV (1994) A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78:681–692CrossRefPubMedGoogle Scholar
  44. Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV (1995) The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83:1243–1252CrossRefPubMedGoogle Scholar
  45. Schütze S, Tchikov V, Schneider-Brachert W (2008) Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nat Rev Mol Cell Biol 9(8):655–662CrossRefPubMedGoogle Scholar
  46. Schwandner R, Wiegmann K, Bernardo K, Kreder D, Kronke M (1998) TNF receptor death domain-associated proteins TRADD and FADD signal activation of acid sphingomyelinase. J Biol Chem 273:5916–5922CrossRefPubMedGoogle Scholar
  47. Scott KA, Arnott CH, Robinson SC, Moore RJ, Thompson RG, Marshall JF, Balkwill FR (2004) TNF-alpha regulates epithelial expression of MMP-9 and integrin alphavbeta6 during tumour promotion. A role for TNF-alpha in keratinocyte migration? Oncogene 23:6954–6966CrossRefPubMedGoogle Scholar
  48. Suganuma M, Okabe S, Marino MW, Sakai A, Sueoka E, Fujiki H (1999) Essential role of tumor necrosis factor alpha (TNF-alpha) in tumor promotion as revealed by TNF-alpha-deficient mice. Cancer Res 59:4516–4518PubMedGoogle Scholar
  49. Swann JB, Vesely MD, Silva A, Sharkey J, Akira S, Schreiber RD, Smyth MJ (2007) Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proc Natl Acad Sci USA 105:652–656CrossRefGoogle Scholar
  50. Tookman AJ, Jones CL, Dewitte M, Lodge PJ (2008) Fatigue in patients with advanced cancer: a pilot study of an intervention with infliximab. Support Care Cancer 16(10):1131–1140CrossRefPubMedGoogle Scholar
  51. ame>Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65CrossRefGoogle Scholar
  52. ame>Wang AM, Creasey AA, Ladner MB, Lin LS, Strickler J, Van Arsdell JN, Yamamoto R, Mark DF (1985) Molecular cloning of the complementary DNA for human tumor necrosis factor. Science 228:149–154CrossRefGoogle Scholar
  53. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr (1998) NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680–1683CrossRefPubMedGoogle Scholar
  54. Waterston AM, Salway F, Andreakos E, Butler DM, Feldmann M, Coombes RC (2004) TNF autovaccination induces self anti-TNF antibodies and inhibits metastasis in a murine melanoma model. Br J Cancer 90:1279–1284CrossRefPubMedGoogle Scholar
  55. Weiss T, Grell M, Hessabi B, Bourteele S, Müller G, Scheurich P, Wajant H (1997) Enhancement of TNF receptor p60-mediated cytotoxicity by TNF receptor p80: requirement of the TNF receptor-associated factor-2 binding site. J Immunol 158:2398–2404PubMedGoogle Scholar
  56. Wiedenmann B, Malfertheiner P, Friess H, Ritch P, Arseneau J, Mantovani G, Caprioni F, Van Cutsem E, Richel D, DeWitte M, Qi M, Robinson D Jr, Zhong B, De Boer C, Lu JD, Prabhakar U, Corringham R, Von Hoff D (2008) A multicenter, phase II study of infliximab plus gemcitabine in pancreatic cancer cachexia. J Support Oncol 6(1):18–25PubMedGoogle Scholar
  57. Wu CJ, Conze DB, Li X, Ying SX, Hanover JA, Ashwell JD (2005) TNF-alpha induced c-IAP1/TRAF2 complex translocation to a Ubc6-containing compartment and TRAF2 ubiquitination. EMBO J 24:1886–1898CrossRefPubMedGoogle Scholar
  58. Zhang YH, Heulsmann A, Tondravi MM, Mukherjee A, Abu-Amer Y (2001) Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J Biol Chem 276:563–568CrossRefPubMedGoogle Scholar
  59. Zhang R, Xu Y, Ekman N, Wu Z, Wu J, Alitalo K, Min W (2003) Etk/Bmx transactivates vascular endothelial growth factor 2 and recruits phosphatidylinositol 3-kinase to mediate the tumor necrosis factor-induced angiogenic pathway. J Biol Chem 278:51267–51276CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Molecular MedicineMedical Clinic and Polyclinic II, University of WürzburgWuerzburgGermany

Personalised recommendations