Advertisement

Regulation of Excitability by Potassium Channels

  • O. Pongs
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 44)

Abstract

Neurons express a large number of different voltage-gated potassium (Kv) channels with distinct biophysical and biochemical properties. Possibly, this diversity reflects the need to regulate and fine-tune neuronal excitability at various levels of complexity in space and time. In this context, Kv channels operating in the subthreshold range of action- potential firing are of particular interest. It is likely that these Kv channels play a prominent role in both propagating and integrating dendritic signaling, as well as axonal action-potential firing and propagation.

Keywords

Potassium Channel Temporal Lobe Epilepsy Neuronal Excitability Voltage Sensor Tetramerization Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattson KI, Strassle BW, Trimmer JS, Rhodes KJ (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403:553–556 PubMedCrossRefGoogle Scholar
  2. 2.
    Ashizara T, Butler IJ, Harati Y, Roontga SM (1983) A dominantly inherited syndrome with continuous motor neuron discharges. Ann Neurol 13:285–290 CrossRefGoogle Scholar
  3. 3.
    Baranauskas G, Tkatch T, Nagata K, Yeh JZ, Surmeier DJ (2003) Kv3.4 subunits enhance the repolarizing efficiency of Kv3.1 channels in fast-spiking neurons. Nat Neurosci 6:258–266 PubMedCrossRefGoogle Scholar
  4. 4.
    Bernard C, Anderson A, Becker A, Poolos NP, Beck H, Johnston D. Acquired dendritic channelopathy in temporal lobe epilepsy. Science 305:532–535 Google Scholar
  5. 5.
    Bond CT, Maylie J, Adelman JP (2005) SK channels in excitability, pacemaking and synaptic integration. Curr Opin Neurobiol 15:305–311 PubMedCrossRefGoogle Scholar
  6. 6.
    Browne DL, Gancher ST, Nutt JG, Brunt ERP, Smith EA, Kramer P, Litt M (1994) Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene KCNA1. Nat Genet 8:136–140 PubMedCrossRefGoogle Scholar
  7. 7.
    Cai X, Liang CW, Muralidharan S, Kao JPY, Tang CM, Thompson SM (2004) Unique roles of SK and Kv4.2 Potassium channels in dendritic integration. Neuron 44:351–364 PubMedCrossRefGoogle Scholar
  8. 8.
    Callsen B, Isbrandt D, Sauter K, Hartmann LS, Pongs O, Bähring R (2005) Contribution of N- and C-terminal Kv4.2 channel domains to KChIP interaction. J Physiol 568:397–412 PubMedCrossRefGoogle Scholar
  9. 9.
    Cooper EC, Milroy A, Jan YN, Jan LY, Lowenstein DH (1998) Presynaptic localization of Kv1.4-containing A-type potassium channels near excitatory synapses in the hippocampus. J Neurosci 18:965–974 PubMedGoogle Scholar
  10. 10.
    Cooper EC, Aldape KD, Abosch A, Barbaro NM, Berger MS, Peacock WS, Jan YN, Jan LY (2000) Colocalization and coassembly of two human brain M-type potassium channel subunits that are mutated in epilepsy. Proc Natl Acad Sci USA 97:4914–4919 PubMedCrossRefGoogle Scholar
  11. 11.
    Cui J, Aldrich RW (2000) Allosteric linkage between voltage and Ca2+-dependent activation of BK-type mslo1 K+ channels. Biochemistry 39:15612–15619 PubMedCrossRefGoogle Scholar
  12. 12.
    Dedek K, Fusco L, Teloy N, Steinlein OK (2003) Neonatal convulsions and epileptic encephalopathy in an Italian family with a missense mutation in the fifth transmembrane region of KCNQ2. Epilepsy Res 54:21–27 PubMedCrossRefGoogle Scholar
  13. 13.
    Delmas P, Brown DA (2005) Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 6:850–862 PubMedCrossRefGoogle Scholar
  14. 14.
    Diochot S, Schweitz H, Béress L, Lazdunski M (1998) Sea anemone peptides with a specific blocking activity against the fast inactivating potassium channel Kv3.4. J Biol Chem 273:6744–6749 PubMedCrossRefGoogle Scholar
  15. 15.
    Drewe JA, Verma S, Frech G, Joho RH (1992) Distinct spatial and temporal expression patterns of K+ channel mRNAs from different subfamilies. J Neurosci 12:538–548 PubMedGoogle Scholar
  16. 16.
    Fagni L, Chavis P, Ango F, Bockaert J (2000) Complex interactions between mGluRs, intracellular Ca2+ stores and ion channels in neurons. Trends Neurosci 23:80–88 PubMedCrossRefGoogle Scholar
  17. 17.
    Fisher TE, Voisin DL, Bourque CW (1998) Density of transient K+ current influences excitability in acutely isolated vasopressin and oxytocin neurones of rat hypothalamus. J Physiol 511:423–432 PubMedCrossRefGoogle Scholar
  18. 18.
    Frech GC, VanDongen AMJ, Schuster G, Brown AM, Joho RH (1989) A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning. Nature 340:642–645 PubMedCrossRefGoogle Scholar
  19. 19.
    Geiger JRP, Jonas P (2000) Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28:927–939 PubMedCrossRefGoogle Scholar
  20. 20.
    Gouaux E, MacKinnon R (2005) Principles of selective ion transport in channels and pumps. Science 310:1461–1465 PubMedCrossRefGoogle Scholar
  21. 21.
    Haley JE, Delmas P, Offermanns S, Abogadie FC, Simon MI, Buckley NJ, Brown DA (2000) Muscarinic inhibition of calcium current and M current in Gα q-deficient mice. J Neurosci 20:3973–3979 PubMedGoogle Scholar
  22. 22.
    Herson PS, Virk M, Rustay NR, Bond CT, Crabbe JC, Adelman JP, Maylie J (2003) A mouse model of episodic ataxia type-1. Nat Neurosci 6:378–383 PubMedCrossRefGoogle Scholar
  23. 23.
    Hoffmann DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387:869–875 CrossRefGoogle Scholar
  24. 24.
    Hoshi N, Langeberg LK, Scott JD (2005) Distinct enzyme combinations in AKAP signalling complexes permit functional diversity. Nat Cell Biol 7:1066–1073 PubMedCrossRefGoogle Scholar
  25. 25.
    Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23:216–222 PubMedCrossRefGoogle Scholar
  26. 26.
    Jentsch TJ (2000) Neuronal KCNQ channels: physiology and role in disease. Nat Rev Neurosci 1:21–30 PubMedCrossRefGoogle Scholar
  27. 27.
    Jiang Y, Pico A, Cadene M, Chait BT, MacKinnin R (2001) Structure of the domain from the E. coli K+ channel and demonstration of its presence in the human BK channel. Neuron 29:593–601 PubMedCrossRefGoogle Scholar
  28. 28.
    Kerschensteiner D, Stocker M (1999) Heteromeric assembly of Kv2.1 with Kv9.3: effect on the state dependence of inactivation. Biophys J 77:248–257 PubMedCrossRefGoogle Scholar
  29. 29.
    Kerschensteiner D, Soto F, Stocker M (2005) Fluorescence measurements reveal stoichiometry of K+ channels formed by modulatory and delayed rectifier α-subunits. Proc Natl Acad Sci USA 102:6160–6165 PubMedCrossRefGoogle Scholar
  30. 30.
    Klement G, Persson AS, Nilssson J, Sahlholm K, Lavebratt-Holmquist C, Arhem P (2003) Truncation of the Shaker-like voltage-gated potassium channel, Kv1.1, causes megencephaly. Eur J Neurosci 18:3231–3240 PubMedCrossRefGoogle Scholar
  31. 31.
    Kreusch A, Pfaffinger PJ, Stevens CF, Choe S (1998) Crystal structure of the tetramerization domain of the Shaker potassium channel. Nature 392:945–948 PubMedCrossRefGoogle Scholar
  32. 32.
    Kurata HT, Fedida D (2006) A structural interpretation of voltage-gated potassium channel inactivation. Prog Biophys Mol Biol 92:185–208 PubMedCrossRefGoogle Scholar
  33. 33.
    Li M, Jan YN, Jan LY (1992) Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel. Science 257:1225–1240 PubMedCrossRefGoogle Scholar
  34. 34.
    Lien CC, Peter J (2003) Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J Neurosci 23:2058–2068 PubMedGoogle Scholar
  35. 35.
    Long SB, Campbell EB, MacKinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903 PubMedCrossRefGoogle Scholar
  36. 36.
    Ludwig J, Owen D, Pongs O (1997) Carboxy-terminal domain mediates assembly of the voltage-gated rat ether-a-go-go potassium channel. EMBO J 16:6337–6345 PubMedCrossRefGoogle Scholar
  37. 37.
    MacKinnon R (2004) Potassium channels and the atomic basis of selective ion conduction (Nobel lecture). Angew Chem Int Ed 43:4265–4277 CrossRefGoogle Scholar
  38. 38.
    Marrion NV, Tavalin SJ (1998) Selective activation of Ca2+-activated K+ channels by colocalized Ca2+ channels in hippocampal neurons. Nature 395:900–905 PubMedCrossRefGoogle Scholar
  39. 39.
    Maylie B, Bissonnette E, Virk M, Adelman JP, Maylie JG (2002) Episodic ataxia type 1 mutations in the human Kv1.1 potassium channel alter hKvβ1-induced N-type inactivation. J Neurosci 22:4786–4793 PubMedGoogle Scholar
  40. 40.
    Nadal MS, Ozaita A, Amarillo Y, Vega-Saenz de Miera E, Ma Y, Mo W, Goldberg EM, Misumi Y, Ikehara Y, Neubert TA, Rudy B (2003) The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels. Neuron 37:449–461 PubMedCrossRefGoogle Scholar
  41. 41.
    Peters HC, Hua H, Pongs O, Storm JF, Isbrandt D (2005) Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behaviour. Nat Neurosci 8:51–60 PubMedCrossRefGoogle Scholar
  42. 42.
    Pongs O (1999) Voltage-gated potassium channels: from hyperexcitability to excitement. FEBS Lett 452:31–35 PubMedCrossRefGoogle Scholar
  43. 43.
    Post MA, Kirsch GE, Brown AM (1996) Kv2.1 and electrically silent Kv6.1 potassium channel subunits combine and express a novel current. FEBS Lett 399:177–182 PubMedCrossRefGoogle Scholar
  44. 44.
    Rettig J, Heinemann SH, Wunder F, Lorra C, Parcej DN, Dolly JO, Pongs O (1994) Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit. Nature 369:289–294 PubMedCrossRefGoogle Scholar
  45. 45.
    Roeper J, Lorra C, Pongs O (1997) Frequency-dependent inactivation of mammalian A-type K+ channel Kv1.4 regulated by Ca2+/calmodulin-dependent protein kinase. J Neurosci 17:3379–3391 PubMedGoogle Scholar
  46. 46.
    Rudy B, McBain CJ (2001) Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci 24:517–526 PubMedCrossRefGoogle Scholar
  47. 47.
    Salinas M, Duprat F, Heurteaux C, Hugnot JP, Lazdunski M (1997) New modulatory alpha subunits for mammalian Shab K+ channels. J Biol Chem 272:24371–24379 PubMedCrossRefGoogle Scholar
  48. 48.
    Schmitt N, Schwarz M, Peretz A, Abibtol I, Attali B, Pongs O (2000) A recessive C-terminal Jervell and Lange-Nielsen mutation of the KCNQ1 channel impairs subunit assembly. EMBO J 19:332–340 PubMedCrossRefGoogle Scholar
  49. 49.
    Schoppa NE, Westbrook GL (1999) Regulation of synaptic timing in the olfactory bulb by an A-type potassium current. Nat Neurosci 2:1106–1113 PubMedCrossRefGoogle Scholar
  50. 50.
    Shao LR, Halvorsrud R, Borg-Graham L, Storm JF (1999) The role of BK-type Ca2+-dependent K+ channels in spike broadening during repetitive firing in rat hippocampal pyramidal cells. J Physiol 521:135–146 PubMedCrossRefGoogle Scholar
  51. 51.
    Steinlein O (2004) Genetic mechanisms that underlie epilepsy. Nat Rev Neurosci 5:400–408 PubMedCrossRefGoogle Scholar
  52. 52.
    Tan YP, Llano I (1999) Modulation by K+ channels of action potential-evoked intracellular Ca2+ concentration rises in rat cerebellar basket cell axons. J Physiol 520:65–78 PubMedCrossRefGoogle Scholar
  53. 53.
    Vogalis F, Storm JF, Lancaster B (2003) SK channels and the varieties of slow after-hyperpolarizations in neurons. Eur J Neurosci 18:3155–3166 PubMedCrossRefGoogle Scholar
  54. 54.
    Wakerley JB, Poulain DA, Brown D (1978) Comparison of firing patterns in oxytocin- and vasopressin-releasing neurones during progressive dehydration. Brain Res 148:425–440 PubMedCrossRefGoogle Scholar
  55. 55.
    Wang H, Kunkel DD, Martin TM, Schwartzkroin PA, Tempel BL (1994) Localization of Kv1.1 and Kv1.2, two channel proteins, two synapzic terminals, somata and dendrites in the mouse brain. J Neurosci 14:4588–4599 PubMedGoogle Scholar
  56. 56.
    Watanabe S, Hofmann DA, Migliore M, Johnston D (2002) Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. Proc Natl Acad Sci USA 99:8366–8371 PubMedCrossRefGoogle Scholar
  57. 57.
    Wheal HV, Bernard C, Chad JE, Cannon RC (1998) Pro-epileptic changes in synaptic function can be accompanied by pro-epileptic changes in neuronal excitability. Trends Neurosci 21:167–174 PubMedCrossRefGoogle Scholar
  58. 58.
    Zhang L, McBain CJ (1995) Voltage-gated potassium currents in stratum oriens-alveus inhibitory neurones of the rat CA1 hippocampus. J Physiol 488:647–660 PubMedGoogle Scholar
  59. 59.
    Zhou L, Chiu SY (2001) Computer model for action potential propagation through branch point in myelinated nerves. J Neurophysiol 85:197–210 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Institute for Neural Signal Conduction, Center for Molecular NeurobiologyUniversity Hospital Hamburg-EppendorfHamburgGermany

Personalised recommendations