Advertisement

The NPB/NPW Neuropeptide System and Its Role in Regulating Energy Homeostasis, Pain, and Emotion

  • Mari Hondo
  • Makoto Ishii
  • Takeshi Sakurai
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 46)

Abstract

Neuropeptide B (NPB) and neuropeptide W (NPW) are neuropeptides that were recently identified as endogenous ligands for the previously orphan G-protein coupled receptors, GPR7 (NPBWR1) and GPR8 (NPBWR2). This neuropeptide system is thought to have a role in regulating feeding behavior, energy homeostasis, neuroendocrine function, and modulating inflammatory pain. Strong and discrete expression of their receptors in the extended amygdala suggests a potential role in regulating stress responses, emotion, anxiety and fear; however, there have been no functional studies to date to support this possibility. Future studies of NPB/NPW using both pharmacological and phenotypic analysis of genetically engineered mice will lead to further elucidation of the physiological role of this novel neuropeptide system.

Keywords

Ventral Tegmental Area Spinal Dorsal Horn Extended Amygdala Physiol Regul Integr Comp Regulate Feeding Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreis P, Rucinski M, Neri G, Conconi M, Petrelli L, Parnigotto P, Malendowicz L, Nussdorfer G (2005) Neuropeptides B and W enhance the growth of human adrenocortical carcinoma-derived NCI-H295 cells by exerting MAPK p42/p44-mediated proliferogenic and antiapoptotic effects. Int J Mol Med 16:1021–1028 PubMedGoogle Scholar
  2. Brezillon S, Lannoy V, Franssen JD, Le Poul E, Dupriez V, Lucchetti J, Detheux M, Parmentier M (2003) Identification of natural ligands for the orphan G protein-coupled receptors GPR7 and GPR8. J Biol Chem 278:776–783. Epub 2002 Oct 2024 Google Scholar
  3. Davenport A, Singh G (2005a) Neuropeptide W/neuropeptide B receptors—NPBW1. IUPHAR Receptor database, (doi:10.1786/080844542445) Google Scholar
  4. Davenport A, Singh G (2005b) Neuropeptide W/neuropeptide B receptors—NPBW2. IUPHAR Receptor database, (doi:10.1786/034846726310) Google Scholar
  5. Davis M, Shi C (1999) Extended amygdala and basal forebrain. Ann NY Acad Sci 877:281–291 PubMedCrossRefGoogle Scholar
  6. Fujii R, Yoshida H, Fukusumi S, Habata Y, Hosoya M, Kawamata Y, Yano T, Hinuma S, Kitada C, Asami T et al. (2002) Identification of a neuropeptide modified with bromine as an endogenous ligand for GPR7. J Biol Chem 277:34010–34016. Epub 32002 Jul 34012 Google Scholar
  7. Hochol A, Belloni A, Rucinski M, Ziolkowska A, Di Liddo R, Nussdorfer G, Malendowicz L (2006) Expression of neuropeptides B and W and their receptors in endocrine glands of the rat. Int J Mol Med 18:1101–1106 PubMedGoogle Scholar
  8. Hochol A, Tortorella C, Ricinski M, Ziolkowska A, Nussdorfer G, Malendowicz L (2007) Effects of neuropeptides B and W on the rat pituitary-adrenocortical axis: in vivo and in vitro studies. Int J Mol Med 19:207–211 PubMedGoogle Scholar
  9. Ishii M, Fei H, Friedman JM (2003) Targeted disruption of GPR7, the endogenous receptor for neuropeptides B and W, leads to metabolic defects and adult-onset obesity. Proc Natl Acad Sci USA 100:10540–10545. Epub 12003 Aug 10518 Google Scholar
  10. Jackson VR, Lin SH, Wang Z, Nothacker HP, Civelli O (2006) A study of the rat neuropeptide B/neuropeptide W system using in situ techniques. J Comp Neurol 497:367–383 PubMedCrossRefGoogle Scholar
  11. Kelly MA, Beuckmann CT, Williams SC, Sinton CM, Motoike T, Richardson JA, Hammer RE, Garry MG, Yanagisawa M (2005) Neuropeptide B-deficient mice demonstrate hyperalgesia in response to inflammatory pain. Proc Natl Acad Sci USA 102:9942–9947 PubMedCrossRefGoogle Scholar
  12. Kitamura Y, Tanaka H, Motoike T, Ishii M, Williams SC, Yanagisawa M, Sakurai T (2006) Distribution of neuropeptide W immunoreactivity and mRNA in adult rat brain. Brain Res 1093:123–134 PubMedCrossRefGoogle Scholar
  13. Lee DK, Nguyen T, Porter CA, Cheng R, George SR, O'Dowd BF (1999) Two related G protein-coupled receptors: the distribution of GPR7 in rat brain and the absence of GPR8 in rodents. Brain Res Mol Brain Res 71:96–103 PubMedCrossRefGoogle Scholar
  14. Levine A, Winsky-Sommerer R, Huitron-Resendiz S, Grace M, de Lecea L (2005) Injection of neuropeptide W into paraventricular nucleus of hypothalamus increases food intake. Am J Physiol Regul Integr Comp Physiol 288:R1727–R1732 PubMedGoogle Scholar
  15. Lucyk S, Miskolzie M, Kotovych G (2005) NMR conformational analyses on (des-bromo) neuropeptide B [1–23] and neuropeptide W [1–23]: the importance of alpha-helices, a cation-pi interaction and a beta-turn. J Biomol Struct Dyn 23:77–90 PubMedGoogle Scholar
  16. Mazzocchi G, Rebuffat P, Ziolkowska A, Rossi G, Malendowicz L, Nussdorfer G (2005) G protein receptors 7 and 8 are expressed in human adrenocortical cells, and their endogenous ligands neuropeptides B and w enhance cortisol secretion by activating adenylate cyclase- and phospholipase C-dependent signaling cascades. J Clin Endocrinol Metab 90:3466–3471 PubMedCrossRefGoogle Scholar
  17. Mondal MS, Yamaguchi H, Date Y, Shimbara T, Toshinai K, Shimomura Y, Mori M, Nakazato M (2003) A role for neuropeptide W in the regulation of feeding behavior. Endocrinology 144:4729–4733. Epub 2003 Aug 4727 Google Scholar
  18. O'Dowd BF, Scheideler MA, Nguyen T, Cheng R, Rasmussen JS, Marchese A, Zastawny R, Heng HH, Tsui LC, Shi X et al. (1995) The cloning and chromosomal mapping of two novel human opioid-somatostatin-like receptor genes, GPR7 and GPR8, expressed in discrete areas of the brain. Genomics 28:84–91 PubMedCrossRefGoogle Scholar
  19. Samson WK, Baker JR, Samson CK, Samson HW, Taylor MM (2004) Central neuropeptide B administration activates stress hormone secretion and stimulates feeding in male rats. J Neuroendocrinol 16:842–849 PubMedCrossRefGoogle Scholar
  20. Schulz S, Stumm R, Hollt V (2007) Immunofluorescent identification of neuropeptide B-containing nerve fibers and terminals in the rat hypothalamus. Neurosci Lett 411:67–71 PubMedCrossRefGoogle Scholar
  21. Shimomura Y, Harada M, Goto M, Sugo T, Matsumoto Y, Abe M, Watanabe T, Asami T, Kitada C, Mori M et al. (2002) Identification of neuropeptide W as the endogenous ligand for orphan G-protein-coupled receptors GPR7 and GPR8. J Biol Chem 277:35826–35832. Epub 32002 Jul 35818 Google Scholar
  22. Singh G, Maguire JJ, Kuc RE, Fidock M, Davenport AP (2004) Identification and cellular localisation of NPW1 (GPR7) receptors for the novel neuropeptide W-23 by [125I]-NPW radioligand binding and immunocytochemistry. Brain Res 1017:222–226 PubMedCrossRefGoogle Scholar
  23. Tanaka H, Yoshida T, Miyamoto N, Motoike T, Kurosu H, Shibata K, Yamanaka A, Williams SC, Richardson JA, Tsujino N et al. (2003) Characterization of a family of endogenous neuropeptide ligands for the G protein-coupled receptors GPR7 and GPR8. Proc Natl Acad Sci USA 100:6251–6256. Epub 2003 Apr 6228 Google Scholar
  24. Taylor M, Yuill E, Baker J, Ferri C, Ferguson A, Samson W (2005) Actions of neuropeptide W in paraventricular hypothalamus: implications for the control of stress hormone secretion. Am J Physiol Regul Integr Comp Physiol 288:R270–R275 PubMedGoogle Scholar
  25. Tim van B, Brian EH, Deirdre KL, Kathleen MK, Kazushige T, Emilio P, Motoyashi S, Louis ML, Robert JL (1995) Receptor-tyrosine-kinase-and Gβγ-mediated MAP kinase activation by a common signalling pathway. Nature 376:781–784 CrossRefGoogle Scholar
  26. Yamamoto T, Saito O, Shono K, Tanabe S (2005) Anti-hyperalgesic effects of intrathecally administered neuropeptide W-23, and neuropeptide B, in tests of inflammatory pain in rats. Brain Res 1045:97–106 PubMedGoogle Scholar
  27. Yu N, Kunitake T, Kato K, Nakazato M, Kannan H (2007) Effects of intracerebroventricular administration of neuropeptide W30 on neurons in the hypothalamic paraventricular nucleus in the conscious rat. Neurosci Lett [Epub ahead of print] Google Scholar
  28. Zaratin P, Quattrini A, Previtali S, Comi G, Hervieu G, Scheideler M (2005) Schwann cell overexpression of the GPR7 receptor in inflammatory and painful neuropathies. Mol Cell Neurosci 28:55–63 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of Molecular Neuroscience and Integrative Physiology, Graduate School of Medical ScienceKanazawa UniversityKanazawa, IshikawaJapan
  2. 2.Yanagisawa Orphan Receptor Project, ERATOJapan Science and Technology AgencyTokyoJapan

Personalised recommendations