Bioenergetics pp 185-222 | Cite as

The Three Families of Respiratory NADH Dehydrogenases

  • Stefan Kerscher
  • Stefan Dröse
  • Volker Zickermann
  • Ulrich Brandt
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 45)


Most reducing equivalents extracted from foodstuffs during oxidative metabolism are fed into the respiratory chains of aerobic bacteria and mitochondria by NADH:quinone oxidoreductases. Three families of enzymes can perform this task and differ remarkably in their complexity and role in energy conversion. Alternative or NDH-2-type NADH dehydrogenases are simple one subunit flavoenzymes that completely dissipate the redox energy of the NADH/quinone couple. Sodium-pumping NADH dehydrogenases (Nqr) that are only found in procaryotes contain several flavins and are integral membrane protein complexes composed of six different subunits. Proton-pumping NADH dehydrogenases (NDH-1 or complex I) are highly complicated membrane protein complexes, composed of up to 45 different subunits, that are found in bacteria and mitochondria. This review gives an overview of the origin, structural and functional properties and physiological significance of these three types of NADH dehydrogenase.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdrakhmanova A, Zickermann V, Bostina M, Radermacher M, Schägger H, Kerscher S, Brandt U (2004) Subunit composition of mitochondrial complex I from the yeast Yarrowia lipolytica. Biochim Biophys Acta 1658:148–156 PubMedGoogle Scholar
  2. Argyrou A, Blanchard JS (2004) Flavoprotein disulfide reductases: advances in chemistry and function. Progr Nuc Ac Res Mol Biol 78:89–142 Google Scholar
  3. Argyrou A, Sun G, Palfey BA, Blanchard JS (2003) Catalysis of diaphorase reactions by Mycobacterium tuberculosis lipoamide dehydrogenase occurs at the EH4 level. Biochem 42:2218–2228 Google Scholar
  4. Bai Y, Hájek P, Chomyn A, Seo BB, Matsuno-Yagi A, Yagi T, Attardi G (2001) Lack of complex I activity in human cells carrying a mutation in MtDNA-encoded ND4 subunit is corrected by the Saccharomyces cerevisiae NADH-quinone oxidoreductase (NDI1) gene. J Biol Chem 276:38808–38813 PubMedGoogle Scholar
  5. Bakker B, Bro C, Kötter P, Luttik MAH, van Dijken JP, Pronk JT (2000) The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol 182:4730–4737 PubMedGoogle Scholar
  6. Bandeiras TM, Salgueiro C, Kletzin A, Gomes CM, Teixeira M (2002) Acidianus ambivalens type-II NADH dehydrogenase: genetic characterisation and identification of the flavin moiety as FMN. FEBS Lett 531:273–277 PubMedGoogle Scholar
  7. Barquera B, Häse CC, Gennis RB (2001) Expression and mutagenesis of the NqrC subunit of the NQR respiratory Na+ pump from Vibrio cholerae with covalently attached FMN. FEBS Lett 492:45–49 PubMedGoogle Scholar
  8. Barquera B, Hellwig P, Zhou WD, Morgan JE, Häse CC, Gosink KK, Nilges M, Bruesehoff PJ, Roth A, Lancaster CRD, Gennis RB (2002a) Purification and characterization of the recombinant Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae. Biochem 41:3781–3789 Google Scholar
  9. Barquera B, Morgan JE, Lukoyanov D, Scholes CP, Gennis RB, Nilges MJ (2003) X- and W-band EPR and Q-band ENDOR studies of the flavin radical in the Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae. J Am Chem Soc 125:265–275 PubMedGoogle Scholar
  10. Barquera B, Nilges MJ, Morgan JE, Ramirez-Silva L, Zhou WD, Gennis RB (2004) Mutagenesis study of the 2Fe-2S center and the FAD binding site of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae. Biochem 43:12322–12330 Google Scholar
  11. Barquera B, Ramirez-Silva L, Morgan JE, Nilges MJ (2006) A new flavin radical signal in the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae – An EPR/electron nuclear double resonance investigation of the role of the covalently bound flavins in subunits B and C. J Biol Chem 281:36482–36491 PubMedGoogle Scholar
  12. Barquera B, Zhou WD, Morgan JE, Gennis RB (2002b) Riboflavin is a component of the Na+-pumping NADH-quinone oxidoreductase from Vibrio cholerae. Proc Natl Acad Sci USA 99:10322–10324 PubMedGoogle Scholar
  13. Bäumer S, Ide T, Jacobi C, Johann A, Gottschalk G, Deppenmeier U (2000) The F420H2 dehydrogenase from Methanosarcina mazei is a redox-driven proton pump closely related to NADH dehydrogenases. J Biol Chem 275:17968–17973 PubMedGoogle Scholar
  14. Beattie P, Tan K, Bourne RM, Leach D, Rich PR, Ward FB (1994) Cloning and sequencing of four structural genes for the Na+-translocating NADH-ubiquinone oxidoreductase of Vibrio alginolyticus. FEBS Lett 356:333–338 PubMedGoogle Scholar
  15. Belogrudov G, Hatefi Y (1994) Catalytic sector of complex I (NADH:ubiquinone oxidoreductase): subunit stoichiometry and substrate-induced conformation changes. Biochem 33:4571–4576 Google Scholar
  16. Bertsova YV, Bogachev AV (2004) The origin of the sodium-dependent NADH oxidation by the respiratory chain of Klebsiella pneumoniae. FEBS Lett 563:207–212 PubMedGoogle Scholar
  17. Bertsova YV, Bogachev AV, Skulachev VP (2001) Noncoupled NADH:ubiquinone oxidoreductase of Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations. J Bacteriol 183:6869–6874 PubMedGoogle Scholar
  18. Bogachev AV, Bertsova YV, Barquera B, Verkhovsky MI (2001) Sodium-dependent steps in the redox reactions of the Na+-motive NADH:quinone oxidoreductase from Vibrio harveyi. Biochem 40:7318–7323 Google Scholar
  19. Bogachev AV, Bertsova YV, Bloch DA, Verkhovsky MI (2006) Thermodynamic properties of the redox centers of Na+-translocating NADH:quinone oxidoreductase. Biochem 45:3421–3428 Google Scholar
  20. Bogachev AV, Bertsova YV, Ruuge EK, Wikstrom M, Verkhovsky MI (2002) Kinetics of the spectral changes during reduction of the Na+-motive NADH:quinone oxidoreductase from Vibrio harveyi. Biochim Biophys Acta 1556:113–120 PubMedGoogle Scholar
  21. Bogachev AV, Murtazina RA, Skulachev VP (1996) H+/e stoichiometry for NADH dehydrogenase I and dimethyl sulfoxide reductase in anaerobically grown Escherichia coli cells. J Bacteriol 178:6233–6237 PubMedGoogle Scholar
  22. Bogachev AV, Murtazina RA, Skulachev VP (1997) The Na+/e stoichiometry of the Na+-motive NADH:quinone oxidoreductase in Vibrio alginolyticus. FEBS Lett 409:475–477 PubMedGoogle Scholar
  23. Bogachev AV, Verkhovsky MI (2005) Na+-translocating NADH:quinone oxidoreductase: Progress achieved and prospects of investigations. Biochemistry-Moscow 70:143–149 PubMedGoogle Scholar
  24. Böttcher B, Scheide D, Hesterberg M, Nagel-Steger L, Friedrich T (2002) A novel, enzymatically active conformation of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 277:17970–17977 PubMedGoogle Scholar
  25. Brandt U (2006) Energy converting NADH:quinone oxidoreductases. Annu Rev Biochem 75:69–92 PubMedGoogle Scholar
  26. Brito JA, Bandeiras TM, Teixeira M, Vonrhein C, Archer M (2006) Crystallisation and preliminary structure determination of a NADH:quinone oxidoreductase from the extremophile Acidianus ambivalens. Biochim Biophys Acta 1764:842–845 PubMedGoogle Scholar
  27. Brüggemann H, Falinski F, Deppenmeier U (2000) Structure of the F420H2:quinone oxidoreductase of Archaeoglobus fulgidus identification and overproduction of the F420H2-oxidizing subunit. Eur J Biochem 267:5810–5814 PubMedGoogle Scholar
  28. Carroll J, Fearnley IM, Shannon RJ, Hirst J, Walker JE (2003) Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol Cell Proteomics 2:117–126 PubMedGoogle Scholar
  29. Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE (2006a) Bovine complex I is a complex of 45 different subunits. J Biol Chem 281:32724–32727 PubMedGoogle Scholar
  30. Carroll J, Fearnley IM, Walker JE (2006b) Definition of the mitochondrial proteome by measurement of molecular masses of membrane proteins. Proc Natl Acad Sci USA 103:16170–16175 PubMedGoogle Scholar
  31. Darrouzet E, Issartel JP, Lunardi J, Dupuis A (1998) The 49-kDa subunit of NADH-ubiquinone oxidoreductase (complex I) is involved in the binding of piericidin and rotenone, two quinone-related inhibitors. FEBS Lett 431:34–38 PubMedGoogle Scholar
  32. Degli Esposti M (1998) Inhibitors of NADH-ubiquinone reductase: an overview. Biochim Biophys Acta 1364:222–235 PubMedGoogle Scholar
  33. Dimroth P (1986) Preparation, characterization, and reconstitution of oxaloacetate decarboxylase from Klebsiella aerogenes, a sodium pump. Methods Enzymol 125:530–540 PubMedGoogle Scholar
  34. Dimroth P, Thomer A (1989) A primary respiratory Na+ pump of an anaerobic bacterium: the Na+-dependent NADH:quinone oxidoreductase of Klebsiella pneumononiae. Arch Microbiol 151:439–444 PubMedGoogle Scholar
  35. Dudkina NV, Eubel H, Keegstra W, Boekema EJ, Braun HP (2005) Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. Proc Natl Acad Sci USA 102:3225–3229 PubMedGoogle Scholar
  36. Duffy EB, Barquera B (2006) Membrane topology mapping of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae by PhoA-green fluorescent protein fusion analysis. J Bacteriol 188:8343–8351 PubMedGoogle Scholar
  37. Eschemann A, Galkin A, Oettmeier W, Brandt U, Kerscher S (2005) HDQ (1-hydroxy-2-dodecyl-4(1H)quinolone), a high affinity inhibitor for mitochondrial alternative NADH dehydrogenase. J Biol Chem 280:3138–3142 PubMedGoogle Scholar
  38. Faig M, Bianchet MA, Talalay P, Chen S, Winski S, Ross D, Amzel LM (2000) Structures of recombinant human and mouse NAD(P)H:quinone oxidoreductases: Species comparison and structural changes with substrate binding and release. Proc Natl Acad Sci USA 97:3177–3182 PubMedGoogle Scholar
  39. Fang J, Beattie DS (2002) Novel FMN-containing rotenone-insensitive NADH dehydrogenase from Trypanosoma brucei mitochondria: isolation and characterization. Biochem 41:3065–3072 Google Scholar
  40. Fang J, Beattie DS (2003a) External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide. Free Radic Biol Med 34:478–488 PubMedGoogle Scholar
  41. Fang J, Beattie DS (2003b) Identification of a gene encoding a 54 kDa alternative NADH dehydrogenase in Trypanosoma brucei. Mol Biochem Parasitol 127:73–77 PubMedGoogle Scholar
  42. Fang J, Wang Y, Beattie DS (2001) Isolation and characterization of complex I, rotenone-sensitive NADH:ubiquinone oxidoreductase, from the procyclic forms of Trypanosoma brucei. Eur J Biochem 268:3075–3082 PubMedGoogle Scholar
  43. Fearnley IM, Walker JE (1992) Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. Biochim Biophys Acta 1140:105–134 PubMedGoogle Scholar
  44. Finel M, Skehel JM, Albracht SPJ, Fearnley IM, Walker JE (1992) Resolution of NADH:ubiquinone oxidoreductase from bovine heart mitochondria into two subcomplexes, one of which contains the redox centers of the enzyme. Biochem 31:11425–11434 Google Scholar
  45. Friedrich T (1998) The NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochim Biophys Acta 1364:134–146 PubMedGoogle Scholar
  46. Friedrich T, Weiss H (1997) Modular evolution of the respiratory NADH:ubiquinone oxidoreductase and the origin of its modules. J Theor Biol 187:529–540 PubMedGoogle Scholar
  47. Galkin A, Brandt U (2005) Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica. J Biol Chem 280:30129–30135 PubMedGoogle Scholar
  48. Galkin A, Dröse S, Brandt U (2006) The proton pumping stoichiometry of purifiedmitochondrial complex I reconstituted into proteoliposomes. Biochim Biophys Acta 1757:1575–1581 PubMedGoogle Scholar
  49. Gemperli AC, Dimroth P, Steuber J (2002) The respiratory complex I (NDH-I) from Klebsiella pneumoniae, a sodium pump. J Biol Chem 277:33811–33817 PubMedGoogle Scholar
  50. Gemperli AC, Dimroth P, Steuber J (2003) Sodium ion cycling mediates energy coupling beetween complex I and ATP synthase. Proc Natl Acad Sci USA 100:839–844 PubMedGoogle Scholar
  51. Goldstein L (1976) Kinetic behavior of immobilized enzyme systems. Methods Enzymol 44:397–443 PubMedGoogle Scholar
  52. Gomes CM, Bandeiras TM, Teixeira M (2001) A new type-II NADH dehydrogenase from the archaeon Acidianus ambivalens: characterization and in vitro reconstitution of the respiratory chain. J Bioenerg Biomembr 33:1–8 PubMedGoogle Scholar
  53. Green J, Anjum MF, Guest JR (1997) Regulation of the ndh gene of Escherichia coli by integration host factor and a novel regulator, Arr. Microbiology 143:2865–2875 PubMedGoogle Scholar
  54. Greenamyre JT, Sherer TB, Betarbet R, Panov A (2001) Complex I and Parkinson's disease. IUBMB Life 52:135–141 PubMedCrossRefGoogle Scholar
  55. Grigorieff N (1998) Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase (complex I) at 22 Å in ice. J Mol Biol 277:1033–1046 PubMedGoogle Scholar
  56. Guenebaut V, Schlitt A, Weiss H, Leonard K, Friedrich T (1998) Consistent structure between bacterial and mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Mol Biol 276:105–112 PubMedGoogle Scholar
  57. Guenebaut V, Vincentelli R, Mills D, Weiss H, Leonard K (1997) Three-dimensional structure of NADH dehydrogenase from Neurospora crassa by electron microscopy and conical tilt reconstruction. J Mol Biol 265:409–418 PubMedGoogle Scholar
  58. Hajduk S, Adler B, Bertrand K, Fearon K, Hager K, Hancock K, Harris M, Blanc AL, Moore R, Pollard V, Priest J, Wood Z (1992) Molecular biology of African trypanosomes: development of new strategies to combat an old disease. Am J Med Sci 303:258–270 PubMedGoogle Scholar
  59. Häse CC, Barquera B (2001) Role of sodium bioenergetics in Vibrio cholerae. Biochim Biophys Acta 1505:169–178 PubMedGoogle Scholar
  60. Häse CC, Fedorova ND, Galperin MY, Dibrov PA (2001) Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. Microbiol Mol Biol Rev 65:353–370 PubMedGoogle Scholar
  61. Häse CC, Mekalanos JJ (1999) Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 96:3183–3187 PubMedGoogle Scholar
  62. Hayashi M, Hirai K, Unemoto T (1995) Sequencing and the alignment of structural genes in the Nqr operon encoding the Na+-translocating NADH-quinone reductase from Vibrio alginolyticus. FEBS Lett 363:75–77 PubMedGoogle Scholar
  63. Hayashi M, Nakayama Y, Unemoto T (2001a) Recent progress in the Na+-translocating NADH-quinone reductase from the marine Vibrio alginolyticus. Biochim Biophys Acta 1505:37–44 PubMedGoogle Scholar
  64. Hayashi M, Nakayama Y, Yasui M, Maeda M, Furuishi K, Unemoto T (2001b) FMN is covalently attached to a threonine residue in the NqrB and NqrC subunits of Na+-translocating NADH-quinone reductase from Vibrio alginolyticus. FEBS Lett 488:5–8 PubMedGoogle Scholar
  65. Hayashi M, Shibata N, Nakayama Y, Yoshikawa K, Unemoto T (2002) Korormicin insensitivity in Vibrio alginolyticus is correlated with a single point mutation of Gly-140 in the NqrB subunit of the Na+-translocating NADH-quinone reductase. Arch Biochem Biophys 401:173–177 PubMedGoogle Scholar
  66. Holt PJ, Morgan DJ, Sazanov LA (2003) The location of NuoL and NuoM subunits in the membrane domain of the Escherichia coli complex I – implications for the mechanism of proton pumping. J Biol Chem 278:43114–43120 PubMedGoogle Scholar
  67. Kao MC, Nakamaru-Ogiso E, Matsuno-Yagi A, Yagi T (2005) Characterization of the membrane domain subunit NuoK (ND4L) of the NADH-quinone oxidoreductase from Escherichia coli. Biochem 44:9545–9554 Google Scholar
  68. Kerscher S (2000) Diversity and origin of alternative NADH:ubiquinone oxidoreductases. Biochim Biophys Acta 1459:274–283 PubMedGoogle Scholar
  69. Kerscher S, Eschemann A, Okun PM, Brandt U (2001a) External alternative NADH:ubiquinone oxidoreductase redirected to the internal face of the mitochondrial inner membrane rescues complex I deficiency in Yarrowia lipolytica. J Cell Sci 114:3915–3921 PubMedGoogle Scholar
  70. Kerscher S, Kashani-Poor N, Zwicker K, Zickermann V, Brandt U (2001b) Exploring the catalytic core of complex I by Yarrowia lipolytica yeast genetics. J Bioenerg Biomembr 33:187–196 PubMedGoogle Scholar
  71. Kerscher S, Okun JG, Brandt U (1999) A single external enzyme confers alternative NADH:ubiquinone oxidoreductase activity in Yarrowia lipolytica. J Cell Sci 112:2347–2354 PubMedGoogle Scholar
  72. Kervinen M, Patsi J, Finel M, Hassinen IE (2004) A pair of membrane-embedded acidic residues in the NuoK subunit of Escherichia coli NDH-1, a counterpart of the ND4L subunit of the mitochondrial complex I, are required for high ubiquinone reductase activity. Biochem 43:773–781 Google Scholar
  73. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136 PubMedGoogle Scholar
  74. Kogure K (1998) Bioenergetics of marine bacteria. Curr Opin Biotechnol 9:278–282 PubMedGoogle Scholar
  75. Krebs W, Steuber J, Gemperli AC, Dimroth P (1999) Na+ translocation by the NADH:ubiquinone oxidoreductase (complex I) from Klebsiella pneumoniae. Mol Microbiol 33:590–598 PubMedGoogle Scholar
  76. Kussmaul L, Hirst J (2006) The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci USA 103:7607–7612 PubMedGoogle Scholar
  77. Lagunas R (1986) Misconceptions about the energy metabolism of Saccharomyces cerevisiae. Yeast 2:221–228 PubMedGoogle Scholar
  78. Lesk AM (1995) NAD-binding domains of dehydrogenases. Curr Opin Struct Biol 5:775–783 PubMedGoogle Scholar
  79. Lin PC, Puhar A, Turk K, Piligkos S, Bill E, Neese F, Steuber J (2005) A vertebrate-type ferredoxin domain in the Na+-translocating NADH dehydrogenase from Vibrio cholerae. J Biol Chem 280:22560–22563 PubMedGoogle Scholar
  80. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157 PubMedGoogle Scholar
  81. Luttik MAH, Overkamp KM, Kötter P, de Vries S, van Dijken P, Pronk JT (1998) The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J Biol Chem 273:24529–24534 PubMedGoogle Scholar
  82. Magnitsky S, Toulokhonova L, Yano T, Sled VD, Hagerhall C, Grivennikova VG, Burbaev DS, Vinogradov AD, Ohnishi T (2002) EPR characterization of ubisemiquinones and iron–sulfur cluster N2, central components of the energy coupling in the NADH-ubiquinone oxidoreductase (complex I) in situ. J Bioenerg Biomembr 34:193–208 PubMedGoogle Scholar
  83. Mamedova AA, Holt PJ, Carroll J, Sazanov LA (2004) Substrate-induced conformational change in bacterial complex I. J Biol Chem 279:23830–23836 PubMedGoogle Scholar
  84. Marres CAM, de Vries S, Grivell LA (1991) Isolation and inactivation of the nuclear gene encoding the rotenone-insensitive internal NADH:ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae. Eur J Biochem 195:857–862 PubMedGoogle Scholar
  85. Mathiesen C, Hägerhäll C (2002) Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochim Biophys Acta 1556:121–132 PubMedGoogle Scholar
  86. Matsushita K, Ohnishi T, Kaback HR (1987) NADH-ubiquinone oxidoreductases of the Escherichia coli aerobic respiratory chain. Biochem 26:7732–7737 Google Scholar
  87. Melo AM, Bandeiras TM, Teixeira M (2004) New insights into type II NAD(P)H:quinone oxidoreductases. Microbiol Mol Biol Rev 68:603–616 PubMedGoogle Scholar
  88. Melo AM, Duarte M, Möllers IM, Prokisch H, Dolan PL, Pinto L, Nelson MA, Videira A (2001) The external calcium-dependent NADPH dehydrogenase from Neurospora crassa mitochondria. J Biol Chem 276:3947–3951 PubMedGoogle Scholar
  89. Melo AM, Duarte M, Videira A (1999) Primary structure and characterisation of a 64-kDa NADH dehydrogenase from the inner membrane of Neurospora crassa mitochondria. Biochim Biophys Acta 1412:282–287 PubMedGoogle Scholar
  90. Michalecka AM, Svensson AS, Johansson FI, Agius SC, Johanson U, Brennicke A, Binder S, Rasmusson AG (2003) Arabidopsis genes encoding mitochondrial type II NAD(P)H dehydrogenases have different evolutionary origin and show distinct responses to light. Plant Physiol 133:642–652 PubMedGoogle Scholar
  91. Modjtahedi N, Giordanetto F, Madeo F, Kroemer G (2006) Apoptosis-inducing factor: vital and lethal. Trends Cell Biol 16:264–272 PubMedGoogle Scholar
  92. Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol 52:561–591 Google Scholar
  93. Moser CC, Farid TA, Chobot SE, Dutton PL (2006) Electron tunneling chains of mitochondria. Biochim Biophys Acta 1757:1096–1109 PubMedGoogle Scholar
  94. Mrazek J, Spormann AM, Karlin S (2006) Genomic comparisons among gamma-proteobacteria. Env Microbiol 8:273–288 Google Scholar
  95. Nakamaru-Ogiso E, Seo BB, Yagi T, Matsuno-Yagi A (2003) Amiloride inhibition of the proton-translocating NADH-quinone oxidoreductase of mammals and bacteria. FEBS Lett 14:43–46 Google Scholar
  96. Nakayama Y, Hayashi M, Unemoto T (1998) Identification of six subunits constituting Na+-translocating NADH-quinone reductase from the marine Vibrio alginolyticus. FEBS Lett 422:240–242 PubMedGoogle Scholar
  97. Nakayama Y, Hayashi M, Unemoto T, Yoshikawa K, Mochida K (1999) Inhibitor studies of a new antibiotic, korormicin, 2-n-heptyl-4-hydroxyquinoline N-oxide and Ag+ toward the Na+-translocating NADH-quinone reductase from the marine Vibrio alginolyticus. Biol Pharm Bull 22:1064–1067 PubMedGoogle Scholar
  98. Nakayama Y, Yasui M, Sugahara K, Hayashi M, Unemoto T (2000) Covalently bound flavin in the NqrB and NqrC subunits of Na+-translocating NADH-quinone reductase from Vibrio alginolyticus. FEBS Lett 474:165–168 PubMedGoogle Scholar
  99. Nordman T, Xia L, Björkhem-Bergman L, Damdimopoulos A, Nalvarte I, Arnér E, Spyrou G, Eriksson L, Björnstedt M, Olsson J (2003) Regeneration of the antioxidant ubiquinol by lipoamide dehydrogenase, thioredoxin reductase and glutathione reductase. BioFactors 18:45–50 PubMedGoogle Scholar
  100. Notredame C, Higgins D, Herringa J (2000) T-Coffee: a novel method for multiple sequence alignments. J Mol Biol 302:205–217 PubMedGoogle Scholar
  101. Ohnishi T (1998) Iron–sulfur clusters/semiquinones in complex I. Biochim Biophys Acta 1364:186–206 PubMedGoogle Scholar
  102. Okun JG, Lümmen P, Brandt U (1999) Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH:ubiquinone oxidoreductase). J Biol Chem 274:2625–2630 PubMedGoogle Scholar
  103. Ouali M, King RD (2000) Cascaded multiple classifiers for secondary structure prediction. Protein Sci 9:1162–1176 PubMedGoogle Scholar
  104. Peng G, Fritzsch G, Zickermann V, Schägger H, Mentele R, Lottspeich F, Bostina M, Radermacher M, Huber R, Stetter KO, Michel H (2003) Isolation, characterization and electron microscopic single particle analysis of the NADH:ubiquinone oxidoreductase (complex I) from the hyperthermophilic eubacterium aquifex aeolicus. Biochem 42:3032–3039 Google Scholar
  105. Pfenninger-Li XD, Albracht SPJ, van Belzen R, Dimroth P (1996) NADH:ubiquinone oxidoreductase of Vibrio alginolyticus: purification, properties, and reconstitution of the Na+ pump. Biochem 35:6233–6242 Google Scholar
  106. Prommeenate P, Lennon AM, Markert C, Hippler M, Nixon PJ (2004) Subunit composition of NDH-1 complexes of Synechocystis sp PCC 6803 – identification of two new ndh gene products with nuclear-encoded homologues in the chloroplast Ndh complex. J Biol Chem 279:28165–28173 PubMedGoogle Scholar
  107. Radermacher M, Ruiz T, Clason T, Benjamin S, Brandt U, Zickermann V (2006) The three-dimensional structure of complex I from Yarrowia lipolytica: A highly dynamic enzyme. J Struct Biol 154:269–279 PubMedGoogle Scholar
  108. Raghavendra AS, Padmasree K (2003) Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci 8:546–553 PubMedGoogle Scholar
  109. Rapisarda VA, Chehín RN, De Las Rivas J, Rodriguez-Montelongo L, Farías RN, Massa EM (2002) Evidence for Cu(I)-thiolate ligation and prediction of a putative copper-binding site in the Escherichia coli NADH dehydrogenase-2. Arch Biochem Biophys 405:87–94 PubMedGoogle Scholar
  110. Rapisarda VA, Rodríguez-Montelongo L, Farías RN, Massa EM (1999) Characterization of an NADH-linked cupric reductase activity from the Escherichia coli respiratory chain. Arch Biochem Biophys 370:143–150 PubMedGoogle Scholar
  111. Rasmussen T, Scheide D, Brors B, Kintscher L, Weiss H, Friedrich T (2001) Identification of two tetranuclear FeS clusters on the ferredoxin-type subunit of NADH:ubiquinone oxidoreductase (complex I). Biochem 40:6124–6131 Google Scholar
  112. Rasmusson AG, Svensson AS, Knoop V, Grohmann L, Brennicke A (1999) Homologues of yeast and bacterial rotenone-insensitive NADH dehydrogenases in higher eukaryotes: two enzymes are present in potato mitochondria. Plant J 20:79–87 PubMedGoogle Scholar
  113. Ravanel P, Creuzet S, Tissut M (1990) Inhibitory effect of hydroxyflavones on the exogenous NADH dehydrogenase of plant mitochondrial inner membranes. Phytochemistry 29:441–445 Google Scholar
  114. Rich PR, Meunier B, Ward FB (1995) Predicted structure and possible ionmotive mechanism of the sodium-linked NADH-ubiquinone oxidoreductase of Vibrio alginolyticus. FEBS Lett 375:5–10 PubMedGoogle Scholar
  115. Rodríguez-Montelongo L, Volentini SI, Fárias RN, Massa EM, Rapisarda VA (2006) The Cu(II)-reductase NADH dehydrogenase-2 of Escherichia coli improves the bacterial growth in extreme copper concentrations and increases the resistance to the damage caused by copper and hydroperoxide. Arch Biochem Biophys 451:1–7 PubMedGoogle Scholar
  116. Rumeau D, Bécuwe-Linka N, Beyly A, Louwagie M, Peltier G (2005) New subunits NDH-M, -N, and -O, encoded by nuclear genes, are essential for plastid Ndh complex functioning in higher plants. Plant Cell 17:219–232 PubMedGoogle Scholar
  117. Sazanov LA, Carroll J, Holt P, Toime L, Fearnley IM (2003) A role for native lipids in the stabilization and two-dimensional crystallization of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). J Biol Chem 278:19483–19491 PubMedGoogle Scholar
  118. Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311:1430–1436 PubMedGoogle Scholar
  119. Sazanov LA, Peak-Chew SY, Fearnley IM, Walker JE (2000) Resolution of the membrane domain of bovine complex I into subcomplexes: implications for the structural organization of the enzyme. Biochem 39:7229–7235 Google Scholar
  120. Schmid R, Gerloff D (2004) Functional properties of the alternative NADH:ubiquinone oxidoreductase from E. coli through comparative 3-D modelling. FEBS Lett 578:163–168 PubMedGoogle Scholar
  121. Schuler F, Yano T, Di Bernardo S, Yagi T, Yankovskaya V, Singer TP, Casida JE (1999) NADH-quinone oxidoreductase: PSST subunit couples electron transfer from iron–sulfur cluster N2 to quinone. Proc Natl Acad Sci USA 96:4149–4153 PubMedGoogle Scholar
  122. Seo BB, Marella M, Yagi T, Matsuno-Yagi A (2006a) The single subunit NADH dehydrogenase reduces generation of reactive oxygen species from complex I. FEBS Lett 580:6105–6108 PubMedGoogle Scholar
  123. Seo BB, Matsuno-Yagi A, Yagi T (1999) Modulation of oxidative phosphorylation of human kidney 293 cells by transfection with the internal rotenone-insensitive NADH-quinone oxidoreductase (NDI1) gene of Saccharomyces cerevisiae. Biochim Biophys Acta 1412:56–65 PubMedGoogle Scholar
  124. Seo BB, Nakamaru-Ogiso E, Flotte TR, Matsuno-Yagi A, Yagi T (2006b) In vivo complementation of complex I by the yeast Ndi1 enzyme. J Biol Chem 281:14250–14255 PubMedGoogle Scholar
  125. Smith MA, Finel M, Korolik V, Mendz GL (2000) Characteristics of the aerobic respiratory chains of the microaerophiles Campylobacter jejuni and Helicobacter pylori. Arch Microbiol 174:1–10 PubMedGoogle Scholar
  126. Steuber J (2001) Na+ translocation by bacterial NADH:quinone oxidoreductases: an extension to the complex-I family of primary redox pumps. Biochim Biophys Acta 1505:45–56 PubMedGoogle Scholar
  127. Steuber J, Krebs W, Dimroth P (1997) The Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio alginolyticus. Redox states of the FAD prosthetic group and mechanism of Ag+ inhibition. Eur J Biochem 249:770–776 PubMedGoogle Scholar
  128. Steuber J, Schmid C, Rufibach M, Dimroth P (2000) Na+ translocation by complex I (NADH:quinone oxidoreductase) of Escherichia coli. Mol Microbiol 35:428–434 PubMedGoogle Scholar
  129. Stolpe S, Friedrich T (2004) The Escherichia coli NADH:ubiquinone oxidoreductase (complex I) is a primary proton pump but may be capable of secondary sodium antiport. J Biol Chem 279:18377–18383 PubMedGoogle Scholar
  130. Susin SA, Lorenzo HK, Zamzami IM, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446 PubMedGoogle Scholar
  131. Swofford DL (1993) PAUP: phylogenetic analysis using parsimony version 3.1.1 (computer program). Illinois Natural History Survey, Champaign, Illinois Google Scholar
  132. Tarrío N, Beccera M, Cerdán ME, González Siso MI (2006a) Reoxidation of cytosolic NADPH in Kluyveromyces lactis. FEMS Yeast Res 6:371–380 PubMedGoogle Scholar
  133. Tarrío N, Cerdan ME, González Siso MI (2006b) Characterization of the second external alternative dehydrogenase from mitochondria of the respiratory yeast Kluyveromyces lactis. Biochim Biophys Acta 1757:1476–1484 PubMedGoogle Scholar
  134. Tokuda H, Unemoto T (1981) A respiration-dependent primary sodium extrusion system functioning at alkaline pH in the marine bacterium Vibrio alginolyticus. Biochem Biophys Res Comm 102:265–271 PubMedGoogle Scholar
  135. Tokuda H, Unemoto T (1984) Na+ is translocated at NADH-quinone oxidoreductase segment in the respiratory-chain of Vibrio alginolyticus. J Biol Chem 259:7785–7790 PubMedGoogle Scholar
  136. Trotter EW, Grant CM (2005) Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae. Eukar Cell 4:392–400 Google Scholar
  137. Türk K, Puhar A, Neese F, Bill E, Gunter F, Steuber J (2004) NADH oxidation by the Na+-translocating NADH:quinone oxidoreductase from Vibrio cholerae – Functional role of the NqrF subunit. J Biol Chem 279:21349–21355 PubMedGoogle Scholar
  138. Uhlmann M, Friedrich T (2005) EPR signals assigned to Fe/S cluster N1c of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I) derive from cluster N1a. Biochem 44:1653–1658 Google Scholar
  139. Unden G (1998) Transcriptional regulation and energetics of alternative respiratory pathways in facultatively anaerobic bacteria. Biochim Biophys Acta 1365:220–224 Google Scholar
  140. Unden G, Bongaerts J (1997) Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta 1320:217–234 PubMedGoogle Scholar
  141. Vahsen N, Cande C, Briere JJ, Bénit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schägger H, Rustin P, Kroemer G (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689 PubMedGoogle Scholar
  142. Velázques I, Pardo JP (2001) Kinetic characterization of the rotenone-insensitive internal NADH:ubiquinone oxidoreductase of mitochondria from Saccharomyces cerevisiae. Arch Biochem Biophys 389:7–14 Google Scholar
  143. Wackwitz B, Bongaerts J, Goodman SD, Unden G (1999) Growth phase-dependent regulation of nuoA-N expression in Escherichia coli K-12 by the Fis protein: upstream binding sites and bioenergetic significance. Mol Gen Genet 262:876–883 PubMedGoogle Scholar
  144. Walker JE (1992) The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys 25:253–324 PubMedCrossRefGoogle Scholar
  145. Wierenga RK, de Maeyer MCH, Hol WGJ (1985) Interaction of pyrophosphate moieties with α-helixes in dinucleotide binding proteins. Biochem 24:1346–1357 Google Scholar
  146. Wikström MKF (1984) Pumping of protons from the mitochondrial matrix by cytochrome oxidase. Nature 308:558–560 PubMedGoogle Scholar
  147. Wissing S, Ludovico P, Herker E, Büttner S, Engelhardt S, Decker T, Link A, Proksch A, Rodrigues F, Corte-Real M, Fröhlich K-U, Manns J, Cande C, Sigrist SJ, Kroemer G, Madeo F (2004) An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166:969–974 PubMedGoogle Scholar
  148. Yagi T, Seo BB, Nakamaru-Ogiso E, Marella M, Barber-Singh J, Yamashita T, Matsuno-Yagi A (2006) Possibility of transkingdom gene therapy for complex I diseases. Biochim Biophys Acta 1757:708–714 PubMedGoogle Scholar
  149. Yamaguchi M, Belogrudov G, Hatefi Y (1998) Mitochondrial NADH-ubiquinone oxidoreductase (complex I). Effect of substrates on the fragmentation of subunits by trypsin. J Biol Chem 273:8094–8098 PubMedGoogle Scholar
  150. Yoshikawa K, Nakayama Y, Hayashi M, Unemoto T, Mochida K (1999) Korormicin, an antibiotic specific for gram-negative marine bacteria, strongly inhibits the respiratory chain-linked Na+-translocating NADH:quinone reductase from the marine Vibrio alginolyticus. J Antibiotics 52:182–185 Google Scholar
  151. Yoshikawa K, Takadera T, Adachi K, Nishijima M, Sano H (1997) Korormicin, a novel antibiotic specifically active against marine gram-negative bacteria, produced by a marine bacterium. J Antibiotics 50:949–953 Google Scholar
  152. Zhou WD, Bertsova YV, Feng BT, Tsatsos P, Verkhovskaya ML, Gennis RB, Bogachev AV, Barquera B (1999) Sequencing and preliminary characterization of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio harveyi. Biochem 38:16246–16252 Google Scholar
  153. Zickermann V, Bostina M, Hunte C, Ruiz T, Radermacher M, Brandt U (2003) Functional implications from an unexpected position of the 49-kDa subunit of complex I. J Biol Chem 278:29072–29078 PubMedGoogle Scholar
  154. Zwicker K, Galkin A, Dröse S, Grgic L, Kerscher S, Brandt U (2006) The redox-Bohr group associated with iron–sulfur cluster N2 of complex I. J Biol Chem 218:23013–23017 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Stefan Kerscher
    • 1
  • Stefan Dröse
    • 1
  • Volker Zickermann
    • 1
  • Ulrich Brandt
    • 1
  1. 1.Molecular Bioenergetics Group, Centre of Excellence “Macromolecular Complexes”Johann Wolfgang Goethe-UniversitätFrankfurt am MainGermany

Personalised recommendations