Dynamic Uses of Memory in Visual Search Over Time and Space

  • Glyn W. Humphreys
  • Jason Braithwaite
  • Chris N. L. Olivers
  • Derrick G. Watson

Summary

We review evidence on the use of one type of memory in visual search over time. Visual search benefits when observers are given a preview of distractors that remain throughout a subsequent search display. Studies examining negative carry-over effects and visual probe detection suggest that the ‘preview benefit’ is based at least in part on the inhibition of old groups of stimuli. However, the presence of luminance onsets defining the new search display are not necessary to produce the benefit, since, under appropriate conditions, a benefit can occur when the new stimuli do not have unique luminance onsets. Studies using functional brain imaging suggest that the inhibition of old groups of stimuli is modulated by the superior parietal lobe, whereas the detection of salient new targets is associated with activation in the temporo-parietal junction. Dynamic inhibition of memory representations of old stimuli provides a means of prioritizing attention to new events.

Key words

Visual search preview paradigm functional brain imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braithwaite, J. J., & Humphreys, G. W. (2003). Inhibition and anticipation in visual search: Evidence from effects of color foreknowledge on preview search. Perception & Psychophysics, 65, 213–237.Google Scholar
  2. Braithwaite, J. J., & Humphreys, G. W. (in press). Effects of color on preview search: Anticipatory and inhibitory biases for color. Spatial Vision: Special issue, The Role of Attention in Visual Search.Google Scholar
  3. Braithwaite, J. J., Humphreys, G. W. & Hodsoll, J. (2003). Color grouping in space and time: Evidence from negative color-based carry-over effects in preview search. Journal of Experimental Psychology: Human Perception and Performance, 29, 758–778.PubMedCrossRefGoogle Scholar
  4. Braithwaite, J. J., Humphreys, G. W., & Hulleman, J. (in press). Probing distractor inhibition in preview search: Direct evidence form a luminance-probe technique. Perception & Psychophysics.Google Scholar
  5. Braithwaite, J. J., Humphreys, G. W., & Watson, D.G. (in preparation). Visual marking at isoluminance.Google Scholar
  6. Braithwaite, J. J., Humphreys, G. W., Watson, D. G., & Hulleman, J. (2004). Revisiting preview search benefits at isoluminance: Evidence from preview search of static items. Manuscript submitted for publication.Google Scholar
  7. Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28–71.PubMedCrossRefGoogle Scholar
  8. Corbetta, M., & Shulman, G.L. (2002). Control of goal directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215.PubMedCrossRefGoogle Scholar
  9. Coull, J. T., & Nobre, A. C. (1988). Where and when to pay attention: The neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. Journal of Neuroscience, 18, 7426–7435.Google Scholar
  10. Danziger, S., Kingstone, A., & Snyder, J. J. (1998). Inhibition of return to successively stimulated locations in a sequential visual search paradigm. Journal of Experimental Psychology: Human Perception and Performance, 24, 1467–1475.PubMedCrossRefGoogle Scholar
  11. DeSchepper, B., & Treisman, A. (1996). Visual memory for novel shapes: Implicit coding without attention. Journal of Experimental Psychology: Learning, Memory, & Cognition, 22, 27–47.CrossRefGoogle Scholar
  12. Donk, M., & Theeuwes, J. (2001). Visual marking beside the mark: Prioritizing selection by abrupt onsets. Perception & Psychophysics, 93, 891–900.Google Scholar
  13. Duncan, J., & Humphreys, G.W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458.PubMedCrossRefGoogle Scholar
  14. Egeth, H. E., Virzi, R. A., & Garbart, H. (1984). Searching for conjunctively define targets. Journal of Experimental Psychology: Human Perception and Performance, 10, 32–39.PubMedCrossRefGoogle Scholar
  15. Humphreys, G. W., Watson, D. G., & Jolicoeur, P. (2002). Fractionating the preview benefit in search: Dual-task decomposition of visual marking by timing and modality. Journal of Experimental Psychology: Human Perception & Performance, 28, 640–660.CrossRefGoogle Scholar
  16. Horowitz, T. S., & Wolfe, J. M. (1998). Visual search has no memory. Nature, 394, 575–577.PubMedCrossRefGoogle Scholar
  17. Horowitz, T. S., & Wolfe, J. M. (2003). Memory for rejected distractors in visual search? Visual Cognition, 10, 257–298.CrossRefGoogle Scholar
  18. Humphreys, G. W., Jung-Stalmann, B., & Olivers, C. N. L. (in press a). An analysis of the time course of visual marking using a probe dot procedure. Perception & Psychophysics.Google Scholar
  19. Humphreys, G. W., Kyllinsbæk, S., Watson, D. G., Olivers, C. N. L., Law, I., & Paulson, O. (in press b). Parieto-occipital areas involved in efficient filtering in search: A time course analysis of visual marking using behavioral and functional imaging procedures. Quarterly Journal of Experimental Psychology.Google Scholar
  20. Jiang, Y., Chun, M. M., & Marks, L. E., (2002). Visual marking: Selective attention to asynchronous temporal groups. Journal of Experimental Psychology: Human Perception and Performance, 28, 717–730.PubMedCrossRefGoogle Scholar
  21. Kaptein, N. A., Theeuwes, J., & van der Heijden, A. H. C. (1995). Search for a conjunctively defined target can be selectively limited to a color defined subset of elements. Journal of Experimental Psychology: Human Perception and Performance, 21, 1053–1069.CrossRefGoogle Scholar
  22. Klein, R. M. (1988). Inhibitory tagging system facilitates visual search. Nature, 334, 430–431.PubMedCrossRefGoogle Scholar
  23. Klein, R. M. (2000). Inhibition of return. Trends in Cognitive Sciences, 4, 138–147.PubMedCrossRefGoogle Scholar
  24. Kunar, M., Humphreys, G. W., & Smith, K. J. (2003). What is ‘marked’ in visual marking? Evidence for effects of configuration in preview search. Perception & Psychophysics, 65, 982–996.Google Scholar
  25. Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement and depth: Anatomy, physiology, and perception. Science, 240, 740–749.PubMedGoogle Scholar
  26. Nobre, A. C. (2001). Orienting attention to instants in time. Neuropsychologia, 39, 1317–1328.PubMedCrossRefGoogle Scholar
  27. Olivers, C., & Humphreys, G. W. (2002). When visual marking meets the attentional blink: More evidence for top-down limited capacity inhibition. Journal of Experimental Psychology: Human Perception and Performance, 28, 22–42.CrossRefGoogle Scholar
  28. Olivers, C. N. L., & Humphresy, G. W. (2003). Attentional guidance by salient feature singletons depends on intertribal contingencies. Journal of Experimental Psychology: Human Perception & Performance, 29, 650–657.CrossRefGoogle Scholar
  29. Olivers, C. N. L., & Humphreys, G. W. (in press). Spatio-temporal segregation in visual search: Evidence from parietal lesions. Journal of Experimental Psychology: Human Perception and Performance.Google Scholar
  30. Olivers, C. N. L., Humphreys, G. W., & Braithwaite, J. J. (in press). Feature-based inhibitory carry-over effects from old to new: Evidence for visual marking. Visual Cognition: Special issue on visual search.Google Scholar
  31. Olivers, C. N. L., Humphreys, G. W., & Heinke, D. (2002). Prioritization in visual search: Visual marking is not dependent on a mnemonic search. Perception and Psychophysics, 64, 540–560.PubMedGoogle Scholar
  32. Pollmann, S., Weidner, R., Humphreys, G. W., Olivers, C. N. L., Műller, K., Lohmann, G., Wiggins, C. J., & Watson, D. G. (2003). Separating segmentation and target detection in posterior parietal cortex—an event-related fMRI study of visual marking. NeuroImage, 18, 310–323.PubMedCrossRefGoogle Scholar
  33. Posner, M. I., & Cohen, Y. (1984). Components of performance. In H. Bouma & D. Bouwhuis (Eds.), Attention and Performance X (pp. 531–556). Hillsdale, NJ: Erlbaum.Google Scholar
  34. Posner, M. I., Walker, J. A., Friedrich, F. J., & Rafal, R. D. (1984). Effects of parietal injury on covert orienting of attention. The Journal of Neuroscience, 4, 1863–1874.PubMedGoogle Scholar
  35. Rensink, R. A. (2000). The dynamic representation of scenes. Visual Cognition, 7, 17–42.CrossRefGoogle Scholar
  36. Simons, D. J. (2000). Current approaches to change blindness. Visual Cognition, 7, 1–15.CrossRefGoogle Scholar
  37. Takeda, Y., & Kumada, T. (2004). Pattern-based visual marking: Evidence for a grouped pattern representation of old items. Manuscript submitted for publication.Google Scholar
  38. Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51, 599–606.Google Scholar
  39. Theeuwes, J., Atchley, P., & Kramer, F. (1998). Attentional control within 3-D space. Journal of Experimental Psychology: Human Perception & Performance, 24, 1476–1485.CrossRefGoogle Scholar
  40. Tipper, S. P. (1985). The negative priming effect: Inhibitory priming by ignored objects. Quarterly Journal of Experimental Psychology, 37A, 571–590.Google Scholar
  41. Tipper, S. P. (2001). Does negative priming reflect inhibitory mechanisms? A review and integration of conflicting views. Quarterly Journal of Experimental Psychology, 54A, 321–344.CrossRefGoogle Scholar
  42. Treisman, A., & Sato, S. (1990). Conjunction search revisited. Journal of Experimental Psychology: Human Perception and Performance, 16, 459–478.PubMedCrossRefGoogle Scholar
  43. Ungerleider, L. G., & Haxby, J. V. (1994). “What” and “where” in the human brain. Current Opinions in Neurobiology, 4, 157–165.CrossRefGoogle Scholar
  44. Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior, (pp. 549–586). Cambridge, MA.: MIT Press.Google Scholar
  45. Watson, D. G., & Humphreys, G. W. (1997). Visual marking: Prioritising selection for new objects by top-down attentional inhibition. Psychological Review, 104, 90–122.PubMedCrossRefGoogle Scholar
  46. Watson, D. G., & Humphreys, G. W. (2000). Visual marking: Evidence for inhibition using a probe-dot detection paradigm. Perception & Psychophysics, 62, 471–481.Google Scholar
  47. Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: Evidence from visual search. Journal of Experimental Psychology: Human Perception and Performance, 10, 601–621.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Tokyo 2005

Authors and Affiliations

  • Glyn W. Humphreys
    • 1
  • Jason Braithwaite
    • 1
  • Chris N. L. Olivers
    • 2
  • Derrick G. Watson
    • 3
  1. 1.University of BirminghamUK
  2. 2.Vrije UniversiteitThe Netherlands
  3. 3.University of WarwickUK

Personalised recommendations