Advertisement

Safety and Efficacy of Hemoglobin-Vesicles and Albumin-Hemes

  • K. Kobayashi
  • H. Horinouchi
  • M. Watanabe
  • Y. Izumi
  • Y. Teramura
  • A. Nakagawa
  • Y. Huang
  • K. Sou
  • H. Sakai
  • T. Komatsu
  • S. Takeoka
  • E. Tsuchida
Conference paper
  • 580 Downloads
Part of the Keio University International Symposia for Life Sciences and Medicine book series (KEIO, volume 12)

Summary

Keio University and Waseda University have worked together on artificial O2 carrier research for 20 years in close cooperation. Two candidate materials have been selected from the viewpoints of safety, efficacy, and cost performance. One is Hemoglobin-vesicles (HbV) and the other is albumin-heme (rHSA-heme). This chapter summarizes our video presentation that introduced the recent results of our research into HbV and rHSA-heme.

Key words

Blood substitutes Oxygen carriers Hemoglobin-vesicles Albumin-heme Oxygen therapeutics 

References

  1. 1.
    Tsuchida E (ed) (1991) Macromolecular complexes, dynamic interactions and electronic processes. VCH New YorkGoogle Scholar
  2. 2.
    Ciardelli F, Tsuchida E, Wöhrle D (eds) (1996) Macromolecule-metal complexes. VCH New YorkGoogle Scholar
  3. 3.
    Matsushita Y, Hasegawa E, Eshima K, et al (1983) Synthesis of amphiphilic porphinatoiron complexes having phosphocholine groups. Chem Lett 1983:1387–1389Google Scholar
  4. 4.
    Tsuchida E (1985) Liposome-embedded iron-porphyrins as an artificial oxygen carrier. Ann New York Acad Sci 446:429–442Google Scholar
  5. 5.
    Tsuchida E, Nishide H (1986) Hemoglobin model—artificial oxygen carrier composed of porphinatoiron complexes. Top Curr Chem 132:63–99Google Scholar
  6. 6.
    Tsuchida E, Nishide H (1988) Liposome/heme as a totally synthetic oxygen transporter. In: Greoriadis G (ed) Liposomes as drug carriers, Wiley, Chichester, pp 569–582Google Scholar
  7. 7.
    Chang TMS (1997) Blood substitutes: principles, methods, products, and clinical trials. Karger, BaselGoogle Scholar
  8. 8.
    Riess JG (2001) Oxygen carriers (Blood Substitutes)-raison d’etre, chemistry, and some physiology. Chem Rev 101:2797–2919CrossRefPubMedGoogle Scholar
  9. 9.
    Sloan EP, Koenigsberg M, Gens D, et al (1999) Diaspirin cross-linked hemoglobin (DCLHb) in the treatment of severe traumatic hemorrhagic shock. JAMA 282:1857–1864PubMedGoogle Scholar
  10. 10.
    Tsuchida E (1998) Blood substitutes: present and future perscpectives. Elsevier, AmsterdamGoogle Scholar
  11. 11.
    Djordjevich L, Mayoral J, Miller IF, et al (1987) Cardiorespiratory effects of exchange transfusions with synthetic erythrocytes in rats. Crit Care Med 15:318–323PubMedGoogle Scholar
  12. 12.
    Takeoka S, Ohgushi T, Sakai H, et al (1993) Preparation conditions of human hemoglobin vesicles covered with lipid membrane. Artif Organs Today 3:129–136Google Scholar
  13. 13.
    Sakai H, Takeoka S, Yokohama H, et al (1993) Purufication of concentrated Hb using organic solvent and heat treatment. Protein Expression Purif 4:563–569CrossRefGoogle Scholar
  14. 14.
    Takeoka S, Ohgushi T, Terase K, et al (1996) Layer-controlled hemoglobin vesicles by interaction of hemoglobin with a phospholipid assembly. Langmuir 12:1755–1759Google Scholar
  15. 15.
    Naito Y, Fukutomi I, Masada Y, et al (2002) Virus removal from hemoglobin solution using Planova membrane. J Artif Organs 5:141–145CrossRefGoogle Scholar
  16. 16.
    Fukutomi I, Sakai H, Takeoka S, et al (2002) Carbonylation of oxyhemoglobin solution using a membrane oxygenator. J Artif Organs 5:102–107CrossRefGoogle Scholar
  17. 17.
    Sou K, Endo T, Takeoka S, et al (2000) Poly(ethylene glycol)-modification of the phospholipids vesicles by using the spontaneous incorporation of poly(ethylene glycol)-lipid into the vesicles. Bioconjugate Chem 11:372–379CrossRefGoogle Scholar
  18. 18.
    Sakai H, Tomiyama K, Sou K, et al (2000) Poly(ethyleneglycol)-conjugation and deoxygenation enable long term preservation of hemoglobin vesicles as oxygen carriers. Bioconjugate Chem 11:425–432Google Scholar
  19. 19.
    Sou K, Naito Y, Endo T, et al (2003) Effective encapsulation of proteins into size-controlled phospholipid vesicles using the freeze-thawing and extrusion. Biotechnol Prog 19Google Scholar
  20. 20.
    Izumi Y, Sakai H, Hamada K, et al (1996) Pysiologic responses to exchange transfusion with hemoglobin vesicels as an artificial oxygen carrier in anesthetized rats: changes in mean arterial pressure and renal cortical tissue oxygen tension. Crit Care Med 24:1869–1873PubMedGoogle Scholar
  21. 21.
    Izumi Y, Sakai H, Takeoka S, et al (1997) Evaluation of the capabilities of a hemoglobin vesicle as an artificial oxygen carrier in a rat exchange transfusion model ASAIO J. 43:289–297Google Scholar
  22. 22.
    Kobayashi K, Izumi Y, Yoshizu A, et al (1997) The oxygen carrying capability of hemoglobin vesicles evaluated in rat exchange transfusion models. Artif Cells Blood Substitues Immobilization Biotechnol 25:357–366Google Scholar
  23. 23.
    Sakai H, Park SI, Kose T, et al (1997) Surface modification of hemoglobin vesicles with poly(ethyleneglycol) and effects on aggregation, viscosity, and blood flow during 90% exchange transfusion in anesthetized rats. Bioconjugate Chem 8:23–30CrossRefGoogle Scholar
  24. 24.
    Sakai H, Tsai AG, Kerger H, et al (1998) Subcutaneous microvascular responses to hemodilution with a red cell substitute consisting of polyethyleneglycol-modified vesicles encapsulating hemoglobin. J Biomed Materials Res 40:66–78Google Scholar
  25. 25.
    Sakai H, Tsai AG, Rohlfs RJ, et al (1999) Microvascular responses to hemodilution with Hb-vesicles as red cell substitutes: Influences of O2 affinity. Am J Physiol 276 (Heart Circ Physiol 45):H553–H562PubMedGoogle Scholar
  26. 26.
    Sakai H, Takeoka S, Wettstein R, et al (2002) Systemic and Microvascular responses to the hemorrhagic shock and resuscitation with Hb-vesicles. Am J Physiol Heart Circ Physiol 283:H1191–H1199PubMedGoogle Scholar
  27. 27.
    Erni D, Wettstein R, Schramm S, et al (2003) Normovolemic hemodilution with hemoglobin-vesicle solution attenuates hypoxia in ischemic hamster flap tissue. Am J Physiol Heart Circ Physiol 284:H1702–H1709PubMedGoogle Scholar
  28. 28.
    Contaldo C, Schramm S, Wettstein R, et al (2003) Improved oxygenation in ischemic hamster flap tissue is correlated with increasing hemodilution with Hb vesicles and their O2 affinity. Am J Physiol Heart Circ Physiol 284Google Scholar
  29. 29.
    Goda N, Suzuki K, Naito S, et al (1998) Distribution of heme oxygenase isoform in rat liver: topographic basis for carbon monoxide-mediated micorvascular relaxation. J Clin Invest 101:604–612PubMedGoogle Scholar
  30. 30.
    Sakai H, Hara H, Yuasa M, et al (2000) Molecular dimensions of Hb-based O2 carriers determine constriction of resistance arteries and hypertension in conscious hamster model. Am J Physiol Heart Circ Physiol 279:H908–H915PubMedGoogle Scholar
  31. 31.
    Wakamoto S, Fujiwara M, Abe H, et al (2001) Effects of PEG-modified hemoglobin vesicles on agonist induced platelet aggregation and RANTES release in vitro. Artif Cells Blood Substitues Immobilization Biotechnol 29:191–201Google Scholar
  32. 32.
    Kyokane T, Norimizu S, Taniai H, et al (2001) Carbon monoxide from heme catabolism protects against hepatobiliary dysfunction in endotoxin-treated rat liver. Gastroenterology 120:1227–1240CrossRefPubMedGoogle Scholar
  33. 33.
    Ito T, Fujihara M, Abe H, et al (2001) Effects of poly (ethyleneglycol)-modified hemoglobin vesicles on N-formyl-methionyl-leucyl-phenylalanine induced respoonses of polymorphonuclear neutrophils in vitro. Artif Cells Blood Substitues Immobilization Biotechnol 29:427–438Google Scholar
  34. 34.
    Sakai H, Horinouchi H, Tomiyama K, et al (2001) Hemoglobin-vesicles as oxygen carriers: influence on phagocytic activity and histopathological changes in reticuloendothelial systems. Am J Pathol 159:1079–1088PubMedGoogle Scholar
  35. 35.
    Sakai H, Tomiyama K, Masada Y, et al (2003) Pretreatment of serum containing Hb-vesicels (oxygen carriers) to avoid their interference in laboratory tests. Clin Chem Lab Med 41:222–231CrossRefPubMedGoogle Scholar
  36. 36.
    Curry S, Mandelkow H, Brick P, et al (1998) Crystal structure of human serum albumin complexes with fatty acid reveals an asymmetric distribution of binding sites. Nature Struct Biol 5:827–835CrossRefPubMedGoogle Scholar
  37. 37.
    Sumi A, Ohtani W, Kobayashi K, et al (1993) Purification and Physicochemical Properties of Recombinant Human Serum Albumin. In: Rivat C, Stoltz J-F (eds) Biotechnology of Blood Proteins Vol. 227, John Libbey Eurotext Montrouge, pp 293–298Google Scholar
  38. 38.
    Komatsu T, Ando K, Kawai N, et al (1995) O2-Transport Albumin: A New Hybrid-haemoprotein Incorporating Tetraphenylporphinatoiron(II) Derivative. Chem Lett 1995:813–814Google Scholar
  39. 39.
    Tsuchida E, Ando K, Maejima H, et al (1997) Properties of oxygen binding by albumin-tetraphenylporphyrynatoiron(II) derivative complexes. Bioconjugate Chem 8:534–538CrossRefGoogle Scholar
  40. 40.
    Wu J, Komatsu T, Tsuchida E (1998) Resonance raman studies of O2-binding to ortho-substituted tetraphenyl-and tetranaphthyl-porphinatoiron(II) derivatives with a covalently linked axial imidazole. J Chem Soc Dalton Trans 1998:2503–2506Google Scholar
  41. 41.
    Komatsu T, Hamamatsu K, Wu J, et al (1999) Physicochemical properties and O2-coordination structure of human serum albumin incorporating tetrakis(o-pivalamido) phenylporphinatoiron(II) serivatives. Bioconjugate Chem 10:82–86CrossRefGoogle Scholar
  42. 42.
    Tsuchida E, Komatsu T, Mastukawa Y, et al (1999) Human serum albumin incorporating tetrakis(o-pivalamido)phenylporphinatoiron(II) derivative as a totally synthetic O2-carrying hemoprotein. Bioconjugate Chem 10:797–802CrossRefGoogle Scholar
  43. 43.
    Komatsu T, Matsukawa Y, Tsuchida E (2000) Kinetics of CO and O2 Binding to Human Serum Albumin-heme Hybrid. Bioconjugate Chem 11:772–776CrossRefGoogle Scholar
  44. 44.
    Komatsu T, Matsukawa Y, Tsuchida E (2001) Reaction of Nitric Oxide with Synthetic Hemoprotein, Human Serum Albumin Incorporating Tetraphenylporphinatoiron(II) Derivatives. Bioconjugate Chem 12:71–75CrossRefGoogle Scholar
  45. 45.
    Nakagawa A, Komatsu T, Tsuchida E (2001) Photoreduction of autooxidized albumin-heme hybrid in saline solution: revival of its O2-binding ability. Bioconjugate Chem 12:648–652CrossRefGoogle Scholar
  46. 46.
    Komatsu T, Okada T, Moritake M, et al (2001) O2-Binding properties of double-sided porphyrinatoiron(II)s with polar substituents and their human serum albumin hybrids. Bull Chem Soc Jpn 74:1695–1702Google Scholar
  47. 47.
    Wu Y, Komatsu T, Tsuchida E (2001) Electrochemical studies of albumin-heme hybrid in aqueous media by modified electrode. Inorg Chim Acta 322:120–124CrossRefGoogle Scholar
  48. 48.
    Komatsu T, Matsukawa Y, Tsuchida E (2002) Effect of heme structure on O2-binding properties of human serum albumin-heme hybrids: intramolecular histidine coordination provides a stable O2-adduct complex. Bioconjugate Chem 13:397–402CrossRefGoogle Scholar
  49. 49.
    Tsuchida E, Komatsu T, Yanagimoto T, et al (2002) Preservation stability and in vivo administration of albumin-heme hybrid solution as an entirely synthetic O2-carrier. Polym Adv Technol 13:845–850CrossRefGoogle Scholar
  50. 50.
    Nakagawa A, Komatsu T, Ohmichi N, et al (2003) Synthetic dioxygen-carrying hemoprotein: human serum albumin including iron(II) complex of protoporphyrin IX with an axially coordinated histidylglycyl-propionate. Chem Lett 32:504–505Google Scholar
  51. 51.
    Tsuchida E, Komatsu T, Matsukawa Y, et al (2003) Human serum albumin incorporating synthetic heme: red blood cell substitute without hypertension by nitric oxide scavenging. J Biomed Mater Res 64A:257–261CrossRefGoogle Scholar
  52. 52.
    Tsuchida E, Komatsu T, Hamamatsu K, et al (2000) Exchange transfusion of albumin-heme as an artificial O2-infusion into anesthetized rats: physiological responses, O2-delivery and reduction of the oxidized hemin sites by red blood cells. Bioconjugate Chem 11:46–50CrossRefGoogle Scholar
  53. 53.
    Komatsu T, Hamamatsu K, Tsuchida E (1999) Cross-linked human serum albumin dimers incorporating sixteen (tetraphenylporphinato)iron(II) derivatives: synthesis, characterization, and O2-binding property. Macromolecules 32:8388–8391CrossRefGoogle Scholar
  54. 54.
    Kobayashi K, Komatsu T, Iwamaru A, et al (2003) Oxygenation of hypoxic region in solid tumor by administration of human serum albumin incorporating synthetic hemes. J Biomed Mater Res 64A:48–51CrossRefGoogle Scholar
  55. 55.
    Kobayashi K, Izumi Y, Yamahata T, et al (1996) Efficacy of synthetic oxygen-carrying substances. In: Proceedings of Int. Congr. Ser. 1995. Elsevier, pp 305–310Google Scholar
  56. 56.
    Horinouchi H, Tajima A, Kobayashi K (2001) Liquid ventilation using artificial oxygen carrier. Artif Blood 9:2–5 (in Japanese)Google Scholar

Copyright information

© Springer-Verlag Tokyo 2005

Authors and Affiliations

  • K. Kobayashi
    • 1
  • H. Horinouchi
    • 1
  • M. Watanabe
    • 1
  • Y. Izumi
    • 1
  • Y. Teramura
    • 2
  • A. Nakagawa
    • 2
  • Y. Huang
    • 2
  • K. Sou
    • 2
  • H. Sakai
    • 2
  • T. Komatsu
    • 2
  • S. Takeoka
    • 2
  • E. Tsuchida
    • 2
  1. 1.Department of Surgery, School of MedicineKeio UniversityTokyoJapan
  2. 2.Advanced Research Institute for Science & EngineeringWaseda UniversityTokyoJapan

Personalised recommendations