pp 1-41 | Cite as

Feeding Behavioural Studies with Freshwater Gammarus spp.: The Importance of a Standardised Methodology

  • Giulia ConsolandiEmail author
  • Alex T. Ford
  • Michelle C. Bloor
Part of the Reviews of Environmental Contamination and Toxicology book series


Freshwater Gammarids are common leaf-shredding detritivores, and they usually feed on naturally conditioned organic material, in other words leaf litter that is characterised by an increased palatability, due to the action and presence of microorganisms (Chaumot et al. 2015; Cummins 1974: Maltby et al. 2002). Gammarus spp. are biologically omnivorous organisms, so they are involved in shredding leaf litter and are also prone to cannibalism, predation behaviour (Kelly et al. 2002) and coprophagy when juveniles (McCahon and Pascoe 1988). Gammarus spp. is a keystone species (Woodward et al. 2008), and it plays an important role in the decomposition of organic matter (Alonso et al. 2009; Bundschuh et al. 2013) and is also a noteworthy prey for fish and birds (Andrén and Eriksson Wiklund 2013; Blarer and Burkhardt-Holm 2016). Gammarids are considered to be fairly sensitive to different contaminants (Ashauer et al. 2010; Bloor et al. 2005; Felten et al. 2008a; Lahive et al. 2015; Kunz et al. 2010); in fact Amphipods have been reported to be one of the most sensitive orders to metals and organic compounds (Wogram and Liess 2001), which makes them representative test organisms for ecotoxicological studies and valid sentinel species for assessing water quality status (Garcia-Galan et al. 2017).


Acclimation Alnus glutinosa Amphipods Behaviour Conditioning Crustacea Ecotoxicology Ex situ Feeding assays Feeding rate Feeding rate equations Gammarids Gammarus Gammarus fossarum Gammarus pulex In situ Invertebrates Leaves Methodology Standardised methods Standardised protocol Sublethal endpoint Toxicity testing Water quality Water quality monitoring 



Ash-free dry weight



The authors would like to thank the University of Portsmouth, UK, for funding the research presented in this paper.


  1. Adam O, Degiorgi F, Crini G, Badot PM (2010) High sensitivity of Gammarus sp. juveniles to deltamethrin: outcomes for risk assessment. Ecotoxicol Environ Saf 73(6):1402–1407Google Scholar
  2. Agatz A, Brown CD (2014) Variability in feeding of Gammarus pulex: moving towards a more standardised feeding assay. Environ Sci Eur 26(1):15Google Scholar
  3. Agatz A, Ashauer R, Brown CD (2014) Imidacloprid perturbs feeding of Gammarus pulex at environmentally relevant concentrations. Environ Toxicol Chem 33(3):648–653Google Scholar
  4. Alonso Á, De Lange HJ, Peeters ETHM (2009) Development of a feeding behavioural bioassay using the freshwater amphipod Gammarus pulex and the multispecies freshwater biomonitor. Chemosphere 75(3):341–346Google Scholar
  5. Andrén CM, Eriksson Wiklund A-K (2013) Response of Gammarus pulex and Baetis rhodani to springtime acid episodes in humic brooks. Sci Total Environ 463–464:690–699Google Scholar
  6. Arsuffi TL, Suberkropp K (1989) Selective feeding by shredders on leaf-colonizing stream fungi: comparison of macroinvertebrate taxa. Oecologia 79(1):30–37Google Scholar
  7. Ashauer R, Caravatti I, Hintermeister A, Escher BI (2010) Bioaccumulation kinetics of organic xenobiotic pollutants in the freshwater invertebrate Gammarus pulex modeled with prediction intervals. Environ Toxicol Chem 29(7):1625–1636Google Scholar
  8. Baldy V, Gessner MO, Chauvet E (1995) Bacteria, fungi and the breakdown of leaf litter in a large river. Oikos 74(1):93–102Google Scholar
  9. Bärlocher F (1992) Effects of drying and freezing autumn leaves on leaching and colonization by aquatic hyphomycetes. Freshw Biol 28:1–7Google Scholar
  10. Bärlocher F, Kendrick B (1973a) Fungi and food preferences of Gammarus pseudolimnaeus. Arch Hydrobiol 72:501–516Google Scholar
  11. Bärlocher F, Kendrick B (1973b) Fungi in the diet of Gammarus pseudolimnaeus (Amphipoda). Oikos 24(2):295–300Google Scholar
  12. Bärlocher F, Kendrick B (1975) Leaf-conditioning by microorganisms. Oecologia 20(4):359–362Google Scholar
  13. Bird GA, Kaushik NK (1985) Processing of elm and maple leaf discs by collectors and shredders in laboratory feeding studies. Hydrobiologia 126(2):109–120Google Scholar
  14. Blarer P, Burkhardt-Holm P (2016) Microplastics affect assimilation efficiency in the freshwater amphipod Gammarus fossarum. Environ Sci Pollut Res 23(23):23522–23532Google Scholar
  15. Blockwell SJ, Pascoe D, Taylor EJ (1996) Effects of lindane on the growth of the freshwater amphipod Gammarus pulex (L.). Chemosphere 32(9):1795–1803Google Scholar
  16. Blockwell SJ, Taylor EJ, Jones I, Pascoe D (1998) The influence of fresh water pollutants and interaction with Asellus aquaticus (L.) on the feeding activity of Gammarus pulex (L.). Arch Environ Contam Toxicol 34(1):41–47Google Scholar
  17. Bloor M (2010) Animal standardisation for mixed species ecotoxicological studies: establishing a laboratory breeding programme for Gammarus pulex and Asellus aquaticus. Zool Baetica 21:179–190Google Scholar
  18. Bloor MC, Banks CJ (2006a) Acute and sub-lethal toxicity of landfill leachate towards two aquatic macro-invertebrates: demonstrating the remediation potential of aerobic digestion. Hydrobiologia 556(1):387–397Google Scholar
  19. Bloor MC, Banks CJ (2006b) An evaluation of mixed species in-situ and ex-situ feeding assays: the altered response of Asellus aquaticus and Gammarus pulex. Environ Int 32:22–27Google Scholar
  20. Bloor MC, Banks CJ, Krivtsov V (2005) Acute and sublethal toxicity tests to monitor the impact of leachate on an aquatic environment. Environ Int 31(2):269–273Google Scholar
  21. Bundschuh M, Hahn T, Gessner MO, Schulz R (2009) Antibiotics ad a chemical stressor affecting an aquatic decomposer-detritivore system. Environ Toxicol Chem 28(1):197–203Google Scholar
  22. Bundschuh M, Zubrod JP, Kosol S, Maltby L, Stang C, Duester L, Schulz R (2011a) Fungal composition on leave explains pollutant-mediated indirect effects on amphipod feeding. Aquat Toxicol 104(1–2):32–37Google Scholar
  23. Bundschuh M, Zubrod JP, Schulz R (2011b) The functional and physiological status of Gammarus fossarum (Crustacea; Amphipoda) exposed to secondary treated wastewater. Environ Pollut 159(1):244–249Google Scholar
  24. Bundschuh M, Zubrod JP, Klemm P, Elsaesser D, Stang C, Schulz R (2013) Effects of peak exposure scenarios on Gammarus fossarum using field relevant pesticide mixtures. Ecotoxicol Environ Saf 95:137–143Google Scholar
  25. Bundschuh M, Hahn T, Gessner MO, Schulz R (2017) Antibiotic mixture effects on growth of the leaf-shredding stream detritivore Gammarus fossarum. Ecotoxicology 26(4):547–554Google Scholar
  26. Burke MJ, Gusta LV, Quamme HA, Weiser CM, Li PH (1976) Freezing and injury in plants. Annu Rev Plant Physiol 27:507–528Google Scholar
  27. Chaumot A, Geffard O, Armengaud J, Maltby L (2015) Gammarids as reference species for freshwater monitoring. In: Aquatic ecotoxicology. Academic Press, London, pp 253–280Google Scholar
  28. Coulaud R, Geffard O, Xuereb B, Lacaze E, Quéau H, Garric J, Charles S, Chaumot A (2011) In situ feeding assay with Gammarus fossarum (Crustacea): modelling the influence of confounding factors to improve water quality biomonitoring. Water Res 45(19):6417–6429Google Scholar
  29. Crane M, Maltby L (1991) The lethal and sublethal responses of Gammarus pulex to stress: sensitivity and sources of variation in an in situ bioassay. Environ Toxicol Chem 10(10):1331–1339Google Scholar
  30. Cummins KW (1974) Structure and function of stream ecosystems. Bioscience 24(11):631–641Google Scholar
  31. Dang CK, Chauvet E, Gessner MO (2005) Magnitude and variability of process rates in fungal diversity-litter decomposition relationships. Ecol Lett 8(11):1129–1137Google Scholar
  32. Danger M, Cornut J, Elger A, Chauvet E (2012) Effects of burial on leaf litter quality, microbial conditioning and palatability to three shredder taxa. Freshw Biol 57(5):1017–1030Google Scholar
  33. De Castro-Català N, Muñoz I, Riera JL, Ford AT (2017) Evidence of low dose effects of the antidepressant fluoxetine and the fungicide prochloraz on the behavior of the keystone freshwater invertebrate Gammarus pulex. Environ Pollut 231:406–414Google Scholar
  34. Dedourge-Geffard O, Palais F, Biagianti-Risbourg S, Geffard O, Geffard A (2009) Effects of metals on feeding rate and digestive enzymes in Gammarus fossarum: an in situ experiment. Chemosphere 77(11):1569–1576Google Scholar
  35. European Commission (EC) (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Off J Eur Commun 327(1):22–12Google Scholar
  36. Felten V, Guerold F (2001) Hyperventilation and loss of hemolymph Na+ and Cl− in the freshwater amphipod Gammarus fossarum exposed to acid stress: a preliminary study. Dis Aquat Org 45(1):77–80Google Scholar
  37. Felten V, Charmantier G, Mons R, Geffard A, Rousselle P, Coquery M, Garric J, Geffard O (2008a) Physiological and behavioural responses of Gammarus pulex (Crustacea: Amphipoda) exposed to cadmium. Aquat Toxicol 86(3):413–425Google Scholar
  38. Felten V, Charmantier G, Charmantier-Daures M, Aujoulat F, Garric J, Geffard O (2008b) Physiological and behavioural responses of Gammarus pulex exposed to acid stress. Comp Biochem Physiol C Toxicol Pharmacol 147(2):189–197Google Scholar
  39. Fisher SG (1977) Organic matter processing by stream segment ecosystem: Fort River, Massachusetts, USA. Int Rev Gesamten Hydrobiol 62:701–727Google Scholar
  40. Forrow DM, Maltby L (2000) Toward a mechanistic understanding of contaminant-induced changes in detritus processing in streams: direct and indirect effects on detritivore feeding. Environ Toxicol Chem 19(8):2100–2106Google Scholar
  41. Foucreau N, Cottin D, Piscart C, Hervant F (2014) Physiological and metabolic responses to rising temperature in Gammarus pulex (Crustacea) populations living under continental or Mediterranean climates. Comp Biochem Physiol A Mol Integr Physiol 168:69–75Google Scholar
  42. Garcia-Galan MJ, Sordet M, Buleté A, Garric J, Vulliet E (2017) Evaluation of the influence of surfactants in the bioaccumulation kinetics of sulfamethoxazole and oxazepam in benthic invertebrates. Sci Total Environ 592:554–564Google Scholar
  43. Geffard O, Xuereb B, Chaumot A, Geffard A, Biagianti S, Noël C, Abbaci K, Garric J, Charmantier G, Charmantier-Daures M (2010) Ovarian cycle and embryonic development in Gammarus fossarum: application for reproductive toxicity assessment. Environ Toxicol Chem 29(10):2249–2259Google Scholar
  44. Gergs R, Rothhaupt K-O (2008) Feeding rates, assimilation efficiencies and growth of two amphipod species on biodeposited material from zebra mussels. Freshw Biol 53(12):2494–2503Google Scholar
  45. Gessner MO, Schwoerbel J (1989) Leaching kinetics of fresh leaf-litter with implication for the current concept of leaf-processing in streams. Arch Hydrobiol 115:81–90Google Scholar
  46. Gessner MO, Chauvet E, Dobson M (1999) A perspective on leaf litter breakdown in streams. Oikos 85(2):377–384Google Scholar
  47. Graça MAS, Maltby L, Calow P (1993a) Importance of fungi in the diet of Gammarus pulex and Asellus aquaticus I: feeding strategies. Oecologia 93(1):139–144Google Scholar
  48. Graça MAS, Maltby L, Calow P (1993b) Importance of fungi in the diet of Gammarus pulex and Asellus aquaticus: II. Effects on growth, reproduction and physiology. Oecologia 96(3):304–309Google Scholar
  49. Graça MAS, Cressa C, Gessner MO, Feio MJ, Callies KA, Barrios C (2001) Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshw Biol 46(7):947–957Google Scholar
  50. Hahn T, Schulz R (2007) Indirect effects of antibiotics in the aquatic environment: a laboratory study on detritivore food selection behavior. Hum Ecol Risk Assess 13(3):535–542Google Scholar
  51. Hargeby A, Petersen RC Jr (1988) Effects of low pH and humus on the survivorship, growth and feeding of Gammarus pulex (L.) (Amphipoda). Freshw Biol 19(2):235–247Google Scholar
  52. Henry Y, Piscart C, Charles S, Colinet H (2017) Combined effect of temperature and ammonia on molecular response and survival of the freshwater crustacean Gammarus pulex. Ecotoxicol Environ Saf 137:42–48Google Scholar
  53. Iltis C, Dechaume-Moncharmont F-X, Galipaud M, Moreau J, Bollache L, Louâpre P (2017) The curse of being single: both male and female Gammarus pulex benefit energetically from precopulatory mate guarding. Anim Behav 130:67–72Google Scholar
  54. Kelly DW, Dick JTA, Montgomery WI (2002) The functional role of Gammarus (Crustacea, Amphipoda): shredders, predators, or both? Hydrobiologia 485(1–3):199–203Google Scholar
  55. Kunz PJ, Kienle C, Gerhardt A (2010) Gammarus spp. in aquatic ecotoxicology and water quality assessment: toward integrated multilevel tests. Rev Environ Contam Toxicol 205:1–76Google Scholar
  56. Labaude S, Moret Y, Cézilly F, Reuland C, Rigaud T (2017) Variation in the immune state of Gammarus pulex (Crustacea, Amphipoda) according to temperature: are extreme temperatures a stress? Dev Comp Immunol 76:25–33Google Scholar
  57. Lahive E, O’Halloran J, Jansen MAK (2015) A marriage of convenience; a simple food chain comprised of Lemna minor (L.) and Gammarus pulex (L.) to study the dietary transfer of zinc. Plant Biol 17:75–81Google Scholar
  58. Le Moullac G, Haffner P (2000) Environmental factors affecting immune responses in Crustacea. Aquaculture 191(1–3):121–131Google Scholar
  59. Magi E, Di Carro M, Mirasole C, Benedetti B (2018) Combining passive sampling and tandem mass spectrometry for the determination of pharmaceuticals and other emerging pollutants in drinking water. Microchem J 136:56–60Google Scholar
  60. Maltby L, Clayton SA, Wood RM, McLoughlin N (2002) Evaluation of the Gammarus pulex in situ feeding assay as a biomonitor of water quality: robustness, responsiveness, and relevance. Environ Toxicol Chem 21(2):361–368Google Scholar
  61. Maul JD, Schuler LJ, Belden JB, Whiles MR, Lydy MJ (2006) Effects of the antibiotic ciprofloxacin on stream microbial communities and detritivorous macroinvertebrates. Environ Toxicol Chem 25(6):1598–1606Google Scholar
  62. McCahon CP, Pascoe D (1988) Use of Gammarus pulex (L.) in safety evaluation tests: culture and selection of a sensitive life stage. Ecotoxicol Environ Saf 15(3):245–252Google Scholar
  63. Naylor C, Maltby L, Calow P (1989) Scope for growth in Gammarus pulex, a freshwater benthic detritivore. Hydrobiologia 188–189(1):517–523Google Scholar
  64. Newton K, Zubrod JP, Englert D, Lüderwald S, Schell T, Baudy P, Konschak M, Feckler A, Schulz R, Bundschuh M (2018) The evil within? Systemic fungicide application in trees enhances litter quality for an aquatic decomposer-detritivore system. Environ Pollut 241:549–556Google Scholar
  65. Nilsson LM (1974) Energy budget of a laboratory population of Gammarus pulex (Amphipoda). Oikos 25(1):35–42Google Scholar
  66. Pascoe D, Kedwards TJ, Blockwell SJ, Taylor EJ (1995) Gammarus pulex (L.) feeding bioassay--effects of parasitism. Bull Environ Contam Toxicol 55(4):629–632Google Scholar
  67. Perrot-Minnot M-J, Dion E, Cézilly F (2013) Modulatory effects of the serotonergic and histaminergic systems on reaction to light in the crustacean Gammarus pulex. Neuropharmacology 75:31–37Google Scholar
  68. Semsar-kazerouni M, Verberk WCEP (2018) It’s about time: linkages between heat tolerance, thermal acclimation and metabolic rate at different temporal scales in the freshwater amphipod Gammarus fossarum Koch, 1836. J Therm Biol 75:31–37Google Scholar
  69. Sutcliffe DW (1984) Quantitative aspects of oxygen uptake by Gammarus (Crustacea, Amphipoda): a critical review. Freshw Biol 14(5):443–489Google Scholar
  70. Sutcliffe DW, Carrick TR (1973) Studies on mountain streams in the English Lake District. Freshw Biol 3(5):437–462Google Scholar
  71. Taylor EJ, Jones DPW, Maund SJ, Pascoe D (1993) A new method for measuring the feeding activity of Gammarus pulex (L.). Chemosphere 26(7):1375–1381Google Scholar
  72. Weber A, Scherer C, Brennholt N, Reifferscheid G, Wagner M (2018) PET microplastics do not negatively affect the survival, development, metabolism and feeding activity of the freshwater invertebrate Gammarus pulex. Environ Pollut 234:181–189Google Scholar
  73. Wogram J, Liess M (2001) Rank ordering of macroinvertebrate species sensitivity to toxic compounds by comparison with that of Daphnia magna. Bull Environ Contam Toxicol 67:360–367Google Scholar
  74. Woodward G, Papantoniou G, Edwards F, Lauridsen RB (2008) Trophic trickles and cascades in a complex food web: impacts of a keystone predator on stream community structure and ecosystem processes. Oikos 117(5):683–692Google Scholar
  75. Xuereb B, Lefèvre E, Garric J, Geffard O (2009) Acetylcholinesterase activity in Gammarus fossarum (Crustacea Amphipoda): linking AChE inhibition and behavioural alteration. Aquat Toxicol 94(2):114–122Google Scholar
  76. Zubrod JP, Bundschuh M, Schulz R (2010) Effects of subchronic fungicide exposure on the energy processing of Gammarus fossarum (Crustacea; Amphipoda). Ecotoxicol Environ Saf 73(7):1674–1680Google Scholar
  77. Zubrod JP, Baudy P, Schulz R, Bundschuh M (2014) Effects of current-use fungicides and their mixtures on the feeding and survival of the key shredder Gammarus fossarum. Aquat Toxicol 150:133–143Google Scholar
  78. Zubrod JP, Englert D, Wolfram J, Wallace D, Schnetzer N, Baudy P, Konschak M, Schulz R, Bundschuh M (2015) Waterborne toxicity and diet-related effects of fungicides in the key leaf shredder Gammarus fossarum (Crustacea: Amphipoda). Aquat Toxicol 169:105–112Google Scholar
  79. Zubrod JP, Englert D, Wolfram J, Rosenfeldt RR, Feckler A, Bundschuh R, Seitz F, Konschank M, Baudy P, Lüderwald S, Fink P, Lorke A, Schulz R, Bundschuh M (2017) Long-term effects of fungicides on leaf-associated microorganisms and shredder populations--an artificial stream study. Environ Toxicol Chem 36(8):2178–2189Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Giulia Consolandi
    • 1
    Email author
  • Alex T. Ford
    • 2
  • Michelle C. Bloor
    • 1
  1. 1.School of Earth and Environmental Sciences, University of PortsmouthPortsmouthUK
  2. 2.Institute of Marine Sciences, School of Biological Sciences, University of PortsmouthPortsmouthUK

Personalised recommendations