A Global Perspective of Fine Particulate Matter Pollution and Its Health Effects

  • Arideep Mukherjee
  • Madhoolika AgrawalEmail author
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 244)


Fine particulate matter (PM) in the ambient air is implicated in a variety of human health issues throughout the globe. Regulation of fine PM in the atmosphere requires information on the dimension of the problem with respect to variations in concentrations and sources. To understand the current status of fine particles in the atmosphere and their potential harmful health effects in different regions of the world this review article was prepared based on peer-reviewed scientific papers, scientific reports, and database from government organizations published after the year 2000 to evaluate the global scenario of the PM2.5 (particles <2.5 μm in aerodynamic diameter), its exceedance of national and international standards, sources, mechanism of toxicity, and harmful health effects of PM2.5 and its components. PM2.5 levels and exceedances of national and international standards were several times higher in Asian countries, while levels in Europe and USA were mostly well below the respective standards. Vehicular traffic has a significant influence on PM2.5 levels in urban areas; followed by combustion activities (biomass, industrial, and waste burning) and road dust. In urban atmosphere, fine particles are mostly associated with different health effects with old aged people, pregnant women, and more so children being the most susceptible ones. Fine PM chemical constituents severely effect health due to their carcinogenic or mutagenic nature. Most of the research indicated an exceedance of fine PM level of the standards with a diverse array of health effects based on PM2.5 chemical constituents. Emission reduction policies with epidemiological studies are needed to understand the benefits of sustainable control measures for fine PM mitigation.


Particulate matter PM2.5 PM Health effects Exceedance Global Fine PM components Sources apportionment World Health Organization National ambient air quality standard Central Pollution Control Board Secondary organic aerosol Polycyclic aromatic hydrocarbons Volatile organic hydrocarbons European Union Mechanism Aerosol Traffic Air Dust Emission Epidemiology India China 



Confidence interval


Central Pollution Control Board


Hazard ratio


Interquartile range


National ambient air quality standard


Odds ratio


Posterior interval


Particulate matters


Particulate matters of 2.5 μm size or less


World Health Organization



The authors are thankful to the Department of Science and Technology (DST), India for providing financial support in the form of an Inspire fellowship (IF120768). The authors are also grateful to anonymous reviewers and editor for their valuable suggestions for improving the quality of the manuscript.


  1. Ajmani GS, Suh HH, Wroblewski KE et al (2016) Fine particulate matter exposure and olfactory dysfunction among urban-dwelling older US adults. Environ Res 151:797–803. doi: 10.1016/j.envres.2016.09.012CrossRefGoogle Scholar
  2. Akyüz M, Çabuk H (2009) Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. J Hazard Mater 170:13–21. doi: 10.1016/j.jhazmat.2009.05.029CrossRefGoogle Scholar
  3. Alolayan MA, Brown KW, Evans JS et al (2013) Source apportionment of fine particles in Kuwait City. Sci Total Environ 448:14–25. doi: 10.1016/j.scitotenv.2012.11.090CrossRefGoogle Scholar
  4. Anenberg SC, Horowitz LW, Tong DQ, West JJ (2010) An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ Health Perspect 118:1189–1195. doi: 10.1289/ehp.0901220CrossRefGoogle Scholar
  5. Antonel J, Chowdhury Z (2014) Measuring ambient particulate matter in three cities in Cameroon, Africa. Atmos Environ 95:344–354. doi: 10.1016/j.atmosenv.2014.06.053CrossRefGoogle Scholar
  6. Apte JS, Marshall JD, Cohen AJ, Brauer M (2015) Addressing global mortality from ambient PM2.5. Environ Sci Technol 49:8057–8066. doi: 10.1021/acs.est.5b01236CrossRefGoogle Scholar
  7. Araujo JA (2011) Particulate air pollution, systemic oxidative stress, inflammation, and atherosclerosis. Air Qual Atmos Health 4:79–93. doi: 10.1007/s11869-010-0101-8CrossRefGoogle Scholar
  8. Arruti A, Fernández-Olmo I, Irabien Á (2012) Evaluation of the urban/rural particle-bound PAH and PCB levels in the northern Spain (Cantabria region). Environ Monit Assess 184:6513–6526. doi: 10.1007/s10661-011-2437-4CrossRefGoogle Scholar
  9. Atkinson RW, Mills IC, Walton HA, Anderson HR (2015) Fine particle components and health—a systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions. J Expo Sci Environ Epidemiol 25:208–214. doi: 10.1038/jes.2014.63CrossRefGoogle Scholar
  10. Aung HH, Lame MW, Gohil K et al (2011) Comparative gene responses to collected ambient particles in vitro: endothelial responses. Physiol Genomics 43:917–929. doi: 10.1152/physiolgenomics.00051.2011CrossRefGoogle Scholar
  11. Baek BH, Koziel JA, Aneja VP (2006) A preliminary review of gas-to-particle conversion monitoring and modelling efforts in the USA. Int J Glob Environ Issues 6:204–230CrossRefGoogle Scholar
  12. Bai N, Khazaei M, van Eeden SF, Laher I (2007) The pharmacology of particulate matter air pollution-induced cardiovascular dysfunction. Pharmacol Ther 113:16–29CrossRefGoogle Scholar
  13. Balasubramanian R, Qian W-B, Decesari S et al (2003) Comprehensive characterization of PM2.5 aerosols in Singapore. J Geophys Res Atmos 108:4523. doi: 10.1029/2002JD002517CrossRefGoogle Scholar
  14. Baulig A, Singh S, Marchand A et al (2009) Role of Paris PM2.5 components in the pro-inflammatory response induced in airway epithelial cells. Toxicology 261:126–135. doi: 10.1016/j.tox.2009.05.007CrossRefGoogle Scholar
  15. Begum BA, Hopke PK, Markwitz A (2013) Air pollution by fine particulate matter in Bangladesh. Atmos Pollut Res 4:75–86. doi: 10.5094/APR.2013.008CrossRefGoogle Scholar
  16. Begum BA, Hossain A, Nahar N et al (2012) Organic and black carbon in PM2.5 at an urban site at Dhaka, Bangladesh. Aerosol Air Qual Res 12:1062–1072. doi: 10.4209/aaqr.2012.05.0138CrossRefGoogle Scholar
  17. Bell ML, Zanobetti A, Dominici F (2013) Evidence on vulnerability and susceptibility to health risks associated with short-term exposure to particulate matter: a systematic review and meta-analysis. Am J Epidemiol 178:865–876. doi: 10.1093/aje/kwt090CrossRefGoogle Scholar
  18. Block ML, Calderón-Garcidueñas L (2009) Air pollution: mechanisms of neuroinflammation & CNS disease. Trends Neurosci 29:506–516. doi: 10.1016/j.tins.2009.05.009.AirCrossRefGoogle Scholar
  19. Boogaard H, Fischer PH, Janssen NAH et al (2013) Respiratory effects of a reduction in outdoor air pollution concentrations. Epidemiology 24:753–761. doi: 10.1097/EDE.0b013e31829e1639CrossRefGoogle Scholar
  20. Breysse PN, Delfino RJ, Dominici F et al (2013) US EPA particulate matter research centers: summary of research results for 2005-2011. Air Qual Atmos Health 6:333–355. doi: 10.1007/s11869-012-0181-8CrossRefGoogle Scholar
  21. Cachon BF, Firmin S, Verdin A et al (2014) Proinflammatory effects and oxidative stress within human bronchial epithelial cells exposed to atmospheric particulate matter (PM2.5 and PM>2.5) collected from Cotonou, Benin. Environ Pollut 185:340–351. doi: 10.1016/j.envpol.2013.10.026CrossRefGoogle Scholar
  22. Cakmak S, Dales R, Kauri LM et al (2014) Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology. Environ Pollut 189:208–214. doi: 10.1016/j.envpol.2014.03.004CrossRefGoogle Scholar
  23. Chafe ZA, Brauer M, Klimont Z et al (2014) Household cooking with solid fuels contributes to ambient PM2.5 air pollution and the burden of disease. Environ Health Perspect 122:1314–1320. doi: 10.1289/ehp.1206340CrossRefGoogle Scholar
  24. Chaloulakou A, Kassomenos P, Grivas G, Spyrellis N (2005) Particulate matter and black smoke concentration levels in Central Athens, Greece. Environ Int 31:651–659. doi: 10.1016/j.envint.2004.11.001CrossRefGoogle Scholar
  25. Chatterjee A, Dutta C, Jana TK, Sen S (2012) Fine mode aerosol chemistry over a tropical urban atmosphere: characterization of ionic and carbonaceous species. J Atmos Chem 69:83–100. doi: 10.1007/s10874-012-9231-8CrossRefGoogle Scholar
  26. Chen G, Zhang W, Li S et al (2017) The impact of ambient fine particles on influenza transmission and the modification effects of temperature in China: a multi-city study. Environ Int 98:82–88. doi: 10.1016/j.envint.2016.10.004CrossRefGoogle Scholar
  27. Chen R, Wang X, Meng X et al (2013) Communicating air pollution-related health risks to the public: an application of the air quality health index in Shanghai, China. Environ Int 51:168–173. doi: 10.1016/j.envint.2012.11.008CrossRefGoogle Scholar
  28. Cheng YH, Lin CC, Liu JJ, Hsieh CJ (2014) Temporal characteristics of black carbon concentrations and its potential emission sources in a southern Taiwan industrial urban area. Environ Sci Pollut Res 21:3744–3755. doi: 10.1007/s11356-013-2373-7CrossRefGoogle Scholar
  29. Chuersuwan N, Nimrat S, Lekphet S, Kerdkumrai T (2008) Levels and major sources of PM2.5 and PM10 in Bangkok metropolitan region. Environ Int 34:671–677. doi: 10.1016/j.envint.2007.12.018CrossRefGoogle Scholar
  30. Chung Y, Dominici F, Wang Y et al (2015) Associations between long-term exposure to chemical constituents of fine particulate matter (PM2.5) and mortality in medicare enrollees in the eastern United States. Environ Health Perspect 123:467–474. doi: 10.1289/ehp.1307549CrossRefGoogle Scholar
  31. CNEM (2013) China National Environmental Monitoring Center. Accessed 20 Jan 2017
  32. Co HX, Dung NT, Oanh NTK et al (2014) Levels and composition of ambient particulate matter at a mountainous rural site in Northern Vietnam. Aerosol Air Qual Res 14:1917–1928. doi: 10.4209/aaqr.2013.09.0300CrossRefGoogle Scholar
  33. Cohen DD, Crawford J, Stelcer E, Bac VT (2010) Characterisation and source apportionment of fine particulate sources at Hanoi from 2001 to 2008. Atmos Environ 44:320–328. doi: 10.1016/j.atmosenv.2009.10.037CrossRefGoogle Scholar
  34. Coronas MV, Pereira TS, Rocha JAV et al (2009) Genetic biomonitoring of an urban population exposed to mutagenic airborne pollutants. Environ Int 35:1023–1029. doi: 10.1016/j.envint.2009.05.001CrossRefGoogle Scholar
  35. CPCB (2009) National Ambient Air Quality Standards. Central Pollution Control Board India. Accessed 21 Jan 2017
  36. CPCB (2013) CPCB Annual Report 2011–2012. Central Pollution Control Board Ministry of Environment & Forest, New Delhi. 284 pGoogle Scholar
  37. Dadvand P, Ostro B, Figueras F et al (2014) Residential proximity to major roads and term low birth weight: the roles of air pollution, heat, noise, and road-adjacent trees. Epidemiology 25:518–525. doi: 10.1097/eDe.0000000000000107CrossRefGoogle Scholar
  38. Daher N, Ruprecht A, Invernizzi G et al (2012) Characterization, sources and redox activity of fine and coarse particulate matter in Milan, Italy. Atmos Environ 49:130–141. doi: 10.1016/j.atmosenv.2011.12.011CrossRefGoogle Scholar
  39. de Kok TMCM, Driece HAL, Hogervorst JGF, Briedé JJ (2006) Toxicological assessment of ambient and traffic-related particulate matter: a review of recent studies. Mutat Res 613:103–122. doi: 10.1016/j.mrrev.2006.07.001CrossRefGoogle Scholar
  40. de Miranda RM, de Fatima AM, Fornaro A et al (2012) Urban air pollution: a representative survey of PM 2.5 mass concentrations in six Brazilian cities. Air Qual Atmos Health 5:63–77. doi: 10.1007/s11869-010-0124-1CrossRefGoogle Scholar
  41. Degobbi C, Saldiva PHN, Rogers C (2011) Endotoxin as modifier of particulate matter toxicity: a review of the literature. Aerobiologia 27:97–105. doi: 10.1007/s10453-010-9179-6CrossRefGoogle Scholar
  42. Deshmukh DK, Deb MK, Suzuki Y, Kouvarakis GN (2013) Water-soluble ionic composition of PM2.5-10 and PM2.5 aerosols in the lower troposphere of an industrial city Raipur, the eastern Central India. Air Qual Atmos Health 6:95–110. doi: 10.1007/s11869-011-0149-0CrossRefGoogle Scholar
  43. Ding X, Wang M, Chu H et al (2014) Global gene expression profiling of human bronchial epithelial cells exposed to airborne fine particulate matter collected from Wuhan, China. Toxicol Lett 228:25–33. doi: 10.1016/j.toxlet.2014.04.010CrossRefGoogle Scholar
  44. Dionisio KL, Arku RE, Hughes AF et al (2010) Air pollution in Accra neighborhoods: spatial, socioeconomic, and temporal patterns. Environ Sci Technol 44:2270–2276. doi: 10.1021/es903276sCrossRefGoogle Scholar
  45. Dominici F, Peng RD, Bell ML et al (2006) Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 295:1127–1134. doi: 10.1001/jama.295.10.1127CrossRefGoogle Scholar
  46. Dongarra G, Manno E, Varrica D et al (2010) Study on ambient concentrations of PM10, PM10-2.5, PM2.5 and gaseous pollutants. Trace elements and chemical speciation of atmospheric particulates. Atmos Environ 44:5244–5257. doi: 10.1016/j.atmosenv.2010.08.041CrossRefGoogle Scholar
  47. Doumbia EHT, Liousse C, Galy-Lacaux C et al (2012) Real time black carbon measurements in West and Central Africa urban sites. Atmos Environ 54:529–537. doi: 10.1016/j.atmosenv.2012.02.005CrossRefGoogle Scholar
  48. ECC (2013) Environment and Climate Change Canada. Canadian Ambient Air Quality Standards. Government of Canada. Accessed 19 Jan 2017
  49. Edwards SC, Jedrychowski W, Butscher M et al (2010) Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children’s intelligence at 5 years of age in a prospective cohort study in Poland. Environ Health Perspect 118:1326–1331. doi: 10.1289/ehp.0901070CrossRefGoogle Scholar
  50. EEA (2013) AirBase: public air quality database – air pollution. European Environment Agency. Accessed 5 Jan 2017
  51. Eeftens M, Tsai MY, Ampe C et al (2012) Spatial variation of PM2.5, PM10, PM2.5 absorbance and PMcoarse concentrations between and within 20 European study areas and the relationship with NO2 – results of the ESCAPE project. Atmos Environ 62:303–317. doi: 10.1016/j.atmosenv.2012.08.038CrossRefGoogle Scholar
  52. EQSJ (2009) Environmental quality standards in Japan – air quality. Ministry of the Government of Japan. Accessed 28 Jan 2017
  53. Evans J, van Donkelaar A, Martin RV et al (2013) Estimates of global mortality attributable to particulate air pollution using satellite imagery. Environ Res 120:33–42. doi: 10.1016/j.envres.2012.08.005CrossRefGoogle Scholar
  54. Faiz AS, Rhoads GG, Demissie K et al (2013) Does ambient air pollution trigger stillbirth? Epidemiology 24:538–544. doi: 10.1097/EDE.0b013e3182949ce5CrossRefGoogle Scholar
  55. Fang G, Chang S (2010) Atmospheric particulate (PM 10 and PM 2.5) mass concentration and seasonal variation study in the Taiwan area during 2000–2008. Atmos Res 98:368–377. doi: 10.1016/j.atmosres.2010.07.005CrossRefGoogle Scholar
  56. Fang Y, Mauzerall DL, Liu J et al (2013) Impacts of 21st century climate change on global air pollution-related premature mortality. Clim Change 121:239–253. doi: 10.1007/s10584-013-0847-8CrossRefGoogle Scholar
  57. Feng S, Gao D, Liao F et al (2016) The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol Environ Saf 128:67–74. doi: 10.1016/j.ecoenv.2016.01.030CrossRefGoogle Scholar
  58. Fleisch AF, Gold DR, Rifas-Shiman SL et al (2014) Air pollution exposure and abnormal glucose tolerance during pregnancy: the project viva cohort. Environ Health Perspect 122:378–383. doi: 10.1289/ehp.1307065CrossRefGoogle Scholar
  59. Flores-Pajot M-C, Ofner M, Do MT et al (2016) Childhood autism spectrum disorders and exposure to nitrogen dioxide, and particulate matter air pollution: a review and meta-analysis. Environ Res 151:763–776. doi: 10.1016/j.envres.2016.07.030CrossRefGoogle Scholar
  60. Forouzanfar MH, Alexander L, Anderson HR et al (2015) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the global burden of disease study 2013. Lancet 386:2287–2323. doi: 10.1016/S0140-6736(15)00128-2CrossRefGoogle Scholar
  61. Fuks K, Moebus S, Hertel S et al (2011) Long-term urban particulate air pollution, traffic noise, and arterial blood pressure. Environ Health Perspect 119:1706–1711. doi: 10.1289/ehp.1103564CrossRefGoogle Scholar
  62. Gaita SM, Boman J, Gatari MJ et al (2014) Source apportionment and seasonal variation of PM2.5 in a sub-Saharan African city: Nairobi, Kenya. Atmos Chem Phys 14:9977–9991. doi: 10.5194/acp-14-9977-2014CrossRefGoogle Scholar
  63. Galindo N, Varea M, Gil-Moltó J et al (2011) The influence of meteorology on particulate matter concentrations at an urban mediterranean location. Water Air Soil Pollut 215:365–372. doi: 10.1007/s11270-010-0484-zCrossRefGoogle Scholar
  64. GB 3095 (2012) Ambient air quality standards in China. Accessed 11 Jan 2017
  65. Gehrig R, Buchmann B (2003) Characterising seasonal variations and spatial distribution of ambient PM10 and PM2.5 concentrations based on long-term Swiss monitoring data. Atmos Environ 37:2571–2580. doi: 10.1016/S1352-2310(03)00221-8CrossRefGoogle Scholar
  66. Ghio AJ, Carraway MS, Madden MC (2012) Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J Toxicol Environ Health B 15:1–21. doi: 10.1080/10937404.2012.632359CrossRefGoogle Scholar
  67. Gnauk T, Müller K, Brüggemann E et al (2011) A study to discriminate local, urban and regional source contributions to the particulate matter concentrations in the city of Dresden, Germany. J Atmos Chem 68:199–231. doi: 10.1007/s10874-012-9216-7CrossRefGoogle Scholar
  68. Greene NA, Morris VR (2006) Assessment of public health risks associated with atmospheric exposure to PM2.5 in Washington, DC, USA. Int J Environ Res Public Health 3:86–97. doi: 10.3390/ijerph2006030010CrossRefGoogle Scholar
  69. Grinshpun SA, Yermakov M, Reponen T et al (2014) Traffic particles in ambient air of a major US urban area: has anything changed over a decade? Aerosol Air Qual Res 14:1344–1351. doi: 10.4209/aaqr.2013.11.0334CrossRefGoogle Scholar
  70. Gugamsetty B, Wei H, Liu CN et al (2012) Source characterization and apportionment of PM10, PM2.5 and PM0.1 by using positive matrix factorization. Aerosol Air Qual Res 12:476–491. doi: 10.4209/aaqr.2012.04.0084CrossRefGoogle Scholar
  71. Guttikunda SK, Lodoysamba S, Bulgansaikhan B, Dashdondog B (2013) Particulate pollution in Ulaanbaatar, Mongolia. Air Qual Atmos Health 6:589–601. doi: 10.1007/s11869-013-0198-7CrossRefGoogle Scholar
  72. Hallquist M, Wenger JC, Baltensperger U et al (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9:5155–5236. doi: 10.5194/acp-9-5155-2009CrossRefGoogle Scholar
  73. Hamra GB, Guha N, Cohen A et al (2014) Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect 122:906–911. doi: 10.1289/ehp.1408092CrossRefGoogle Scholar
  74. Han Y-J, Kim S-R, Jung J-H (2011) Long-term measurements of atmospheric PM2.5 and its chemical composition in rural Korea. J Atmos Chem 68:281–298. doi: 10.1007/s10874-012-9225-6CrossRefGoogle Scholar
  75. Harrison RM, Smith DJ, Kibble AJ (2004) What is responsible for the carcinogenicity of PM2.5? Occup Environ Med 61:799–805. doi: 10.1136/oem.2003.010504CrossRefGoogle Scholar
  76. Hazenkamp-Von Arx ME, Gotschi T, Ackermann-Liebrich U et al (2004) PM2.5 and NO2 assessment in 21 European study centres of ECRHS II: annual means and seasonal differences. Atmos Environ 38:1943–1953. doi: 10.1016/j.atmosenv.2004.01.016CrossRefGoogle Scholar
  77. Hennig F, Fuks K, Moebus S et al (2014) Association between source-specific particulate matter air pollution and hs-CRP: local traffic and industrial emissions. Environ Health Perspect 122:703–710. doi: 10.1289/ehp.1307081CrossRefGoogle Scholar
  78. Ho KF, Lee SC, Chan CK et al (2003) Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmos Environ 37:31–39. doi: 10.1016/S1352-2310(02)00804-XCrossRefGoogle Scholar
  79. Hong W, Jia H, Ma W et al (2016) Distribution, fate, inhalation exposure and lung cancer risk of atmospheric polycyclic aromatic hydrocarbons in some Asian countries. Environ Sci Technol. acs.est.6b01090. doi:  10.1021/acs.est.6b01090CrossRefGoogle Scholar
  80. Hu J, Wang Y, Ying Q, Zhang H (2014) Spatial and temporal variability of PM2.5 and PM10 over the North China plain and the Yangtze River Delta, China. Atmos Environ 95:598–609. doi: 10.1016/j.atmosenv.2014.07.019CrossRefGoogle Scholar
  81. Huang X, Liu Z, Zhang J et al (2016) Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing. Atmos Res 168:70–79. doi: 10.1016/j.atmosres.2015.08.021CrossRefGoogle Scholar
  82. Hussain MM, Aburizaiza OS, Khwaja HA et al (2014) The state of ambient air quality of Jeddah, Saudi Arabia. Presented at the 2014 American Geophysical Union (AGU) meeting, San Francisco, CAGoogle Scholar
  83. Hussein T, Alghamdi MA, Khoder M et al (2014) Particulate matter and number concentrations of particles larger than 0.25 μm in the urban atmosphere of Jeddah, Saudi Arabia. Aerosol Air Qual Res 14:1383–1391. doi: 10.4209/aaqr.2014.02.0027CrossRefGoogle Scholar
  84. Hyder A, Lee HJ, Ebisu K et al (2014) PM2.5 exposure and birth outcomes. Epidemiology 25:58–67. doi: 10.1097/EDE.0000000000000027CrossRefGoogle Scholar
  85. Jiménez E, Linares C, Rodríguez LF et al (2009) Short-term impact of particulate matter (PM2.5) on daily mortality among the over-75 age group in Madrid (Spain). Sci Total Environ 407:5486–5492. doi: 10.1016/j.scitotenv.2009.06.038CrossRefGoogle Scholar
  86. Joseph AE, Unnikrishnan S, Kumar R (2012) Chemical characterization and mass closure of fine aerosol for different land use patterns in Mumbai city. Aerosol Air Qual Res 12:61–72. doi: 10.4209/aaqr.2011.04.0049CrossRefGoogle Scholar
  87. Jugder D, Shinoda M, Sugimoto N et al (2011) Spatial and temporal variations of dust concentrations in the Gobi Desert of Mongolia. Global Planet Change 78:14–22. doi: 10.1016/j.gloplacha.2011.05.003CrossRefGoogle Scholar
  88. Kassomenos P, Vardoulakis S, Chaloulakou A et al (2012) Levels, sources and seasonality of coarse particles (PM 10-PM 2.5) in three European capitals – implications for particulate pollution control. Atmos Environ 54:337–347. doi: 10.1016/j.atmosenv.2012.02.051CrossRefGoogle Scholar
  89. Kendall M, Pala K, Ucakli S, Gucer S (2011) Airborne particulate matter (PM2.5 and PM10) and associated metals in urban Turkey. Air Qual Atmos Health 4:235–242. doi: 10.1007/s11869-010-0129-9CrossRefGoogle Scholar
  90. Khan MF, Shirasuna Y, Hirano K, Masunaga S (2010) Characterization of PM2.5, PM2.5-10 and PM> 10 in ambient air, Yokohama, Japan. Atmos Res 96:159–172. doi: 10.1016/j.atmosres.2009.12.009CrossRefGoogle Scholar
  91. Khwaja HA, Fatmi Z, Malashock D et al (2012) Effect of air pollution on daily morbidity in Karachi, Pakistan. J Local Glob Heal Sci 3. doi:  10.5339/jlghs.2012.3
  92. Khwaja HA, Kelly L, Fatmi Z et al (2015) Spatial and temporal variability in chemical composition of ambient fine particulate matter in the megacity of Karachi, Pakistan. Presented at the American Association of Aerosol Research (AAAR) 34th annual conference, Minneapolis, MNGoogle Scholar
  93. Kim KN, Lim YH, Bae HJ et al (2016) Long-term fine particulate matter exposure and major depressive disorder in a community-based urban cohort. Environ Health Perspect 124:1547–1553. doi: 10.1289/EHP192CrossRefGoogle Scholar
  94. Kim NK, Kim YP, Kang CH (2011) Long-term trend of aerosol composition and direct radiative forcing due to aerosols over Gosan: TSP, PM10, and PM2.5 data between 1992 and 2008. Atmos Environ 45:6107–6115. doi: 10.1016/j.atmosenv.2011.08.051CrossRefGoogle Scholar
  95. Kloog I, Ridgway B, Koutrakis P et al (2013) Long- and short-term exposure to PM2.5 and mortality: using novel exposure models. Epidemiology 24:555–561. doi: 10.1097/EDE.0b013e318294beaaCrossRefGoogle Scholar
  96. Kopp RE, Mauzerall DL (2010) Assessing the climatic benefits of black carbon mitigation. Proc Natl Acad Sci U S A 107:11703–11708. doi: 10.1073/pnas.0909605107CrossRefGoogle Scholar
  97. Kothai P, Saradhi IV, Pandit GG et al (2011) Chemical characterization and source identification of particulate matter at an urban site of Navi Mumbai, India. Aerosol Air Qual Res 11:560–569. doi: 10.4209/aaqr.2011.02.0017CrossRefGoogle Scholar
  98. Krall JR, Chang HH, Sarnat SE et al (2015) Current methods and challenges for epidemiological studies of the associations between chemical constituents of particulate matter and health. Curr Environ Health Rep 2:388–398. doi: 10.1007/s40572-015-0071-yCrossRefGoogle Scholar
  99. Kulshrestha A, Satsangi PG, Masih J, Taneja A (2009) Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Sci Total Environ 407:6196–6204. doi: 10.1016/j.scitotenv.2009.08.050CrossRefGoogle Scholar
  100. Kuvarega AT, Taru P (2008) Ambiental dust speciation and metal content variation in TSP, PM10 and PM2.5 in urban atmospheric air of Harare (Zimbabwe). Environ Monit Assess 144:1–14. doi: 10.1007/s10661-008-0436-xCrossRefGoogle Scholar
  101. Laing S, Wang G, Briazova T et al (2010) Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues. Am J Physiol Cell Physiol 299:C736–C749. doi: 10.1152/ajpcell.00529.2009CrossRefGoogle Scholar
  102. Lall R, Ito K, Thurston GD (2011) Distributed lag analyses of daily hospital admissions and source-apportioned fine particle air pollution. Environ Health Perspect 119:455–460. doi: 10.1289/ehp.1002638CrossRefGoogle Scholar
  103. Lall R, Thurston GD (2006) Identifying and quantifying transported vs. local sources of New York City PM2.5 fine particulate matter air pollution. Atmos Environ 40:333–346. doi: 10.1016/j.atmosenv.2006.04.068CrossRefGoogle Scholar
  104. Lazaridis M, Dzumbova L, Kopanakis I et al (2008) PM10 and PM2.5 levels in the eastern Mediterranean (Akrotiri research station, Crete, Greece). Water Air Soil Pollut 189:85–101. doi: 10.1007/s11270-007-9558-yCrossRefGoogle Scholar
  105. Lee HJ, Gent JF, Leaderer BP, Koutrakis P (2011) Spatial and temporal variability of fine particle composition and source types in five cities of Connecticut and Massachusetts. Sci Total Environ 409:2133–2142. doi: 10.1016/j.scitotenv.2011.02.025CrossRefGoogle Scholar
  106. Lemos AT, Coronas MV, Rocha JAV, Vargas VMF (2012) Mutagenicity of particulate matter fractions in areas under the impact of urban and industrial activities. Chemosphere 89:1126–1134. doi: 10.1016/j.chemosphere.2012.05.100CrossRefGoogle Scholar
  107. Li P, Xin J, Wang Y et al (2013) Time-series analysis of mortality effects from airborne particulate matter size fractions in Beijing. Atmos Environ 81:253–262. doi: 10.1016/j.atmosenv.2013.09.004CrossRefGoogle Scholar
  108. Li PH, Han B, Huo J et al (2012) Characterization, meteorological influences and source identification of carbonaceous aerosols during the autumn-winter period in Tianjin, China. Aerosol Air Qual Res 12:283–294. doi: 10.4209/aaqr.2011.09.0140CrossRefGoogle Scholar
  109. López ML, Ceppi S, Palancar GG et al (2011) Elemental concentration and source identification of PM10 and PM2.5 by SR-XRF in Córdoba City, Argentina. Atmos Environ 45:5450–5457. doi: 10.1016/j.atmosenv.2011.07.003CrossRefGoogle Scholar
  110. Lu MC, Wang P, Cheng TJ et al (2017) Association of temporal distribution of fine particulate matter with glucose homeostasis during pregnancy in women of Chiayi City, Taiwan. Environ Res 152:81–87. doi: 10.1016/j.envres.2016.09.023CrossRefGoogle Scholar
  111. Luo C, Zhu X, Yao C et al (2015) Short-term exposure to particulate air pollution and risk of myocardial infarction: a systematic review and meta-analysis. Environ Sci Pollut Res 22:14651–14662. doi: 10.1007/s11356-015-5188-xCrossRefGoogle Scholar
  112. Ma Y, Chen R, Pan G et al (2011) Fine particulate air pollution and daily mortality in Shenyang, China. Sci Total Environ 409:2473–2477. doi: 10.1016/j.scitotenv.2011.03.017CrossRefGoogle Scholar
  113. Maas R, Grennfelt P (2016) Towards cleaner air. Scientific Assessment Report 2016Google Scholar
  114. Mahowald N, Ward DS, Kloster S et al (2011) Aerosol impacts on climate and biogeochemistry. Annu Rev Env Resour 36:45–74. doi: 10.1146/annurev-environ-042009-094507CrossRefGoogle Scholar
  115. Mancilla Y, Herckes P, Fraser MP, Mendoza A (2015) Secondary organic aerosol contributions to PM2.5 in Monterrey, Mexico: temporal and seasonal variation. Atmos Res 153:348–359. doi: 10.1016/j.atmosres.2014.09.009CrossRefGoogle Scholar
  116. Mansha M, Ghauri B, Rahman S, Amman A (2012) Characterization and source apportionment of ambient air particulate matter (PM2.5) in Karachi. Sci Total Environ 425:176–183. doi: 10.1016/j.scitotenv.2011.10.056CrossRefGoogle Scholar
  117. Mariani RL, de Mello WZ (2007) PM2.5-10, PM2.5 and associated water-soluble inorganic species at a coastal urban site in the metropolitan region of Rio de Janeiro. Atmos Environ 41:2887–2892. doi: 10.1016/j.atmosenv.2006.12.009CrossRefGoogle Scholar
  118. Mazzoli-Rocha F, Fernandes S, Einicker-Lamas M, Zin WA (2010) Roles of oxidative stress in signaling and inflammation induced by particulate matter. Cell Biol Toxicol 26:481–498. doi: 10.1007/s10565-010-9158-2CrossRefGoogle Scholar
  119. Mehta AJ, Zanobetti A, Bind M-AC et al (2016) Long-term exposure to ambient fine particulate matter and renal function in older men: the VA normative aging study. Environ Health Perspect 124:1353–1360. doi: 10.1289/ehp.1510269CrossRefGoogle Scholar
  120. Miller KA, Siscovick DS, Sheppard L et al (2007) Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med 356:447–458. doi: 10.1056/NEJMoa054409CrossRefGoogle Scholar
  121. Mills NL, Donaldson K, Hadoke PW et al (2009) Adverse cardiovascular effects of air pollution. Nat Clin Pract Cardiovasc Med 6:36–44. doi: 10.1038/ncpcardio1399CrossRefGoogle Scholar
  122. Minguillón MC, Campos AA, Cárdenas B et al (2014) Mass concentration, composition and sources of fine and coarse particulate matter in Tijuana, Mexico, during Cal-Mex campaign. Atmos Environ 88:320–329. doi: 10.1016/j.atmosenv.2013.09.032CrossRefGoogle Scholar
  123. Miyata R, van Eeden SF (2011) The innate and adaptive immune response induced by alveolar macrophages exposed to ambient particulate matter. Toxicol Appl Pharmacol 257:209–226. doi: 10.1016/j.taap.2011.09.007CrossRefGoogle Scholar
  124. Mkoma SL, Chi X, Maenhaut W (2010) Characteristics of carbonaceous aerosols in ambient PM10 and PM2.5 particles in Dar es Salaam, Tanzania. Sci Total Environ 408:1308–1314. doi: 10.1016/j.scitotenv.2009.10.054CrossRefGoogle Scholar
  125. Mohanraj R, Solaraj G, Dhanakumar S (2011) Fine particulate phase PAHs in ambient atmosphere of Chennai metropolitan city, India. Environ Sci Pollut Res 18:764–771. doi: 10.1007/s11356-010-0423-yCrossRefGoogle Scholar
  126. Mooibroek D, Schaap M, Weijers EP, Hoogerbrugge R (2011) Source apportionment and spatial variability of PM2.5 using measurements at five sites in the Netherlands. Atmos Environ 45:4180–4191. doi: 10.1016/j.atmosenv.2011.05.017CrossRefGoogle Scholar
  127. Morakinyo OM, Mokgobu MI, Mukhola MS, Hunter RP (2016) Health outcomes of exposure to biological and chemical components of inhalable and respirable particulate matter. Int J Environ Res Public Health 13:1–22CrossRefGoogle Scholar
  128. Murillo JH, Roman SR, Rojas Marin JF et al (2013) Chemical characterization and source apportionment of PM10 and PM2.5 in the metropolitan area of Costa Rica, Central America. Atmos Pollut Res 4:181–190. doi: 10.5094/APR.2013.018CrossRefGoogle Scholar
  129. Negral L, Moreno-Grau S, Moreno J et al (2008) Natural and anthropogenic contributions to PM10 and PM2.5 in an urban area in the western Mediterranean coast. Water Air Soil Pollut 192:227–238. doi: 10.1007/s11270-008-9650-yCrossRefGoogle Scholar
  130. NEPM (2002) National Environment Protection Measure for Ambient Air Quality. Department of the Environment and Energy Australian Government. Accessed 21 Jan 2017
  131. NOM (2005) Norma Oficial Mexicana, Mexico's environmental and natural resources ministry, Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Accessed 18 January 2017
  132. Nyanganyura D, Maenhaut W, Mathuthu M et al (2007) The chemical composition of tropospheric aerosols and their contributing sources to a continental background site in northern Zimbabwe from 1994 to 2000. Atmos Environ 41:2644–2659. doi: 10.1016/j.atmosenv.2006.11.015CrossRefGoogle Scholar
  133. Olson DA, Turlington J, Duvall RM et al (2008) Indoor and outdoor concentrations of organic and inorganic molecular markers: source apportionment of PM2.5 using low-volume samples. Atmos Environ 42:1742–1751. doi: 10.1016/j.atmosenv.2007.11.035CrossRefGoogle Scholar
  134. Onat B, Sahin UA, Akyuz T (2013) Elemental characterization of PM2.5 and PM1 in dense traffic area in Istanbul, Turkey. Atmos Pollut Res 4:101–105. doi: 10.5094/Apr.2013.010CrossRefGoogle Scholar
  135. Øvrevik J, Låg M, Holme JA et al (2009) Cytokine and chemokine expression patterns in lung epithelial cells exposed to components characteristic of particulate air pollution. Toxicology 259:46–53. doi: 10.1016/j.tox.2009.01.028CrossRefGoogle Scholar
  136. Øvrevik J, Refsnes M, Låg M et al (2015) Activation of proinflammatory responses in cells of the airway mucosa by particulate matter: oxidant- and non-oxidant-mediated triggering mechanisms. Biomol Ther 5:1399–1440. doi: 10.3390/biom5031399CrossRefGoogle Scholar
  137. Owoade KO, Hopke PK, Olise FS et al (2015) Chemical compositions and source identification of particulate matter (PM2.5 and PM2.5-10) from a scrap iron and steel smelting industry along the Ife–Ibadan highway, Nigeria. Atmos Pollut Res 6:107–119. doi: 10.5094/APR.2015.013CrossRefGoogle Scholar
  138. Pancras JP, Landis MS, Norris GA et al (2013) Source apportionment of ambient fine particulate matter in Dearborn, Michigan, using hourly resolved PM chemical composition data. Sci Total Environ 448:2–13. doi: 10.1016/j.scitotenv.2012.11.083CrossRefGoogle Scholar
  139. Pandey P, Khan AH, Verma AK et al (2012) Seasonal trends of PM 2.5 and PM 10 in ambient air and their correlation in ambient air of Lucknow City, India. Bull Environ Contam Toxicol 88:265–270. doi: 10.1007/s00128-011-0466-xCrossRefGoogle Scholar
  140. Pascal M, Falq G, Wagner V et al (2014) Short-term impacts of particulate matter (PM10, PM10-2.5, PM2.5) on mortality in nine French cities. Atmos Environ 95:175–184. doi: 10.1016/j.atmosenv.2014.06.030CrossRefGoogle Scholar
  141. Pateraki S, Asimakopoulos DN, Flocas HA et al (2012) The role of meteorology on different sized aerosol fractions (PM 10, PM 2.5, PM 2.5-10). Sci Total Environ 419:124–135. doi: 10.1016/j.scitotenv.2011.12.064CrossRefGoogle Scholar
  142. PCD (2010) Pollution Control Department. Ambient Air Standards. Ministry of Natural Resources and Environment Thailand. Accessed 22 Jan 2017
  143. Perera FP, Li Z, Whyatt R et al (2009) Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics 124:e195–e202. doi: 10.1542/peds.2008-3506CrossRefGoogle Scholar
  144. Perera FP, Tang D, Wang S et al (2012) Prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child behavior at age 6-7 years. Environ Health Perspect 120:921–926. doi: 10.1289/ehp.1104315CrossRefGoogle Scholar
  145. Pope CA III, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, Thurston GD (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287:1132–1141. doi: 10.1001/jama.287.9.1132CrossRefGoogle Scholar
  146. Pope CA, Dockery DW (2013) Air pollution and life expectancy in China and beyond. Proc Natl Acad Sci U S A 110:12861–12862. doi: 10.1073/pnas.1310925110CrossRefGoogle Scholar
  147. Qin Y, Kim E, Hopke PK (2006) The concentrations and sources of PM2.5 in metropolitan New York City. Atmos Environ 40:312–332. doi: 10.1016/j.atmosenv.2006.02.025CrossRefGoogle Scholar
  148. Querol X, Alastuey A, Rodriguez S et al (2001) PM10 and PM2.5 source apportionment in the Barcelona metropolitan area, Catalonia, Spain. Atmos Environ 35:6407–6419. doi: 10.1016/S1352-2310(01)00361-2CrossRefGoogle Scholar
  149. Raaschou-Nielsen O, Andersen ZJ, Beelen R et al (2013) Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European study of cohorts for air pollution effects (ESCAPE). Lancet Oncol 14:813–822. doi: 10.1016/S1470-2045(13)70279-1CrossRefGoogle Scholar
  150. Rahman SA, Hamzah MS, Wood AK et al (2011) Sources apportionment of fine and coarse aerosol in Klang Valley, Kuala Lumpur using positive matrix factorization. Atmos Pollut Res 2:197–206. doi: 10.5094/APR.2011.025CrossRefGoogle Scholar
  151. Raja S, Biswas KF, Husain L, Hopke PK (2010) Source apportionment of the atmospheric aerosol in Lahore, Pakistan. Water Air Soil Pollut 208:43–57. doi: 10.1007/s11270-009-0148-zCrossRefGoogle Scholar
  152. Rajput P, Sarin M, Kundu SS (2013) Atmospheric particulate matter (PM2.5), EC, OC, WSOC and PAHs from NE-Himalaya: abundances and chemical characteristics. Atmos Pollut Res 4:214–221. doi: 10.5094/APR.2013.022CrossRefGoogle Scholar
  153. Rajšić S, Mijić Z, Tasić M et al (2008) Evaluation of the levels and sources of trace elements in urban particulate matter. Environ Chem Lett 6:95–100. doi: 10.1007/s10311-007-0115-0CrossRefGoogle Scholar
  154. Rappazzo KM, Daniels JL, Messer LC et al (2015) Exposure to elemental carbon, organic carbon, nitrate, and sulfate fractions of fine particulate matter and risk of preterm birth in New Jersey, Ohio, and Pennsylvania (2000–2005). Environ Health Perspect 123:1059–1065. doi: 10.1289/ehp.1408953CrossRefGoogle Scholar
  155. Rashki A, dew Rautenbach CJ, Eriksson PG et al (2013) Temporal changes of particulate concentration in the ambient air over the city of Zahedan, Iran. Air Qual Atmos Health 6:123–135. doi: 10.1007/s11869-011-0152-5CrossRefGoogle Scholar
  156. Rattigan OV, Civerolo K, Doraiswamy P et al (2013) Long term black carbon measurements at two urban locations in New York. Aerosol Air Qual Res 13:1181–1196. doi: 10.4209/aaqr.2013.02.0060CrossRefGoogle Scholar
  157. Raysoni AU, Sarnat JA, Sarnat SE et al (2011) Binational school-based monitoring of traffic-related air pollutants in El Paso, Texas (USA) and Ciudad Juárez, Chihuahua (Mexico). Environ Pollut 159:2476–2486. doi: 10.1016/j.envpol.2011.06.024CrossRefGoogle Scholar
  158. Riccio A, Chianese E, Agrillo G et al (2014) Source apportion of atmospheric particulate matter: a joint Eulerian/Lagrangian approach. Environ Sci Pollut Res 21:13160–13168. doi: 10.1007/s11356-013-2367-5CrossRefGoogle Scholar
  159. Rogula-Kozłowska W, Błaszczak B, Szopa S et al (2013) PM2.5 in the central part of upper Silesia, Poland: concentrations, elemental composition, and mobility of components. Environ Monit Assess 185:581–601. doi: 10.1007/s10661-012-2577-1CrossRefGoogle Scholar
  160. Rohr AC, Wyzga RE (2012) Attributing health effects to individual particulate matter constituents. Atmos Environ 62:130–152. doi: 10.1016/j.atmosenv.2012.07.036CrossRefGoogle Scholar
  161. Saldarriaga-Noreña H, Hernández-Mena L, Ramírez-Muñiz M et al (2009) Characterization of trace metals of risk to human health in airborne particulate matter (PM2.5) at two sites in Guadalajara, Mexico. J Environ Monit 11:887–894. doi: 10.1039/b815747bCrossRefGoogle Scholar
  162. Salvador P, Artíñano B, Querol X et al (2007) Characterisation of local and external contributions of atmospheric particulate matter at a background coastal site. Atmos Environ 41:1–17. doi: 10.1016/j.atmosenv.2006.08.007CrossRefGoogle Scholar
  163. Salvi S, Holgate S (1999) Mechanisms of particulate matter toxicity. Clin Exp Allergy 29:1187–1194. doi: 10.1046/j.1365-2222.1999.00576.xCrossRefGoogle Scholar
  164. Samet JM, Dominici F, Curriero FC et al (2000) Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N Engl J Med 343:1742–1749. doi: 10.1056/NEJM200012143432401CrossRefGoogle Scholar
  165. Shaka’ H, Saliba NA (2004) Concentration measurements and chemical composition of PM10-2.5 and PM2.5 at a coastal site in Beirut, Lebanon. Atmos Environ 38:523–531. doi: 10.1016/j.atmosenv.2003.10.009CrossRefGoogle Scholar
  166. Sharma M, Maloo S (2005) Assessment of ambient air PM10 and PM2.5 and characterization of PM10 in the city of Kanpur, India. Atmos Environ 39:6015–6026. doi: 10.1016/j.atmosenv.2005.04.041CrossRefGoogle Scholar
  167. Sillanpaa M, Hillamo R, Saarikoski S et al (2006) Chemical composition and mass closure of particulate matter at six urban sites in Europe. Atmos Environ 40:212–223. doi: 10.1016/j.atmosenv.2006.01.063CrossRefGoogle Scholar
  168. Spindler G, Grüner A, Müller K et al (2013) Long-term size-segregated particle (PM10, PM2.5, PM1) characterization study at Melpitz – influence of air mass inflow, weather conditions and season. J Atmos Chem 70:165–195. doi: 10.1007/s10874-013-9263-8CrossRefGoogle Scholar
  169. Stanek LW, Sacks JD, Dutton SJ, Dubois JJB (2011) Attributing health effects to apportioned components and sources of particulate matter: an evaluation of collective results. Atmos Environ 45:5655–5663. doi: 10.1016/j.atmosenv.2011.07.023CrossRefGoogle Scholar
  170. Stone E, Schauer J, Quraishi TA, Mahmood A (2010) Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan. Atmos Environ 44:1062–1070. doi: 10.1016/j.atmosenv.2009.12.015CrossRefGoogle Scholar
  171. Sudheer AK, Rengarajan R (2012) Atmospheric mineral dust and trace metals over urban environment in western India during winter. Aerosol Air Qual Res 12:923–933. doi: 10.4209/aaqr.2011.12.0237CrossRefGoogle Scholar
  172. Sudheera K, Rengarajan R, Sheel V (2015) Secondary organic aerosol over an urban environment in a semi-arid region of western India. Atmos Pollut Res 6:11–20. doi: 10.5094/APR.2015.002CrossRefGoogle Scholar
  173. Sun X, Luo X, Zhao C et al (2015) The association between fine particulate matter exposure during pregnancy and preterm birth: a meta-analysis. BMC Pregnancy Childbirth 15:300. doi: 10.1186/s12884-015-0738-2CrossRefGoogle Scholar
  174. Talbott EO, Arena VC, Rager JR et al (2015) Fine particulate matter and the risk of autism spectrum disorder. Environ Res 140:414–420. doi: 10.1016/j.envres.2015.04.021CrossRefGoogle Scholar
  175. Tian H, Banger K, Bo T, Dadhwal VK (2014) History of land use in India during 1880-2010: Large-scale land transformations reconstructed from satellite data and historical archives. Glob Planet Change 121:78–88. doi:  10.1016/j.gloplacha.2014.07.005CrossRefGoogle Scholar
  176. Tian YZ, Wu JH, Shi GL et al (2013) Long-term variation of the levels, compositions and sources of size-resolved particulate matter in a megacity in China. Sci Total Environ 463–464:462–468. doi: 10.1016/j.scitotenv.2013.06.055CrossRefGoogle Scholar
  177. Tiwari S, Srivastava AK, Bisht DS et al (2009) Black carbon and chemical characteristics of PM10 and PM2.5 at an urban site of North India. J Atmos Chem 62:193–209. doi: 10.1007/s10874-010-9148-zCrossRefGoogle Scholar
  178. Tiwari S, Srivastava AK, Bisht DS et al (2013) Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: influence of meteorology. Atmos Res 125–126:50–62. doi: 10.1016/j.atmosres.2013.01.011CrossRefGoogle Scholar
  179. Traversi D, Degan R, De Marco R et al (2009) Mutagenic properties of PM2.5 urban pollution in the Northern Italy: the nitro-compounds contribution. Environ Int 35:905–910. doi: 10.1016/j.envint.2009.03.010CrossRefGoogle Scholar
  180. Upadhyay N, Clements A, Fraser M, Herckes P (2011) Chemical speciation of PM2.5 and PM10 in south Phoenix, AZ, USA. J Air Waste Manag Assoc 61:302–310. doi: 10.3155/1047-3289.61.3.302CrossRefGoogle Scholar
  181. US EPA (2012) The National Ambient Air Quality Standards for particle pollution. United States Environmental Protection Agency. Accessed 10 Jan 2017
  182. US EPA (2014) National trends in particulate matter levels. United States Environmental Protection Agency. Accessed 22 Jan 2017
  183. US EPA (2015) Annual summary and daily summary air quality data. United States Environmental Protection Agency. Accessed 21 Jan 2017
  184. Valavanidis A, Fiotakis K, Vlachogianni T (2008) Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health C 26:339–362. doi: 10.1080/10590500802494538CrossRefGoogle Scholar
  185. Vellingiri K, Kim K-H, Ma C-J et al (2015) Ambient particulate matter in a central urban area of Seoul, Korea. Chemosphere 119:812–819. doi: 10.1016/j.chemosphere.2014.08.049CrossRefGoogle Scholar
  186. Vicente AB, Pallares S, Soriano A et al (2011) Toxic metals (As, Cd, Ni and Pb) and PM2.5 in air concentration of a model ceramic cluster. Water Air Soil Pollut 222:149–161. doi: 10.1007/s11270-011-0813-xCrossRefGoogle Scholar
  187. Von Schneidemesser E, Monks PS, Allan JD et al (2015) Chemistry and the linkages between air quality and climate change. Chem Rev 115:3856–3897. doi: 10.1021/acs.chemrev.5b00089CrossRefGoogle Scholar
  188. von Schneidemesser E, Zhou J, Stone EA et al (2010) Seasonal and spatial trends in the sources of fine particle organic carbon in Israel, Jordan, and Palestine. Atmos Environ 44:3669–3678. doi: 10.1016/j.atmosenv.2010.06.039CrossRefGoogle Scholar
  189. Voutsa D, Samara C, Manoli E et al (2014) Ionic composition of PM2.5 at urban sites of northern Greece: secondary inorganic aerosol formation. Environ Sci Pollut Res 21:4995–5006. doi: 10.1007/s11356-013-2445-8CrossRefGoogle Scholar
  190. Vu VT, Lee BK, Kim JT et al (2011) Assessment of carcinogenic risk due to inhalation of polycyclic aromatic hydrocarbons in PM10 from an industrial city: a Korean case-study. J Hazard Mater 189:349–356. doi: 10.1016/j.jhazmat.2011.02.043CrossRefGoogle Scholar
  191. Wang Y, Eliot MN, Koutrakis P et al (2014) Ambient air pollution and depressive symptoms in older adults: results from the MOBILIZE Boston study. Environ Health Perspect 122:553–558. doi: 10.1289/ehp.1205909CrossRefGoogle Scholar
  192. Wang Y, Hopke PK (2014) Is Alaska truly the great escape from air Pollution? – Long term source apportionment of fine particulate matter in Fairbank, Alaska. Aerosol Air Qual Res 14:1875–1882. doi: 10.4209/aaqr.2014.03.0047CrossRefGoogle Scholar
  193. WHO (2005) WHO air quality guidelines global update published by World Health Organization on the internet. Accessed 31 Jan 2016
  194. WHO (2014) Ambient (outdoor) air pollution in cities database 2014. World Health Organization. Accessed 20 Jan 2017
  195. Wichmann G, Franck U, Herbarth O et al (2009) Different immunomodulatory effects associated with sub-micrometer particles in ambient air from rural, urban and industrial areas. Toxicology 257:127–136. doi: 10.1016/j.tox.2008.12.024CrossRefGoogle Scholar
  196. Wilhelm M, Ghosh JK, Su J et al (2011) Traffic-related air toxics and preterm birth: a population-based case-control study in Los Angeles county, California. Environ Health 10:1–12CrossRefGoogle Scholar
  197. Wilhelm M, Ghosh JK, Su J et al (2012) Traffic-related air toxics and term low birth weight in Los Angeles County, California. Environ Health Perspect 120:132–138. doi: 10.1289/ehp.1103408CrossRefGoogle Scholar
  198. World Bank (2015) The World Bank Group. PM2.5 pollution, mean annual exposure (micrograms per cubic meter). Accessed 20 Nov 2016
  199. Wu L, Jin L, Shi T et al (2017) Association between ambient particulate matter exposure and semen quality in Wuhan, China. Environ Int 98:219–228. doi: 10.1016/j.envint.2016.11.013CrossRefGoogle Scholar
  200. Yao L, Yang L, Chen J et al (2016) Science of the total environment characteristics of carbonaceous aerosols: impact of biomass burning and secondary formation in summertime in a rural area of the North China plain. Sci Total Environ 557–558:520–530. doi: 10.1016/j.scitotenv.2016.03.111CrossRefGoogle Scholar
  201. Yatkin S, Bayram A (2008) Source apportionment of PM10 and PM2.5 using positive matrix factorization and chemical mass balance in Izmir, Turkey. Sci Total Environ 390:109–123. doi: 10.1016/j.scitotenv.2007.08.059CrossRefGoogle Scholar
  202. Yorifuji T, Kashima S, Doi H (2016) Acute exposure to fine and coarse particulate matter and infant mortality in Tokyo, Japan (2002-2013). Sci Total Environ 551–552:66–72. doi: 10.1016/j.scitotenv.2016.01.211CrossRefGoogle Scholar
  203. Zakey AS, Abdel-Wahab MM, Pettersson JBC et al (2008) Seasonal and spatial variation of atmospheric particulate matter in a developing megacity, the greater Cairo, Egypt. Atmosfera 21:171–189Google Scholar
  204. Zhang F, Cheng H-r, Wang Z-w et al (2014) Fine particles (PM2.5) at a CAWNET background site in Central China: chemical compositions, seasonal variations and regional pollution events. Atmos Environ 86:193–202. doi: 10.1016/j.atmosenv.2013.12.008CrossRefGoogle Scholar
  205. Zhang R, Wang G, Guo S et al (2015) Formation of urban fine particulate matter. Chem Rev 115:3803–3855CrossRefGoogle Scholar
  206. Zhou X, Gao J, Wang T et al (2009) Measurement of black carbon aerosols near two Chinese megacities and the implications for improving emission inventories. Atmos Environ 43:3918–3924. doi: 10.1016/j.atmosenv.2009.04.062CrossRefGoogle Scholar
  207. Zhu X, Liu Y, Chen Y et al (2015) Maternal exposure to fine particulate matter (PM2.5) and pregnancy outcomes: a meta-analysis. Environ Sci Pollut Res 22:3383–3396. doi: 10.1007/s11356-014-3458-7CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratory of Air Pollution and Global Climate Change, Department of BotanyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations