Advertisement

Heavy Metal Threats to Plants and Soil Life in Southern Africa: Present Knowledge and Consequences for Ecological Risk Assessment

  • Herman Eijsackers
  • Adriaan Reinecke
  • Sophié Reinecke
  • Mark MaboetaEmail author
Chapter
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 249)

Abstract

In recent times there has been remarkable development in the field of soil ecotoxicology and risk assessment (RA) models. It is, however, debatable if these RA models are robust representatives for worldwide relevance. In order to investigate this, the current overview aims to address heavy metal threats to soil life in southern Africa by investigating present knowledge and consequences for RA using research in southern Africa as a case. To this end, the focus is on southern African soils, soil life and living conditions. To critically discuss these issues, we report on extensive research conducted in the southern African context and looked how comparable these findings are to RA models employed in the western world. This is done by providing an inventory of selected studies focused on the ecotoxicity of metals towards soil life. It is concluded that there is a dearth of information on southern African soil life, most of which are laboratory-based studies carried out by a handful of researchers. Future research incorporating the available information into a soil ecosystem assessment procedure is paramount. It is recommended that a starting point to tackle this might be the development of holistic sight-specific guidelines for ecological risk assessment at larger spatial scales (km2) which takes into cognizance landscapes, vegetation and faunal characteristics.

Keywords

African soils Anthropogenic impacts Background metal concentrations Biomarkers Contamination Ecological risk assessment Edible plants Environmental conditions Heavy metals Legislation Metal contaminated soils Metals in plants Mine waste Mining Plant-soil life interaction Regional risk assessment Restoration Risk assessment Soil ecotoxicology Soil mesofauna Soil microorganisms Soil quality Soil threats South Africa 

Abbreviations

AM

Arbuscular mycorrhiza

BAF

Bioaccumulation factor

CEC

Cation exchange capacity

DNA

Deoxyribonucleic acid

ERA

Ecological risk assessment

HM

Heavy metal

ISO

International Organization for Standardization

MTT

3-(4,5-Dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide spectrophotometric test

NRR

Neutral red spectrophotometric assay

NRRT

Neutral red retention test

OECD

Organisation for Economic Co-operation and Development

PAH

Poly aromatic hydrocarbons

RA

Risk assessment

SA

South Africa

SADC

Southern African Development Community

SSD

Species sensitivity distribution

SSV

Soil screening value

TDF

Tailing disposal facility

UNEP

United Nations Environment Programme

USA

United States

Notes

Acknowledgements

This work was funded by the National Research Foundation (NRF) of South Africa and the Unit of Environmental Sciences of the North-West University. Opinions expressed and conclusions arrived at are those of the authors alone. The authors would also like to thank Oluwatosin Oladipo.

References

  1. Aamodt S, Kontestabo HS, Sverdrup LE, Gubrandsen N, Reinecke SA, Reinecke AJ, Stenersen J (2007) Recovery of cholinesterase activity in the earthworm Eisenia fetida Savigny following exposure to chlorpyrifos. Environ Toxicol Chem 26:1963–1967Google Scholar
  2. Annecke DP, Moran VC (1982) Insects and mites of cultivated plants in South Africa. Butterworths, DurbanGoogle Scholar
  3. Arnaud C, Saint-Denis M, Narbonne JF, Solar P, Ribera D (2000) Influence of different standardised test methods on biochemical responses in the earthworm Eisenia fetida andrei. Soil Biol Biochem 32:76–73Google Scholar
  4. Atagana HI (2004) Co-composting of PAH-contaminated soil with poultry manure. Lett Appl Microbiol 39(2):163–168Google Scholar
  5. Aucamp JL, Ryke PAJ (1964) A preliminary report on a grease film extraction method for soil microarthropods. Pedobiologia 4:77–79Google Scholar
  6. Ayeni OO, Ndakidemi PA, Snyman RG, Odendaal JP (2010) Metal contamination of soils collected from four different sites along the lower Diep River, Cape Town, South Africa. Int J Phys Sci 5(12):2045–2051Google Scholar
  7. Barnard KH (1960) Terrestrial Isopoda from the Transvaal. Ann Natal Mus 15(2):45–55Google Scholar
  8. Blight GE, Fourie AB (2005) Catastrophe revisited–disastrous flow failures of mine and municipal solid waste. Geotech Geol Eng 23(3):219–248Google Scholar
  9. Blight G, Copeland A, Jardine P, MacRobert C (2012) Measurements on freshly-deposited surfaces of two platinum tailings dams. J South Afr Inst Min Metall 112(11):911–917Google Scholar
  10. Blignaut A, Milton SJ (2005) Effects of multispecies clumping on survival of three succulent plant species translocated onto mine spoil in the Succulent Karoo Desert, South Africa. Restor Ecol 13(1):15–19.  https://doi.org/10.1111/j.1526-100X.2005.00003.x CrossRefGoogle Scholar
  11. Botes E, Heerden EV et al (2007) Hyper-resistance to arsenic in bacteria isolated from an antimony mine in South Africa. S Afr J Sci 103(7/8):279–281Google Scholar
  12. Boyd RS, Davis MA et al (2008) Does hyperaccumulated nickel affect leaf decomposition? A field test using Senecio coronatus (Asteraceae) in South Africa. Chemoecology 18(1):1–9.  https://doi.org/10.1007/s00049-007-0387-7 CrossRefGoogle Scholar
  13. Bvenura C, Afolayan AJ (2012) Heavy metal contamination of vegetables cultivated in home gardens in the Eastern Cape. S Afr J Sci 108(9–10):1–6Google Scholar
  14. Campbell H (2013) Ant diversity, coexistence and myrmecophyte interactions in Namibia. PhD diss., University of ReadingGoogle Scholar
  15. Chen M, Ma LQ, Harris WG (1999) Baseline concentrations of 15 trace elements in Florida surface soils. J Environ Qual 28:1173–1181Google Scholar
  16. Chen M, Ma LQ, Hoogeweg CG, Harris WG (2001) Arsenic background concentrations in Florida, U.S.A. surface soils: determination and interpretation. Environ Forensics 2:117–126Google Scholar
  17. Claassens S, Rensburg PJJV et al (2006) Soil microbial community structure of coal mine discard under rehabilitation. Water Air Soil Pollut 174(1/4):355–366.  https://doi.org/10.1007/s11270-006-9125-y CrossRefGoogle Scholar
  18. Cooper RI, Skinner JD (1979) Importance of termites in the diet of the aardwolf Proteles cristatus in South Africa. S Afr J Zool 14:5–8Google Scholar
  19. Council for Geoscience South Africa (CGSA) (2018a) Active mines South Africa, Lesotho and Swaziland. http://www.geoscience.org.za/images/Maps/activemines.gif. Accessed 21 Nov 2018
  20. Council for Geoscience South Africa (CGSA) (2018b) Selected active mines South Africa, Lesotho and Swaziland. http://www.geoscience.org.za/images/Maps/selectedactivemines.gif. Accessed 21 Nov 2018
  21. Dafana M, Nyakudya IW et al (2010) Comparative analysis of the early growth performance of indigenous Acacia species in revegetating Trojan nickel mine tailings in Zimbabwe. Elec J Env Agricult Food Chem Title 9(8):1393–1403Google Scholar
  22. Dallinger R (1996) Metallothionein research in terrestrial invertebrates: synopsis and perspectives. Comp Biochem Physiol 113(C):125–133Google Scholar
  23. Dalvie MA, Africa A, London L (2009) Change in the quantity and acute toxicity of pesticides sold in South African crop sectors, 1994–1999. Environ Int 35(4):683–687Google Scholar
  24. Dangerfield JM, Telford SR (1994) Population size structure and sex ratios in some woodlice (Crustacea: Oniscidae) from southern Africa. J Trop Ecol 10:261–271Google Scholar
  25. Dangerfield JM, Telford SR (1995) Tactics of reproduction and reproductive allocation in four species of woodlice from southern Africa. J Trop Ecol 11:641–649Google Scholar
  26. Daniels SR, Ruhberg H (2010) Molecular and morphological variation in a South African velvet worm Peripatopsis moseleyi (Onychophora, Peripatopsidae): evidence for cryptic speciation. J Zool 282(3):171–179Google Scholar
  27. Daniels SR, van Wyk JH (2011) Genetic variation in the critically endangered velvet worm Opisthopatus roseus (Onychophora: Peripatopsidae). Afr Zool 46(2):419–424Google Scholar
  28. De Waele D, Jordaan EM (1988) Plant-parasitic nematodes on field crops in South Africa. 1. Maize. Rev Nématol 11:65–74Google Scholar
  29. Department of Mineral Resources South Africa. http://www.dmr.gov.za/. Accessed 20 June 2018
  30. Department of Environmental Affairs and Tourism (DEAT) (2006) A report on the state of the environment in South Africa. Department of Environmental Affairs and Tourism, PretoriaGoogle Scholar
  31. Depledge MH, Fossi MC (1994) The role of biomarkers in environmental assessment (2). Invertebrates. Ecotoxicology 3:161–172Google Scholar
  32. Du Plessis KR, Botha A et al (2005) Response of the microbial community to copper oxychloride in acidic sandy loam soil. J Appl Microbiol 98(4):901–909.  https://doi.org/10.1111/j.1365-2672.2004.02537.x CrossRefGoogle Scholar
  33. Du Preez G, Swart A, Fourie H (2015) Nematodes of the Wonderfontein Cave (Witwatersrand Basin, South Africa). Nematology 17(8):967–980Google Scholar
  34. Du Toit BJ, Theron PD, Ueckermann EA (1998) A new genus and four new species of the family Camerobiidae (Acari: Raphignathoidea) from South Africa. Int J Acarol 24(1):3–19Google Scholar
  35. Eijsackers H, Beneke P, Maboeta M, Louw JPE, Reinecke AJ (2005) The implications of copper fungicide usage in vineyards for earthworm activity and resulting sustainable soil quality. Ecotoxicol Environ Saf 62(1):99–111Google Scholar
  36. Eijsackers H, Maboeta M, Doelman P (2006) Vital soil as basis for sustainable soil management, a survey of soil problems in The Netherlands and the way to tackle it, with an assessment for the South African situation. Suid-Afrik Tydskr Nat Wet Tegnol 25(4):300–317Google Scholar
  37. Eijsackers H, Reinecke A, Reinecke S, Maboeta M (2017) Threatened southern African soils: a need for appropriate ecotoxicological risk assessment. Environ Impact Assess Rev 63:128–135Google Scholar
  38. Eijsackers H, Swartjes FA, Van Rensburg L, Maboeta MS (2014) The need for attuned soil quality risk assessment for non-Western humans and ecosystems, exemplified by mining areas in South Africa. Environ Sci Policy 44:174–180Google Scholar
  39. Ekosse G (2005a) Heavy metals concentrations in the biophysical environment around the Ni-Cu mine and the smelter/concentrator plant, Selebi Phikwe, Botswana. Glob J Environ Sci 4(2):97–110Google Scholar
  40. Ekosse GI (2005b) Petrographic and physico-chemical characterisation of tailings dump and soils around a nickel-copper mining and smelting environment. Glob J Environ Sci 4(1):31–39Google Scholar
  41. Ekosse GIE (2009) Multivariate analyses and spatial distribution of manganese minerals in soils close to an abandoned manganese mine. Land Degrad Dev 20(3):283–299.  https://doi.org/10.1002/ldr.912 CrossRefGoogle Scholar
  42. Ekosse EGI, Ngila JC et al (2005) Multivariate analyses of heavy metals in soils and Colophospermum mopane leaves around the Selebi Phikwe nickel-copper mine and smelter/concentrator plant area, Botswana. J Appl Sci Environ Manag 9(1):177–185Google Scholar
  43. Ekosse GIE, Fouche PS et al (2006) Total organic carbon in soils and its relation with manganese concentrations in soils and vegetation close to an abandoned manganese mine. Int J Environ Sci Technol 3(1):15–24Google Scholar
  44. Erasmus BF, Van Jaarsveld AS, Chown SL, Kshatriya M, Wessels KJ (2002) Vulnerability of South African animal taxa to climate change. Glob Chang Biol 8(7):679–693Google Scholar
  45. Ettler V, Mihaljevic M et al (2011) Tracing the spatial distribution and mobility of metal/metalloid contaminants in Oxisols in the vicinity of the Nkana copper smelter, Copperbelt province, Zambia. Geoderma 164(1/2):73–84.  https://doi.org/10.1016/j.geoderma.2011.05.014 CrossRefGoogle Scholar
  46. Fairbanks D, Thompson M, Vink D, Newby T, Van den Berg H, Everard D (2000) South African land-cover characteristics database: a synopsis of the landscape. S Afr J Sci 96:69–82Google Scholar
  47. Fey M (2010) Soils of South Africa. Cambride University Press, CambridgeGoogle Scholar
  48. Fouché T, Maboeta M, Claassens S (2016) Effect of biofumigants on soil microbial organisms and ecotoxicology of earthworms (Eisenia andrei). Water Air Soil Pollut 6:227–256Google Scholar
  49. Fourie F, Reinecke SA, Reinecke AJ (2007) The determination of earthworm species sensitivity differences to cadmium genotoxicity using the comet assay. Ecotoxicol Environ Saf 67:361–368Google Scholar
  50. Gerlach J, Samways M, Pryke J (2013) Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J Insect Conserv 17:831–850Google Scholar
  51. Gilbert RO (1987) Statistical methods for environmental pollution monitoring. Van Nostrand Reinhold, New YorkGoogle Scholar
  52. Herselman JE, Steyn CE, Fey MV (2005) Baseline concentration of Cd, Co, Cr, Cu, Pb, Ni and Zn in surface soils of South Africa: research in action. S Afr J Sci 101(11–12):509–512Google Scholar
  53. Governmental Communication and Information System (2013) SA yearbook 2012/13 agriculture, forestry and fisheries. GCIS, PretoriaGoogle Scholar
  54. Hamer ML (1997) A preliminary assessment of the southern African millipede fauna: diversity and conservation (Diplopoda). Entomol Scand Suppl 51:209–221Google Scholar
  55. Hamer ML, Slotow RH (2002) Conservation application of existing data for South African millipedes (Diplopoda). Afr Entomol 10(1):29Google Scholar
  56. Haynes RJ, Dominy CS, Graham MH (2003) Effect of agricultural land use on soil organic matter status and the composition of earthworm communities in KwaZulu-Natal, South Africa. Agric Ecosyst Environ 95(2):453–464Google Scholar
  57. Helling B, Reinecke SA, Reinecke AJ (2000) Effects of the fungicide copper oxychloride on the growth and reproduction of Eisenia fetida (Oligochaeta). Ecotoxicol Environ Saf 46(1):108–116Google Scholar
  58. Herselman JE (2007) The concentration of selected trace metals in South African soils. PhD thesis, University of Stellenbosch, StellenboschGoogle Scholar
  59. Herselman JE, Steyn CE et al (2006) Dedicated land disposal of wastewater sludge in South Africa: leaching of trace elements and nutrients. Water Sci Technol 54(5):139–146.  https://doi.org/10.2166/wst.2006.556 CrossRefGoogle Scholar
  60. Heyns J (1971) A guide to the plant and soil nematodes of South Africa. Balkema, Cape TownGoogle Scholar
  61. Hoffman MT (2014) Changing patterns of rural land use and land cover in South Africa and their implications for land reform. J South Afr Stud 40(4):707–725Google Scholar
  62. Horn JL, Danuta Plisko J, Hamer ML, Griffiths CL (2007) The leaf-litter earthworm fauna (Annelida: Oligochaeta) of forests in Limpopo Province, South Africa: diversity, communities and conservation. Afr Zool 42(2):172–179Google Scholar
  63. Ikenaka Y, Nakayama SMM et al (2010) Heavy metal contamination of soil and sediment in Zambia. Afr J Environ Sci Technol 4(11):729–739Google Scholar
  64. Janion-Scheepers C, Meassey J, Brachler B, Chown SL, Wilson JRU (2016) Soil biota in a megadiverse country: current knowledge and future research directions in South Africa. Pedobiologia 99:129–174Google Scholar
  65. Jonas Z, Rouget M, Reyers B, Mohamed B, Rutherford MC, Mucina L, Powrie LW (2006) Vulnerability assessment of vegetation types. In: Mucina L, Rutherford MC (eds) The vegetation of South Africa, Lesotho and Swaziland, Strelitzia, vol 19. South African National Biodiversity Institute, PretoriaGoogle Scholar
  66. Joseph G, Makumbe M, Seymour CL, Cumming GS, Mahlangu Z, Cumming DHM (2015) Termite mounds mitigate against 50 years of herbivore-induced reduction of functional diversity of savanna woody plants. Landsc Ecol 30:2161–2174Google Scholar
  67. Jubileus MT (2008) Assessment of platinum mine tailings storage facilities: an ecotoxicological perspective. MSc dissertation, North-West University, Potchefstroom CampusGoogle Scholar
  68. Jubileus MT, Theron PD, Van Rensburg L, Maboeta MS (2013) Utilising Eisenia andrei to assess the ecotoxicity of platinum mine tailings disposal facilities. Ecotoxicology 22:331–338Google Scholar
  69. Kanu SA, Okonkwo JO et al (2013) Aspalathus linearis (Rooibos tea) as potential phytoremediation agent: a review on tolerance mechanisms for aluminum uptake. Environ Rev 21(2):85–92.  https://doi.org/10.1139/er-2012-0055 CrossRefGoogle Scholar
  70. Kaonga B, Ebenso E (2011) An evaluation of atmospheric aerosols in Kanana, Klerksdorp gold mining town, in the North-West Province of South Africa. In: Mazzeo N (ed) Air quality monitoring, Assessment and management. InTech, Rijeka. http://www.intechopen.com/books/air-quality-monitoring-assessment-and-management/an-evaluation-of-atmospheric-aerosols-in-kanana-klerksdorp-gold-mining-town-in-the-north-west-provin Google Scholar
  71. Kinberg JGH (1866) Annulata nova. Öfversigt af Förhandlingar Kongelige Vetenskaps-Akademiens 22:239–258Google Scholar
  72. Kootbodien T, Mathee A et al (2012) Heavy metal contamination in a school vegetable garden in Johannesburg. S Afr Med J 102(4):226–227Google Scholar
  73. Koptsik GN (2014) Problems and prospects concerning the phytoremediation of heavy metal polluted soils: a review. Eurasian Soil Sci 47(9):923–939.  https://doi.org/10.1134/S1064229314090075 CrossRefGoogle Scholar
  74. Kouadjo CG, Zeze A (2011) Chromium tolerance and reduction potential of Staphylococci species isolated from a fly ash dumping site in South Africa. Afr J Biotechnol 10(69):15587–15594.  https://doi.org/10.5897/AJB10.078 CrossRefGoogle Scholar
  75. Land Type Survey Staff (1986) Land types of the map 2730 Vryheid. In: Memoirs on the agricultural resources of South Africa no. 7. ARC–Institute for Soil, Climate and Water, PretoriaGoogle Scholar
  76. Lawrence RF (1953) The biology of the cryptic fauna of forests. With special reference to the indigenous forests of South Africa. Balkema, Cape TownGoogle Scholar
  77. Linder HP (2001) Plant diversity and endemism in sub-Saharan tropical Africa. J Biogeogr 28(2):169–182Google Scholar
  78. Linder HP (2014) The evolution of African plant diversity. Front Ecol Evol 2:1–14.  https://doi.org/10.3389/fevo.2014.00038 CrossRefGoogle Scholar
  79. Linzey AV, Washok KA (2000) Seed removal by ants, birds and rodents in a woodland savanna habitat in Zimbabwe. Afr Zool 35(1):295–299Google Scholar
  80. Lion GN, Olowoyo JO (2013) Population health risk due to dietary intake of toxic heavy metals from Spinacia oleracea harvested from soils collected in and around Tshwane, South Africa. S Afr J Bot 88:178–182Google Scholar
  81. Liphadzi MS, Kirkham MB (2005) Phytoremediation of soil contaminated with heavy metals: a technology for rehabilitation of the environment. S Afr J Bot 71(1):24–37Google Scholar
  82. Ljungström PO (1972) Introduced earthworms of South Africa. On their taxonomy, distribution, history of introduction and on the extermination of endemic earthworms. Zool Jahr Abt Syst 99:1–81Google Scholar
  83. Løkke H, van Gestel CA (1998) Handbook of soil invertebrate toxicity tests. Wiley, ChichesterGoogle Scholar
  84. Loots GC, Ryke PAJ (1966) A comparative, quantitative study of the micro-arthropods in different types of pasture soil. Zool Afr 2(2):167–192Google Scholar
  85. Loots GC, Ryke PAJ (1967) Ratio of Oribatei-Trombidiformes with reference to organic matter content in soils. Pedobiologia 7(2–3):121–124Google Scholar
  86. Maboeta MS, Reinecke AJ, Reinecke SA (1999) The effects of low lead levels on the growth and reproduction of the African earthworm Eudrilus eugeniae (Oligochaeta). Biol Fertil Soils 30(1–2):113–116Google Scholar
  87. Maboeta MS, Fouché T (2014) Utilising an earthworm bioassay (Eisenia andrei) to asses a South African soil screening value with regards to effects from a copper manufacturing industry. Bull Environ Contam Toxicol 93:322–326Google Scholar
  88. Maboeta MS, Reinecke SA, Reinecke AJ (2002) The relation between lysosomal biomarker and population response in a field population of Microchaetus sp. (Oligochaeta) exposed to the fungicide copper oxychloride. Ecotoxicol Environ Saf 52:280–287Google Scholar
  89. Maboeta MS, Reinecke SA, Reinecke AJ (2003) Linking lysosomal biomarker and population responses in a field population of Aporrectodea caliginosa (Oligochaeta) exposed to the fungicide copper oxychloride. Ecotoxicol Environ Saf 56:411–418Google Scholar
  90. Maboeta MS, Reinecke SA, Reinecke AJ (2004) The relationship between lysosomal biomarker and organismal responses in an acute toxicity test with Eisenia fetida (Oligochaeta) exposed to the pesticide copper oxychloride. Environ Res 96:95–101Google Scholar
  91. Maboeta MS, Van Rensburg L, Jansen van Rensburg PJ (2008) Earthworm (Eisenia fetida) bioassay to assess the possible effects of platinum tailings disposal facilities on the environment along a gradient. Appl Ecol Environ Res 6(2):13–19Google Scholar
  92. Maboeta MS, Claassens S et al (2006) The effects of platinum mining on the environment from a soil microbial perspective. Water Air Soil Pollut 175(1/4):149–161.  https://doi.org/10.1007/s11270-006-9122-1 CrossRefGoogle Scholar
  93. Maboeta MS, Oladipo OG, Botha SM (2018) Ecotoxicity of mine tailings: unrehabilitated versus rehabilitated. Bull Environ Contam Toxicol 100(5):702–707Google Scholar
  94. Mahlangeni N, Moodley R et al (2012) Soil nutrient content on elemental uptake and distribution in sweet potatoes. Int J Veg Sci 18(3):245–259.  https://doi.org/10.1080/19315260.2011.628369 CrossRefGoogle Scholar
  95. Maleri RA, Fourie F, Reinecke AJ, Reinecke SA (2008a) Photometric application of the MTT- and NRR-assays as biomarkers for the evaluation of cytotoxicity ex vivo in Eisenia andrei. Soil Biol Biochem 40:1040–1048Google Scholar
  96. Maleri RA, Reinecke AJ, Reinecke SA (2008b) Metal uptake of two ecophysiologically different earthworms (Eisenia fetida and Aporrectodea caliginosa) exposed to ultramafic soils. Appl Soil Ecol 38(1):42–50Google Scholar
  97. Mapaure I, Chimwamurombe PM, Mapani BS, Kamona FA (2011) Impacts of mine dump pollution on plant species diversity, composition and structure of a semiarid savanna in Namibia. Afr J Range Forage Sci 28(3):149–154Google Scholar
  98. Masvodza DR, Dzomba P, Mhandu F, Masamha B (2013) Heavy metal content in Acacia saligna and Acacia polyacantha on Slime Dams: implications for phytoremediation. Am J Exp Agric 3(4):871–883Google Scholar
  99. McDonald AH, Loots GC, Fourie H, De Waele D (2005) A microplot study on Ditylenchus africanus population densities and damage symptoms on groundnut in relation to commercial yields. Nematology 7(5):647–653Google Scholar
  100. Meck ML (2013) Geochemistry for sustainable development in Africa: Zimbabwe case study. In: Chemistry for sustainable development in Africa. Springer, Berlin, Heidelberg, pp 105–122Google Scholar
  101. Mentis MT (2006) Restoring native grassland on land disturbed by coal mining on the Eastern Highveld of South Africa. S Afr J Sci 102(5/6):193–197Google Scholar
  102. Mesjasz-Przybylowicz J, Migula P et al (2004) Ecophysiology of Chrysolina pardalina Fabricius (Chrysomelidae), a herbivore of the south African Ni hyperaccumulator Berkheya coddii (Asteraceae). In: Boyd RS, Baker AJM, Proctor J (eds) Ultramafic rocks: their soils, vegetation and fauna. Science Reviews 2000 Ltd, St Albans. Proceedings of the Fourth International Conference on Serpentine Ecology, Cuba, 21–26 April, 2003; 2004 233–241 33 refGoogle Scholar
  103. Meyer MK, Ryke PAJ (1959a) Mites of the superfamily Raphignathoidea (Acarina: Prostigmata) associated with South African plants. J Nat Hist 2:209–234Google Scholar
  104. Meyer MKPS, Ryke PAJ (1959b) A revision of the spider mites (Acarina: Tetranychidae) of South Africa, with descriptions of a new genus and new species. J Entomol Soc South Afr 22(2):330–366Google Scholar
  105. Meyer MKP, Ryke PAJ (1960) Mites of the superfamily Eupodoidea (Acarina: Prostigmata) associated with South African plants. S Afr J Agric Sci 3:481–496Google Scholar
  106. Michaelsen W (1900) Oligochaeta. In: Das Tierreich. Lief. 10. R. Friedländer & Sohn, Berlin, pp 1–575Google Scholar
  107. Michaelsen W (1908) III. Annelida. A. Oligochäten aus dem Westlichen Kapland. In: Schultze L (ed) Zoologische und Anthropologische Ergebnisse Forschungsreise im westlichen und zentralen Südafrika. Bd 1. Lief. 2, Denkschriften der medizinisch-naturwissenschaftlichen Gesellschaft zu Jena, vol 13, pp 30–42Google Scholar
  108. Michaelsen W (1913a) Die Oligochaeten des Kaplandes. Zool Jahr Abt Syst 34:473–556Google Scholar
  109. Michaelsen W (1913b) The Oligochaeta of Natal and Zululand. Ann Natal Mus 2(4):397–457Google Scholar
  110. Michaelsen W (1913c) Oligochaeten vom tropischen und südlich-subtropischen Afrika. Teil II. Zoologica 68:1–63Google Scholar
  111. Michaelsen W (1933) Opisthophore Oligochäten aus dem mittleren und dem südlichen Africa hauptsächliche gesammelt von Dr F Haas während der Schomburgh-Expedition 1931–1932. Abh Senckenberg Naturforsch Ges 40(4):409–433Google Scholar
  112. Mills AJ, Milewski AV et al (2012) Aerosol capture by small trees in savannahs marginal to treeless grassland in South Africa. Geoderma 189(190):124–132.  https://doi.org/10.1016/j.geoderma.2012.05.006 CrossRefGoogle Scholar
  113. Mitchell JD (2002) Termites as pests of crops, forestry, rangeland and structures in Southern Africa and their control. Sociobiology 40:47–69Google Scholar
  114. Mmolawa KB, Likuku AS, Gaboutloeloe GK (2011) Assessment of heavy metal pollution in soils along major roadside areas in Botswana. Afr J Environ Sci Technol 5(3):186–196Google Scholar
  115. Morgan AJ, Stürzenbaum SR, Kille p. (1999) A short overview of biomarker strategies with particular regard to recent developments in earthworms. Pedobiologia 43:574–584Google Scholar
  116. Morgenthal T, Maboeta M et al (2004) Revegetation of heavy metal contaminated mine dumps using locally serpentine-adapted grassland species. (Special issue: Stress physiology). S Afr J Bot 70(5):784–789Google Scholar
  117. Motaung TE, Albertyn J, Kock JL, Pohl CH (2012) Cryptococcus cyanovorans sp. nov., a basidiomycetous yeast isolated from cyanide-contaminated soil. Int J Syst Evol Microbiol 62(5):1208–1214Google Scholar
  118. Mothapo NP, Wossler TC (2011) Behavioural and chemical evidence for multiple colonisation of the Argentine ant, Linepithema humile, in the Western Cape, South Africa. BMC Ecol 11(1):6Google Scholar
  119. Mothapo NP, Wossler TC (2014) Resource competition assays between the African big-headed ant, Pheidole megacephala (Fabricius) and the invasive Argentine ant, Linepithema humile (Mayr): mechanisms of inter-specific displacement. Ecol Entomol 39(4):501–510Google Scholar
  120. Mugerwa S (2015) Magnitude of the termite problem and its potential anthropogenic causes in Nakasongola district of Uganda. Grassl Sci 61(2):75–82Google Scholar
  121. Mushala HM, Pilime AT (1994) Guidelines for land evaluation and land use planning in the SADC region. Unpublished consultancy report for the Southern African Development Community (SADC) -ELMS and SADC-L&WMRP Sections, June 1994Google Scholar
  122. Odendaal JP, Reinecke AJ (1998) The effect of high lead concentrations on the mortality, mass and behaviour of Porcellio laevis Latr. (Crustacea, Isopoda) in laboratory tests. Afr Zool 33(3):143–146Google Scholar
  123. Odendaal JP, Reinecke AJ (1999a) The sublethal effects and accumulation of cadmium in the terrestrial isopod Porcellio laevis Latr. (Crustacea, Isopoda). Arch Environ Contam Toxicol 36(1):64–69Google Scholar
  124. Odendaal JP, Reinecke AJ (1999b) The toxicity of sublethal lead concentrations for the woodlouse, Porcellio laevis (Crustacea, Isopoda). Biol Fertil Soils 29(2):146–151Google Scholar
  125. Odendaal JP, Reinecke AJ (1999c) Short-term toxicological effects of cadmium on the woodlouse, Porcellio laevis (Crustacea, lsopoda). Ecotoxicol Environ Saf 43(1):30–34Google Scholar
  126. Odendaal JP, Reinecke AJ (2003) Quantifying histopathological alterations in the hepatopancreas of the woodlouse Porcellio laevis (Isopoda) as a biomarker of cadmium exposure. Ecotoxicol Environ Saf 56(2):319–325Google Scholar
  127. Odendaal JP, Reinecke AJ (2004a) Effect of metal mixtures (Cd and Zn) on body weight in terrestrial isopods. Arch Environ Contam Toxicol 46(3):377–384Google Scholar
  128. Odendaal JP, Reinecke AJ (2004b) Evidence of metal interaction in the bioaccumulation of cadmium and zinc in Porcellio laevis (Isopoda) after exposure to individual and mixed metals. Water Air Soil Pollut 156(1):145–161Google Scholar
  129. Odendaal JP, Reinecke AJ (2004c) Bioaccumulation of cadmium and zinc, and field validation of a histological biomarker in terrestrial isopods. Bull Environ Contam Toxicol 72(4):769–776Google Scholar
  130. Odendaal JP, Reinecke AJ (2004) Bioaccumulation of cadmium and zinc, and field validation of a histological biomarker in terrestrial isopods. Bull Environ Contam Toxicol 72(4):769–776Google Scholar
  131. Odendaal JP, Reinecke AJ (2007) Quantitative assessment of effects of zinc on the histological structure of the hepatopancreas of terrestrial isopods. Environ Contam Toxicol 53:359–364Google Scholar
  132. Odiyo JO, Bapela HM et al (2005) Metals in environmental media: a study of trace and platinum group metals in Thohoyandou, South Africa. Water SA 31(4):581–588Google Scholar
  133. Okedeyi OO, Dube S et al (2014) Assessing the enrichment of heavy metals in surface soil and plant (Digitaria eriantha) around coal-fired power plants in South Africa. Environ Sci Pollut Res 21(6):4686–4696.  https://doi.org/10.1007/s11356-013-2432-0 CrossRefGoogle Scholar
  134. Okonkwo JO, Maribe F (2004) Assessment of lead exposure in Thohoyandou, South Africa. Environmentalist 24(3):171–178Google Scholar
  135. Olivier PAS (2006) A first record of the family Penthalodidae Thor, 1932 (Acari: Prostigmata) from South African soils, with descriptions of two new species in the genus Stereotydeus Berlese, 1901. Afr Entomol 14(1):53Google Scholar
  136. Olivier PAS, Theron PD (1998) The genus Eupodes Koch (Acari: Prostigmata: Eupodidae) from southern Africa with a redescription of E. parafusifer Meyer & Ryke and descriptions of two new species. Afr Entomol 6:275–288Google Scholar
  137. Orlowska E, Orlowski D et al (2011) Role of mycorrhizal colonization in plant establishment on an alkaline gold mine tailing. Int J Phytoremediation 13(2):185–205.  https://doi.org/10.1080/15226514.2010.495148 CrossRefGoogle Scholar
  138. Otomo PV, Wepener V, Maboeta MS (2014) Single and mixture toxicity of gold nanoparticles and gold (III) to Enchytraeus buchholzi (Oligochaeta). Appl Soil Ecol 84:231–234Google Scholar
  139. Otomo PV, Otomo LV, Bezuidenhout CC, Maboeta MS (2016) Preliminary evidence of differences in cadmium tolerance in metal-free stocks of the standard earthworm test species Eisenia andrei (Oligochaeta). Ecotoxicology 25(6):1119–1125Google Scholar
  140. Owojori OJ, Reinecke AJ, Rozanov AB (2009a) Role of clay on partitioning, uptake and toxicity of zinc in the earthworm Eisenia fetida. Ecotoxicol Environ Saf 72:99–107Google Scholar
  141. Owojori OJ, Reinecke AJ, Voua-Otomo P, Reinecke SA (2009b) Comparative study of the effects of salinity on life-cycle parameters of four soil dwelling species (Folsomia candida, Enchytraeus doerjesi, Eisenia fetida and Aporrectodea caliginosa). Pedobiologia 52:351–360Google Scholar
  142. Owojori OJ, Reinecke AJ, Rozanov AB (2009c) The combined stress effects of salinity and copper on the earthworm Eisenia fetida. Appl Soil Ecol 41:277–285Google Scholar
  143. Oyedele JA, Shimboyo S (2013) Distribution of radionuclides and radiation hazard assessment in soils of southern Namibia, Southern Africa. Radiat Prot Dosim 156(3):343–348.  https://doi.org/10.1093/rpd/nct081 CrossRefGoogle Scholar
  144. Pakade V, Cukrowska E et al (2013) Metal and flavonol contents of Moringa oleifera grown in South Africa. S Afr J Sci 109(3/4):10–15Google Scholar
  145. Peakall DB (1992) Animal biomarkers as pollution indicators. Chapman & Hall, LondonGoogle Scholar
  146. Picker MD, Hoffman MT, Leverton B (2007) Density of Microhodotermes viator (Hodotermitidae) mounds in southern Africa in relation to rainfall and vegetative productivity gradients. J Zool 271:37–44Google Scholar
  147. Pickford GE (1937) A monograph of the Acanthodriline earthworms of South Africa. Priv. print. for the author by the Bournemouth GuardianGoogle Scholar
  148. Plisko JD (1992a) Oligochaeta: Microchaetidae. Ann Natal Mus 37:295–307Google Scholar
  149. Plisko JD (1992b) The Microchaetidae of Natal, with description of new species of Microchaetus Rapp and Tritogenia Kinberg, and the new genus Proandricus (Oligochaeta). Ann Natal Mus 33(2):337–378Google Scholar
  150. Plisko JD (1995) New data on the biosystematics and distribution of Microchaetus natalensis (Kinberg, 1867) in north-eastern South Africa (Oligochaeta: Microchaetidae). Ann Natal Mus 36:281–291Google Scholar
  151. Plisko JD (1996a) Michalakus, a remarkable new genus of microchaetid earthworm from South Africa (Oligochaeta: Microchaetidae). Ann Natal Mus 37:287–293Google Scholar
  152. Plisko JD (1996b) Six new earthworm species of the southern African genus Proandricus. Ann Natal Mus 37:295–307Google Scholar
  153. Plisko JD (1999) Designation of lectotypes for Microchaetus microchaetus (Rapp, 1849) and Microchaetus rappi Beddard, 1886, and historical perspectives on these species (Oligochaeta: Microchaetidae). Ann Natal Mus 40:269–276Google Scholar
  154. Plisko JD (2001) Notes on the occurrence of the introduced earthworm Pontoscolex corethrurus (Müller, 1857) in South Africa (Oligochaeta: Glossoscolecidae). Afr Invertebr 42:323–334Google Scholar
  155. Plisko JD (2002) Nine new earthworm species of Proandricus Plisko, 1992 from South Africa and Lesotho (Oligochaeta: Microchaetidae). Afr Invertebr 43:183–203Google Scholar
  156. Plisko JD (2003) Eleven new South African earthworms (Oligochaeta: Microchaetidae) with new information on some known species, and an inventory of the microchaetids of KwaZulu-Natal. Afr Invertebr 44(2):279–325Google Scholar
  157. Plisko JD (2004) Review of the balantine genus Udeina Michaelsen, 1910 with descriptions of six new species in South Africa (Oligochaeta: Acanthodrilidae, Acanthodrilinae). Afr Invertebr 45:287–313Google Scholar
  158. Plisko JD (2006) A systematic reassessment of the genus Microchaetus Rapp, 1849: its amended definition, reinstatement of Geogenia Kinberg, 1867, and erection of a new genus Kazimierzus (Oligochaeta: Microchaetidae). Afr Invertebr 47:31–56Google Scholar
  159. Plisko JD (2010) Megadrile earthworm taxa introduced to South African soils (Oligochaeta: Acanthodrilidae, Eudrilidae, Glossoscolecidae, Lumbricidae, Megascolecidae, Ocnerodrilidae). Afr Invertebr 51(2):289–312Google Scholar
  160. Plisko JD (2012) Notes on the status of the family Microchaetidae: (Oligochaeta). Zool Middle East 58(sup 4):47–58Google Scholar
  161. Plisko JD (2013) A new family Tritogeniidae for the genera Tritogenia and Michalakus, earlier accredited to the composite Microchaetidae (Annelida: Oligochaeta). Afr Invertebr 54(1):69–92Google Scholar
  162. Posthuma L, Suter GW II, Traas TP (eds) (2002) Species sensitivity distribution in ecotoxicology. Lewis, Boca RatonGoogle Scholar
  163. Rauch S, Fatoki OS (2013) Anthropogenic platinum enrichment in the vicinity of mines in the bushveld igneous complex, South Africa. Water Air Soil Pollut 224(1):1395.  https://doi.org/10.1007/s11270-012-1395-y CrossRefGoogle Scholar
  164. Rauwane ME, Marais LM, Oladipo OG, Bezuidenhout CC, Maboeta MS (2018) Spatio-seasonal dynamics of bacteria and metal composition of a platinum mine tailings dam, Rustenburg, South Africa. S Afr J Plant Soil 35(2):129–135Google Scholar
  165. Reinecke AJ, Ackerman D (1977) New earthworm species (Octochaetinae) from the northeastern Transvaal, South Africa. Wet Bydraes PU vir CHO Reeks B Nat 90:1–12Google Scholar
  166. Reinecke AJ, Reinecke SA, Lambrechts H (1997) Uptake and toxicity of copper and zinc for the African earthworm, Eudrilus eugeniae (Oligochaeta). Biol Fertil Soils 24(1):27–31Google Scholar
  167. Reinecke AJ, Reinecke SA, Maboeta MS (2001) Cocoon production and viability as endpoints in toxicity testing of heavy metals with three earthworm species. Pedobiologia 45(1):61–68Google Scholar
  168. Reinecke AJ, Viljoen SA (1988) Reproduction of the African earthworm, Eudrilus eugeniae (Oligochaeta) – cocoons. Biol Fertil Soils 7(1):23–27Google Scholar
  169. Reinecke AJ, Alberts JN (1994) Earthworm research in southern Africa since W. Michaelsen, with emphasis on the utilization of the earthworm (Eisenia fetida) as a protein source. Mitteilungen aus dem Naturhistorischen Museum in Hamburg 89(2):23–36Google Scholar
  170. Reinecke AJ, Ljungström PO (1969) An ecological study of the earthworms from banks of the Mooi river in Potchefstroom, South Africa. Pedobiologia 9:106–111Google Scholar
  171. Reinecke SA, Reinecke AJ (1997) The influence of lead and manganese on spermatozoa of Eisenia fetida (Oligocheata). Soil Biol Biochem 29:737–742Google Scholar
  172. Reinecke AJ, Reinecke SA (1999a) Influence of exposure history to lead on lysosomal response in Eisenia fetida (Oligochaeta). Ecotoxicol Environ Saf 55:30–37Google Scholar
  173. Reinecke SA, Reinecke AJ (1999b) Lysosomal response of earthworm coelomocytes induced by long-term exposure to heavy metals. Pedobiologia 43:585–593Google Scholar
  174. Reinecke AJ, Reinecke SA (2003) The influence of exposure history to lead on lysosomal response in Eisenia fetida. Ecotoxicol Environ Saf 55:30–37Google Scholar
  175. Reinecke SA, Reinecke AJ (2004) The comet assay as biomarker of heavy metal genotoxicity in earthworms. Arch Environ Contam Toxicol 46:208–215Google Scholar
  176. Reinecke SA, Reinecke AJ (2007a) Biomarker response and biomass change of earthworms exposed to chlorpyrifos in microcosms. Ecotoxicol Environ Saf 66:92–101Google Scholar
  177. Reinecke SA, Reinecke AJ (2007b) Impact of organophosphate pesticides in orchards on earthworms in the Western cape, South Africa. Ecotoxicol Environ Saf 66:244–251Google Scholar
  178. Reinecke AJ, Ryke PAJ (1969) A new species of the genus Geogenia (Microchaetidae, Oligochaeta) from Lesotho, with notes on two exotic earthworms. Rev Ecol Biol Sol 6(4):515–523Google Scholar
  179. Reinecke AJ, van Wyk M, Reinecke SA (2016) The influence of soil characteristics on the toxicity of oil refinery waste for the springtail Folsomia candida (Collembola). Bull Environ Contam Toxicol 96(6):804–809Google Scholar
  180. Reinecke AJ, Visser FA (1980) The influence of agricultural land use practices on the population density of Allolobophora trapezoides and Eisenia rosea (Oligochaeta) in Southern Africa. In: Soil biology as related to land use practices. EPA, Washington, pp 310–324Google Scholar
  181. Reinecke AJ, Venter JM, Viljoen SA (1990) The influence of feeding patterns on growth and reproduction of the vermicomposting earthworm Eisenia fetida (Oligochaeta). Biol Fert Soil 10:184–187Google Scholar
  182. Reinecke AJ, Venter JM, Viljoen SA (1991) A comparison of the biology of Eisenia fetida and Eisenia andrei (Oligochaeta). Biol Fert Soil 11:295–300Google Scholar
  183. Reinecke AJ, Viljoen SA, Saaymen RJ (1992) The suitability of Eudrilus eugeniae, Perionyx excavatus and Eisenia fetida (Oligochaeta) for vermicomposting in southern Africa in terms of their temperature requirements. Soil Biol Biochem 24(12):1295–1307Google Scholar
  184. Reinecke SA, Reinecke AJ, Froneman MI (1995) The effects of dieldrin on the sperm ultrastructure of the earthworm, Eudrilus eugeniae (Oligochaeta). Environ Toxicol Chem 14:961–965Google Scholar
  185. Reinecke SA, Helling B, Reinecke AJ (2002) Lysosomal response of earthworm Eisenia fetida coelomocytes exposed to the fungicide copper oxychloride and relation to life-cycle parameters. Environ Toxicol Chem 21:1026–1031Google Scholar
  186. Reinecke AJ, Reinecke SA, Maboeta MS, Odendaal JP, Snyman RG (2007) Incorporating biomarkers in ecological risk assessment of chemical contaminants in soil. S Afr J Sci Technol 26:121–137Google Scholar
  187. Reinecke AJ, Albertus RMC, Reinecke SA, Larink O, Griffiths CL (2008) The effects of organic and conventional management practices on feeding activity of soil organisms in vineyards. Afr Zool 43(1):66–74Google Scholar
  188. Republic of South Africa (1996) Constitution of the Republic of South Africa, Act 108 of 1996. Government Gazette, Pretoria, p 378Google Scholar
  189. Reynolds JW, Reinecke AJ (1976) A preliminary survey of the earthworms of the Kruger National Park, South Africa (Oligochaeta: Glossoscolecidae, Megascolecidae and Octochaetidae). Wet Bydraes PU vir CHO Reeks B Natuurwet 89:1–19Google Scholar
  190. Rösner T, Van Schalkwyk A (2000) The environmental impact of gold mine tailings footprints in the Johannesburg region, South Africa. Bull Eng Geol Environ 59(2):137–148Google Scholar
  191. Rossouw JM (2005) The use of different ecosystem components as indicators of ecosystem development during platinum mine tailings rehabilitation. MSc thesis. North-West University, MahikengGoogle Scholar
  192. Ruhberg H, Hamer ML (2005) A new species of Opisthopatus Purcell, 1899 (Onychophora: Peripatopsidae) from KwaZulu-Natal, South Africa. Zootaxa 1039:27–38Google Scholar
  193. Ryke PAJ, Loots GC (1967) The composition of the microarthropod fauna in South African soils. In: Satchell JE, Graff O (eds) Progress in soil biology. North-Holland Publ, AmsterdamGoogle Scholar
  194. Schoeman JL, Van Deventer PW (2004) Soils and the environment: the past 25 years. S Afr J Plant Soil 21(5):369–387Google Scholar
  195. Shaikh M, Moleele N et al (2006) Soil heavy metal concentration patterns at two speed zones along the Gaborone-Tlokweng Border Post Highway, Southeast Botswana. J Appl Sci Environ Manag 10(2):135–143Google Scholar
  196. Simpson G, Berchner M (2017) Water-energy nexus-measuring integration: towards a water-energy-food nexus index. Water Wheel 16(1):22–23Google Scholar
  197. Skaife SH (1955) THE ARGENTINE ANT: Iridomyrmex humilis Mayr. Trans R Soc S Afr 34(3):355–377Google Scholar
  198. Snyman RG, Odendaal JP (2009) Effect of cadmium on haemocyte viability of the woodlouse Porcellio laevis (Isopoda; Crustacea). Bull Environ Contam Toxicol 83:525–529Google Scholar
  199. Snyman RG, Reinecke SA, Reinecke AJ (2000) Haemocytic lysosome response in the snail Helix aspersa. Arch Environ Contam Toxicol 39:480–485Google Scholar
  200. Snyman RG, Reinecke AJ, Reinecke SA (2002) Field application of a lysosomal assay as biomarker of copper oxychloride exposure in the snail Helix aspersa. Bull Environ Contam Toxicol 69:117–122Google Scholar
  201. Somerset V, Horst CVD, et al (2012) Development of analytical sensors for the identification and quantification of metals in environmental samples. WRC Report; 2012. (2013/1/12):xv + 133 pp. Many ref. Gezina, Water Research CommissionGoogle Scholar
  202. South Africa (2014) National norms and standards for the remediation of contaminated land and soil quality in the Republic of South Africa. Government Gazette, Pretoria, p 37603Google Scholar
  203. Spruyt A, Buck MT et al (2014) Arbuscular mycorrhiza (AM) status of rehabilitation plants of mine wastes in South Africa and determination of AM fungal diversity by analysis of the small subunit rRNA gene sequences. S Afr J Bot 94:231–237.  https://doi.org/10.1016/j.sajb.2014.07.006 CrossRefGoogle Scholar
  204. Stenersen J (1979) Action of pesticides on earthworms. Part I: The toxicity of cholinesterase-inhibiting insecticides to earthworms as evaluated by laboratory tests. Pestic Sci 10(1):66–74Google Scholar
  205. Stenersen J (1980) Esterases of earthworms. part 1: characterisation of cholinesterases in Eisenia foetida (Savigny) by substrates and inhibitors. Comp Biochem Physiol 66C:37–44Google Scholar
  206. Straker CJ, Weiersbye IM et al (2007) Arbuscular mycorrhiza status of gold and uranium tailings and surrounding soils of South Africa’s deep level gold mines: I. Root colonization and spore levels. S Afr J Bot 73(2):218–225.  https://doi.org/10.1016/j.sajb.2006.12.006 CrossRefGoogle Scholar
  207. Street RA, Kulkarni MG, Stirk WA, Southway C, Abdillahi HS, Chinsamy M, Van Staden J (2009) Effect of cadmium uptake and accumulation on growth and antibacterial activity of Merwilla plumbea – an extensively used medicinal plant in South Africa. S Afr J Bot 75(3):611–616Google Scholar
  208. Svendson C, Weeks JM (1997a) Relevance and applicability of a simple earthworm biomarker of copper exposure. Links to ecological effects in a laboratory study with Eisenia andrei. Ecotoxicol Environ Saf 36:72–79Google Scholar
  209. Svendson C, Weeks JM (1997b) Relevance and applicability of a simple earthworm biomarker of copper exposure. Validation and applicability under field conditions in a mesocosm experiment with Lumbricus rubellus. Ecotoxicol Environ Saf 36:80–88Google Scholar
  210. Svendson C, Meharg AA, Freestone P, Weeks JM (1996) Use of an earthworm lysosomal biomarker for the ecological assessment of pollution from an industrial plastics fire. Appl Soil Ecol 3:99–107Google Scholar
  211. Theron PD, Meyer KP, Ryke PAJ (1969) Two new genera of the family Paratydeidae (Acari: Prostigmata) from South African soils. Acarologia 11:697–710Google Scholar
  212. Traveset A, Richardson DM (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21(4):208–216Google Scholar
  213. Truhaut R (1975) Ecotoxicology: objectives, principles and perspectives. Ecotoxicol Environ Saf 1:151–173Google Scholar
  214. Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13(4):185–190Google Scholar
  215. Turnau K, Przybylowicz WJ et al (2013) Mycorrhizal fungi modify element distribution in gametophytes and sporophytes of a fern Pellaeaviridis from metaliferous soils. Chemosphere 92(9):1267–1273.  https://doi.org/10.1016/j.chemosphere.2013.04.062 CrossRefGoogle Scholar
  216. Ueckermann EA, Smith Meyer MK (1988) South African Acari. IV. Some Mites of the Addo Elephant National Park. Koedoe 31(1):31–51Google Scholar
  217. United Nations Environment Programme (UNEP) (1999) Annual report. Evaluation and Oversight Unit, New YorkGoogle Scholar
  218. United Nations Environment Programme (UNEP) (2013) Global environment outlook 2000, vol 1. Routledge, New YorkGoogle Scholar
  219. Van Coller-Myburgh C, Rensburg LV, Maboeta M (2014) Utilizing earthworm and microbial assays to assess the ecotoxicity of chromium mine wastes. Appl Soil Ecol 83:258–265.  https://doi.org/10.1016/j.apsoil.2013.09.004 Google Scholar
  220. Van Coller-Myburgh C, Van Rensburg L, Maboeta M (2015) Assessing the ecotoxicology of gold mine tailings utilizing earthworm and microbial assays. Water Air Soil Pollut 226(218):3–10Google Scholar
  221. Van Den Berg RA, Ryke PAJ (1967) A systematic-ecological investigation of the acarofauna of the forest floor in Magoebaskloof (South Africa) with special reference to the Mesostigmata. Biol 6:157–234Google Scholar
  222. Van Gestel CAM, Koolhaas JE, Hamers T, Van Hoppe M, Van Roovert M, Korsman C, Reinecke SA (2009) Effects of metal pollution on earthworm communities in a contaminated floodplain area: linking biomarker, community and functional responses. Environ Pollut 157:895–903Google Scholar
  223. Van Nieuwenhuizen LC, Verster AJM, Horak IG, Krecek RC, Grimbeek JR (1994) The seasonal abundance of oribatid mites (Acari: Cryptostigmata) on an irrigated Kikuyu grass pasture. Exp Appl Acarol 18:73–86Google Scholar
  224. Van Straalen NM, van Leeuwen CJ (2002) European history of species sensitivity distributions. In: Posthuma L, Suter GW II, Traas TP (eds) Species sensitivity distribution in ecotoxicology. Lewis, Boca Raton, pp 19–34Google Scholar
  225. Vermeulen LA, Reinecke AJ, Reinecke SA (2001) Evaluation of the fungicide manganese-zinc ethylene bis (dithiocarbamate) (Mancozeb) for sublethal and acute toxicity to Eisenia fetida (Oligochaeta). Ecotoxicol Environ Saf 48(2):183–189Google Scholar
  226. Vítková M, Ettler V, Hyks J, Astrup T, Kříbek B (2011a) Leaching of metals from copper smelter flue dust (Mufulira, Zambian Copperbelt). Appl Geochem 26:S263–S266Google Scholar
  227. Vítková M, Ettler V, Mihaljevič M, Šebek O (2011b) Effect of sample preparation on contaminant leaching from copper smelting slag. J Hazard Mater 197:417–423Google Scholar
  228. Voua Otomo P, Reinecke SA, Reinecke AJ (2013a) Combined effects of metal contamination and temperature on the potworm Enchytraeus doerjesi (Oligochaeta). J Appl Toxicol 33(12):1520–1524Google Scholar
  229. Voua Otomo PV, Wahl J, Maboeta MS (2013b) The enchytraeid reproduction test (ERT): a potentially quick and affordable tool for the assessment of metal contaminated soils in emerging economies. Bull Environ Contam Toxicol 91(5):545–548.  https://doi.org/10.1007/s00128-013-1092-6 CrossRefGoogle Scholar
  230. Voua Otomo P, Reinecke SA (2010) Increased cytotoxic and genotoxic tolerance of Eisenia fetida (Oligochaeta) to cadmium after long-term exposure. Ecotoxicology 19:362–368Google Scholar
  231. Voua Otomo P, Reinecke SA, Reinecke AJ (2014) Using the comet assay to assess the combined and separate genotoxic effects in Eisenia andrei (Oligochaeta) at different temperatures. Bull Environ Contam Toxicol 92:285–288Google Scholar
  232. Wahl JJ, Theron PD, Maboeta MS (2012) Soil mesofauna as bioindicators to assess environmental disturbance at a platinum mine in South Africa. Ecotoxicol Environ Saf 86:250–260Google Scholar
  233. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van Der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304(5677):1629–1633Google Scholar
  234. Webster R, Fey M (2011) Soils of South Africa. Exp Agric 47(2):411Google Scholar
  235. Weiersbye IM, Witkowski ETF et al (2006) Floristic composition of gold and uranium tailings dams, and adjacent polluted areas, on South Africa’s deep-level mines. Bothalia 36(1):101–127Google Scholar
  236. Weldon CW, Daniels SR, Clusella-Trullas S, Chown SL (2013) Metabolic and water loss rates of two cryptic species in the African velvet worm genus Opisthopatus (Onychophora). J Comp Physiol B 183(3):323–332Google Scholar
  237. Westcott M (2011) An evaluation of the germination and establishment of three selected coated grass species in different soil types for rehabilitation. MSc dissertation, North-West University, Potchefstroom CampusGoogle Scholar
  238. Whitford WG, Eldridge DJ (2013) Effects of ants and termites on soil and geomorphological processes. Treatise Geomorphol 12:281–292Google Scholar
  239. Witt ABR, Giliomee JH (2004) The impact of an invasive ant, Linepithema humile (Mayr), on the dispersal of Phylica pubescens Aiton seeds in South Africa. Afr Entomol 12(2):179Google Scholar
  240. Zicsi A, Reinecke AJ (1992) Regenwürmer aus dem Krüger National Park in Süd Afrika (Oligochaeta: Eudrilidae). Acta Zool Acad Sci Hung 38(1–2):149–158Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Herman Eijsackers
    • 1
    • 2
  • Adriaan Reinecke
    • 3
  • Sophié Reinecke
    • 3
  • Mark Maboeta
    • 1
    Email author
  1. 1.Unit for Environmental Sciences and ManagementNorth-West UniversityPotchefstroomSouth Africa
  2. 2.Wageningen University & ResearchWageningenThe Netherlands
  3. 3.Department of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa

Personalised recommendations