Cadmium Bioaccumulation in Aquatic Oligochaetes Using a Biodynamic Model: A Review of Values of Physiological Parameters and Model Validation Using Laboratory and Field Bioaccumulation Data

  • Leire Méndez-FernándezEmail author
  • Pilar Rodriguez
  • Maite Martínez-Madrid
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 243)


This study reviews certain physiological digestive parameters in the literature that could be used to predict tissue residues in aquatic oligochaetes using the biodynamic model. Predictions were evaluated with independently measured Cd bioaccumulation data in sediment bioassays and field oligochaetes. The parameter review focused on three species commonly used in ecotoxicity testing and bioaccumulation studies: Tubifex tubifex (Tt), Limnodrilus hoffmeisteri (Lh) and Lumbriculus variegatus (Lv). Median Ingestion rates (g g−1 d−1, dw) at unpolluted conditions were 7.8 (Tt), 24.5 (Lh) and 11.5 (Lv), while results were lower (1.7–2.4) at polluted conditions. Assimilation efficiencies ranged from 3.4–19.6% (Tt), 2.7–16.1% (Lh), and 10.9–25.6% (Lv). The biodynamic model accurately predicted Cd tissue concentration in T. tubifex exposed to spiked sediments in laboratory bioassays. Comparisons of predicted vs. measured Cd tissue concentration in bioassays or field aquatic oligochaetes suggest that the biodynamic model can predict Cd tissue concentration within a factor of five in 81.3% of cases, across a range of measured tissue concentrations from 0.1 to 100 μg Cd g−1 dw. Predictions can be refined by using physiological parameter values that have been measured under varying environmental conditions (e.g. temperature, dissolved oxygen). The model can underestimate tissue concentration by up to one order of magnitude when worms are exposed to highly contaminated sediments. Contrarily, predictions overestimate tissue concentration by up to two orders of magnitude when the measured Cd < 0.1 μg g−1 dw, although in most cases these predictions do not fail bioaccumulation-based risk assessments, using a tissue threshold value of 1.5 μg Cd g−1 dw.


Biodynamic model Freshwater organisms Aquatic oligochaetes Tubifex tubifex Limnodrilus hoffmeisteri Lumbriculus variegatus Cadmium Bioaccumulation Tissue concentration Sediment Dietary uptake Physiological parameters Selective feeding Ingestion rates Assimilation efficiencies Elimination rates Organic content Temperature Oxygen Bioassays Spiked-sediments Chronic exposure Field data Model predictions Environmental risk assessment 



This investigation has been partially supported by the research project CGL2013-44655-R, sponsored by the Spanish Government, Ministry of Economy and Competitiveness (MINECO). Dr. Leire Méndez-Fernández was supported by a postdoctoral fellowship from the University of the Basque Country. We thank Alexandra Farrell for the English revision. We gratefully acknowledge two anonymous reviewers who helped to improve this manuscript with useful comments and suggestions. Finally, this work was possible thanks to all the “oligochaetologists” who have advanced the understanding of oligochaete biology.

Conflict of Interest The authors declare that they have no conflict of interest.

Supplementary material

978-3-319-58724-0_1_MOESM1_ESM.pdf (111 kb)
LMF et al_Supplementary Material (PDF 111 kb)


  1. Amiard-Triquet C (2009) Behavioral disturbances: the missing link between sub-organismal and supra-organismal responses to stress? Prospects based on aquatic research. Hum Ecol Risk Assess 15(1):87–110Google Scholar
  2. Ankley GT, Benoit DA, Balough JC, Reynoldson TB, Day KE, Hoke RA (1994) Evaluation of potential confounding factors in sediment toxicity tests with three freshwater benthic invertebrates. Environ Toxicol Chem 13:627–635Google Scholar
  3. Appleby AG, Brinkhurst RO (1970) Defecation rate of three tubificid oligochaetes found in the sediment of Toronto Harbour, Ontario. J Fish Res Bd Canada 27:1971–1982Google Scholar
  4. ASTM (2005) Standard test method for measuring the toxicity of sediments-associated contaminants with freshwater invertebrates. American Society for Testing and Materials—ASTM, Philadelphia, PA. E1706–05Google Scholar
  5. Aston RJ (1973) Field and experimental studies on the effects of a power station effluent on tubificidae (Oligochaeta, Annelida). Hydrobiologia 42:225–242Google Scholar
  6. Back H (1990) Epidermal uptake of Pb, Cd and Zn in tubificid worms. Oecologia 85:226–232Google Scholar
  7. Bettinetti R, Provini A (2002) Toxicity of 4-nonylphenol to Tubifex tubifex and Chironomus riparius in 28-day whole-sediment tests. Ecotoxicol Environ Saf 53:113–121Google Scholar
  8. Birtwell JK, Arthur DR (1980) The ecology of tubificids in the Thames Estuary with particular reference to Tubifex costatus (Claparède). In: Brinkhurst RO, Cook DG (eds) Aquatic oligochaete biology. Plenum Press, New York, pp 331–381Google Scholar
  9. Borgmann U, Norwood WP, Dixon DG (2008) Modelling bioaccumulation and toxicity of metal mixtures. Hum Ecol Risk Assess 14:266–289Google Scholar
  10. Bouchè ML, Habets F, Biagianti-Risbourg S, Vernet G (2000) Toxic effects and bioaccumulation of cadmium in the aquatic oligochaete Tubifex tubifex. Ecotoxicol Environ Saf 46:246–251Google Scholar
  11. Brinkhurst RO (1974) Factors mediating interspecific aggregation of tubificid oligochaetes. J Fish Res Bd Can 31:460–462Google Scholar
  12. Brinkhurst RO, Jamieson BGM (1971) The aquatic oligochaeta of the world. Oliver & Boyd, Edinburgh, p 860Google Scholar
  13. Brinkhurst RO, Austin MJ (1979) Assimilation by aquatic Oligochaeta. Int Rev Gesamten Hydrobiol 64:863–868Google Scholar
  14. Brinkhurst RO, Chua KE, Kaushik NK (1972) Interspecific interactions and selective feeding by tubificid oligochaetes. Limnol Oceanogr 17:122–133Google Scholar
  15. Cammen LM (1980) Ingestion rate: an empirical model for aquatic deposit feeders and detritivores. Oecologia 44:303–310Google Scholar
  16. Casado-Martinez MC, Smith BD, DelValls TA, Rainbow PS (2009a) Pathways of trace metal uptake in the lugworm Arenicola marina. Aquat Toxicol 92:9–17Google Scholar
  17. Casado-Martinez MC, Smith BD, DelValls TA, Luoma SN, Rainbow PS (2009b) Biodynamic modelling and the prediction of accumulated trace metal concentrations in the polychaete Arenicola marina. Environ Pollut 157:2743–2750Google Scholar
  18. Camusso M, Polesello S, Valsecchi S, Vignati DAL (2012) Importance of dietary uptake of trace elements in the benthic deposit-feeding Lumbriculus variegatus. Trends Anal Chem 36:103–112Google Scholar
  19. Casado-Martinez MC, Smith BD, Luoma SN, Rainbow PS (2010a) Bioaccumulation of arsenic from water and sediment by a deposit-feeding polychaete Arenicola marina: A biodynamic modelling approach. Aquat Toxicol 98:34–43Google Scholar
  20. Casado-Martínez MC, Smith BD, Luoma SN, Rainbow PS (2010b) Metal toxicity in sediment-dwelling polychaete: Threshold body concentrations or overwhelming accumulation rates? Environ Pollut 158:3071–3076Google Scholar
  21. Chapman PM (2001) Utility and relevance of aquatic oligochaetes in Ecological Risk Assessment. Hydrobiologia 463:149–169Google Scholar
  22. Chekanovskaya OV (1962) Aquatic Oligochaeta of the USSRR. Akademiya Nauk SSRR, Moscow, USSRGoogle Scholar
  23. Ciutat A, Anschutz P, Gerino M, Boudou A (2005) Effects of bioturbation on cadmium transfer and distribution into freshwater sediment. Environ Toxicol Chem 24:1048–1058Google Scholar
  24. Coler RA, Gunner HB, Zuckermann BM (1968) Selective feeding of tubificids on bacteria. Nature 216:1143–1144Google Scholar
  25. Conover RJ (1966) Assimilation of organic matter by zooplankton. Limnol Oceanogr 11:338–345Google Scholar
  26. Curry JP, Schmidt O (2007) The feeding ecology of earthworms—a review. Pedobiologia 50:463–477Google Scholar
  27. Delmotte S, Meysman FJR, Ciutat A, Boudou A, Sauvage S, Gerino M (2007) Cadmium transport in sediments by tubificid bioturbation: an assessment of model complexity. Geochim Cosmochim Acta 71:844–862Google Scholar
  28. De Jonge M, Tipping E, Lofts S, Bervoets L, Blust R (2013) The use of invertebrate body burdens to predict ecological effects of metal mixtures in mining-impacted waters. Aquat Toxicol 142:294–302Google Scholar
  29. DEQ (2007) Guidance for assessing bioaccumulative chemicals of concern in sediment. Oregon Department of Environmental Quality, Cleanup Program, State of Oregon January 31, 2007; updated April 3, 2007Google Scholar
  30. Egeler P, Römbke J (2007) Oligochaeta (microdrile) worms in the environmental risk assessment of pesticides in the European Union. Acta Hydrobiol Sin 31(Suppl):151–162Google Scholar
  31. Fend SV, Liu Y, Steinmann D, Giere O, Barton HA, Luiszer F, Erséus C (2016) Limnodrilus sulphurensis n. sp., from a sulfur cave in Colorado, USA, with notes on the morphologically similar L. profundicola (Clitellata, Naididae, Tubificinae). Zootaxa 4066:451–468Google Scholar
  32. Fisher JA, Beeton AM (1975) The effect of dissolved oxygen on the burrowing behaviour of Limnodrilus hoffmeisteri (Oligochaeta). Hydrobiologia 47:273–290Google Scholar
  33. Gnaiger E, Staudigl J (1987) Aerobic metabolism and physiological responses of aquatic oligochaetes to environmental anoxia- Heat dissipation, oxygen consumption, feeding and defecation. Physiol Zool 60:659–678Google Scholar
  34. Giere O, Pfannkuche O (1982) Biology and ecology of marine Oligochaeta, a review. In: Barnes M (ed) Oceanography and marine biology: an annual review, 20. Aberdeen University Press, Aberdeen, pp 173–308Google Scholar
  35. Gillis PL, Diener LC, Reynoldson TB, Dixon DG (2002) Cadmium induced production of a metallothionein-like protein in Tubifex tubifex (Oligochaeta) and Chironomus riparius (Diptera): correlation with whole body (reproduction and growth) endpoints of toxicity. Environ Toxicol Chem 21:1836–1844Google Scholar
  36. Gillis PL, Dixon DG, Borgmann U, Reynoldson TB (2004) Uptake and depuration of cadmium, nickel, and lead in laboratory-exposed Tubifex tubifex and corresponding changes in the concentration of a metallothionein-like protein. Environ Toxicol Chem 23:76–78Google Scholar
  37. Hare L, Tessier A, Warren L (2001) Cadmium accumulation by invertebrates living at the sediment-water interface. Environ Toxicol Chem 20:880–889Google Scholar
  38. Harper RM, Fry JC, Learner MA (1981a) A bacteriological investigation to elucidate the feeding biology of Nais variabilis (Oligochaeta, Naididae). Freshw Biol 11:227–237Google Scholar
  39. Harper RM, Fry JC, Learner MA (1981b) Digestion of bacteria by Nais variabilis (Oligochaeta) as established by autoradiography. Oikos 36:211–218Google Scholar
  40. Hernández M, Egea JR (1987) Heavy metal contamination in Guadalix River (in Madrid’s industrial belt area). II. Heavy metals in sediments and their bioassimilation by tubificids. Heavy Metal Environ Int Conf 2:172–174Google Scholar
  41. Hunting ER, Whatley MH, van der Geest HG, Mulder C, Kraak MHS, Breure AM, Admiraal W (2012) Invertebrate footprints on detritus processing, bacterial community structure, and spatiotemporal redox profiles. Freshwater Sci 31:724–732Google Scholar
  42. Juget J (1979) La texture granulometrique des sediments et le regime alimentaire des oligochètes limnicoles. Hydrobiologia 65:145–154Google Scholar
  43. Karickhoff SW, Morris SW (1985) Impact of tubificid oligochaetes on pollutant transport in bottom sediments. Environ Sci Technol 19:51–56Google Scholar
  44. Keilty TJ, White DS, Landrum PF (1988) Short-term lethality and sediment avoidance assays with endrin-contaminated sediment and two oligochaetes from Lake Michigan. Arch Environ Contam Toxicol 17:95–102Google Scholar
  45. Klump JV, Krezoski JR, Smith ME, Kaster JL (1987) Dual tracer studies of the assimilation of an organic contaminant from sediments by deposit feeding oligochaetes. Can J Fish Aquat Sci 44:1574–1583Google Scholar
  46. Kosiorek D (1974) Development of Tubifex tubifex Müll. in experimental culture. Pol Arch Hydrobiol 21:411–422Google Scholar
  47. Krantzberg G (1994) Spatial and temporal variability in metal bioavailability and toxicity of sediment from Hamilton Harbour, Lake Ontario. Environ Toxicol Chem 13:1685–1698Google Scholar
  48. Kukkonen J, Landrum PF (1995) Measuring assimilation efficiencies for sediment-bound PAH and PCB congeners by benthic organisms. Aquat Toxicol 32:75–92Google Scholar
  49. Lawrence MAM, Davies NA, Edwards PA, Taylor MG, Simkiss K (2000) Can adsorption isotherms predict sediment bioavailability? Chem 41:1091–1100Google Scholar
  50. Leppänen M (1995) The role of feeding behaviour in bioaccumulation of organic chemicals in benthic organisms. Ann Zool Fenn 32:247–255Google Scholar
  51. Leppänen MT, Kukkonen JVK (1998) Factors affecting feeding rate, reproduction and growth of an oligochaete Lumbriculus variegatus. Hydrobiologia 377:183–194Google Scholar
  52. Lobo H, Espindola ELG (2014) Branchiura sowerbyi Beddard, 1892 (Oligochaeta: Naididae) as a test species in ecotoxicology bioassays: a review. Zoosymposia 9:059–069Google Scholar
  53. Lopez GR, Levinton JS (1987) Ecology of deposit-feeding animals in marine sediments. Q Rev Biol 62:235–260Google Scholar
  54. Lu X, Reible DD, Fleeger JW (2004) Bioavailability and assimilation of sediment-associated benzo[a]pyrene by Ilyodrilus templetoni (Oligochaeta). Environ Toxicol Chem 23:57–64Google Scholar
  55. Luoma SN, Rainbow PS (2005) Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ Sci Technol 39:1921–1931Google Scholar
  56. Maestre Z, Martinez-Madrid M, Rodriguez P (2009) Monitoring the sensitivity of the oligochaete Tubifex tubifex in laboratory cultures using three toxicants. Ecotoxicol Environ Saf 72:2083–2089Google Scholar
  57. MacDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31Google Scholar
  58. Martinez-Madrid M, Rodriguez P, Pérez-Iglesias JI, Navarro E (1999) Sediment toxicity bioassays for assessment of contaminated sites in the Nervión River (Northern Spain). 2. Tubifex tubifex reproduction sediment bioassay. Ecotoxicology 8:111–124Google Scholar
  59. McCall PL, Fischer JB (1980) Effects of tubificid oligochaetes on physical and chemical properties of lake Erie sediments. In: Brinkhurst RO, Cook DG (eds) Aquatic oligochaete biology. Plenum Press, New York, pp 253–317Google Scholar
  60. Matisoff G, Wang XS, McCall PL (1999) Biological redistribution of lake sediments by tubificid oligochaetes: Branchiura sowerbyi and Limnodrilus hoffmeisteri/Tubifex tubifex. J Great Lakes Res 25:205–219Google Scholar
  61. Meller M, Egeler P, Römbke J, Schallnass H, Nagel R, Streit B (1998) Short-term toxicity of lindane, hexachlorobenzene and copper sulfate to tubificid sludgeworms (Oligochaeta) in artifical media. Ecotoxicol Environ Saf 39:10–20Google Scholar
  62. Méndez-Fernández L, Martínez-Madrid M, Rodriguez P (2013) Toxicity and critical body residues of Cd, Cu and Cr in the aquatic oligochaete Tubifex tubifex (Müller) based on lethal and sublethal effects. Ecotoxicology 22:1445–1460Google Scholar
  63. Méndez-Fernández L, De Jonge M, Bervoets L (2014) Influences of sediment geochemistry on metal accumulation rates and toxicity in the aquatic oligochaete Tubifex tubifex. Aquat Toxicol 157:109–119Google Scholar
  64. Méndez-Fernández L, Rodriguez P, Martínez-Madrid M (2015) Sediment toxicity and bioaccumulation assessment in abandoned Cu and Hg mining areas of the Nalón River basin (Spain). Arch Environ Contam Toxicol 68:107–123Google Scholar
  65. Mermillod-Blondin F, Gérino M, Degrange V, Lensi R, Chassé JL, Rard M, Châtelliers MCD (2001) Testing the functional redundancy of Limnodrilus and Tubifex (Oligochaeta, Tubificidae) in hyporheic sediments: an experimental study in microcosms. Can J Fish Aquat Sci 58:1747–1759Google Scholar
  66. Mermillod-Blondin F, Nogaro G, Datry T, Malard F, Gibert J (2005) Do tubificid worms influence the fate of organic matter and pollutants in stormwater sediments? Environ Pollut 134:57–69Google Scholar
  67. Milbrink G (1993) Evidence of mutualistic interaction in freshwater oligochaete communities. Oikos 68:317–322Google Scholar
  68. Millward RN, Fleeger JW, Reible DD, Keteles KA, Cuningham BP, Zhang L (2001) Pyrene bioaccumulation, effects of pyrene exposure on particle size selection, and fecal pyrene content I the oligochaete Limnodrilus hoffmeisteri (Tubificidae, Oligochaeta). Environ Toxicol Chem 20:1359–1366Google Scholar
  69. Moore JW (1979) Influence of food availability and other factor on the composition, structure and density on a subartic population of benthic invertebrates. Hydrobiologia 62:215–223Google Scholar
  70. Moore JW, Ramamoorthy S (1984) Cadmiun. In: Heavy metals in natural waters. Applied monitoring and impact assessment. Springer series on environmental management. Springer New York, pp. 28–57Google Scholar
  71. Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: In: Page AL et al. (ed) Methods of soil analysis, Part 2. 2nd edn, Edn Agronomy. 9:961–1010. Am Soc of Agron, Inc Madison, WIGoogle Scholar
  72. Newman MC, Unger MA (2003) Fundamentals of ecotoxicology, 2nd edn. Lewis, Boca Raton, FLGoogle Scholar
  73. Nogaro G, Mermillod-Blondin F, Valett MH, François-Carcaillet F, Gaudet JP, Lafont M, Gibert J (2009) Ecosystem engineering at the sediment–water interface: bioturbation and consumer-substrate interaction. Oecologia 161:125–138Google Scholar
  74. Norwood WP, Borgmann U, Dixon DG (2007) Interactive effects of metals in mixtures on bioaccumulation in the amphipod Hyalella azteca. Aquat Toxicol 84:255–267Google Scholar
  75. OECD (2007) OECD Test Guideline 225. Sediment–water Lumbriculus toxicity test using spiked sediment. Organization for economic coordination and development, OECD, ParisGoogle Scholar
  76. OECD (2008) OECD Test Guideline 315. Bioaccumulation in sediment-dwelling benthic oligochaetes. Organization for Economic Coordination and Development, ParisGoogle Scholar
  77. Penry DL (1998) Applications of efficiency measurements in bioaccumulation studies: Definitions, clarifications, and a critique of methods. Environ Toxicol Chem 17:1633–1639Google Scholar
  78. Poddubnaya TL (1980) Characteristics of the life cycle of Tubificidae and Naididae. In: Kothekar VS (ed) Aquatic Oligochaeta worms. Taxonomy, ecology and faunistic studies in the USSR. Amerind Publ Co, New Delhi, pp 97–104Google Scholar
  79. Protano C, Zinnà L, Giampaoli S, Romano-Spica V, Chiavarini S, Vitali M (2014) Heavy metal pollution and potential ecological risks in rivers: A case study from Southern Italy. Bull Environ Contam Toxicol 92:75–80Google Scholar
  80. Rainbow PS (2002) Trace metal concentrations in aquatic invertebrates: why and so what? Environ Pollut 120:497–507Google Scholar
  81. Rainbow PS, Smith BD, Luoma SN (2009) Biodyamic modelling and the prediction of Ag,Cd and Zn accumulation from solution and sediment by the polychaete Nereis diversicolor. Mar Ecol Prog Ser 390:145–155Google Scholar
  82. Ramskov T, Amalie T, Marie-Noële C, Henriette S (2015) Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete – Part I: relative importance of water and sediment as exposure routes. Aquat Toxicol 164:81–91Google Scholar
  83. Reinfelder JR, Fisher NS, Luoma SN, Nichols JW, Wang WX (1998) Trace element trophic transfer in aquatic organisms: a critique of the kinetic model approach. Sci Total Environ 219:117–135Google Scholar
  84. Reynoldson TB (1987) Interactions between sediment contaminants and benthic organisms. Hydrobiologia 149:53–66Google Scholar
  85. Reynoldson TB, Rodriguez P, Martinez-Madrid M (1996) A comparison of reproduction, growth and acute toxicity in two populations of Tubifex tubifex (Müller, 1774) from the North American Great Lakes and Northern Spain. Hydrobiologia 334:199–206Google Scholar
  86. Rodriguez P, Reynoldson TB (2011) The pollution biology of aquatic oligochaetes. Springer, DordrechtGoogle Scholar
  87. Rodriguez P, Martinez-Madrid M, Arrate JA, Navarro E (2001) Selective feeding by the aquatic oligochaete Tubifex tubifex (Tubificidae, Clitellata). Hydrobiologia 463:133–140Google Scholar
  88. Rodriguez P, Arrate J, Martinez-Madrid M, Reynoldson TB, Schumacher V, Viguri J (2006) Toxicity of Santander Bay sediments to the euryhaline freshwater oligochaete Limnodrilus hoffmeisteri. Hydrobiologia 564:157–169Google Scholar
  89. Salminen R (Chief-editor), Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W (2005). Geochemical Atlas of Europe. Part 1: background information, methodology and maps. Geological Survey of Finland, EspooGoogle Scholar
  90. Say PJ, Giani N (1981) The Riou Mort, a tributary to the river Lot polluted by heavy metals. II. Accumulation of zinc by oligochaetes and chironomids. Acta Oecol 2:339–355Google Scholar
  91. Schöttler U (1978) The influence of anaerobiosis on the levels of adenosine nucleotides and some glycolotic metabolites in Tubifex sp. (Annelida, Oligochaeta). Comp Biochem Physiol B Biochem Mol Biol 61:29–32Google Scholar
  92. Singh RK, Chavan SL, Sapkale PH (2007) Heavy metal concentrations in water, sediments and body tissues of red worm (Tubifex spp.) collected from natural habitats in Mumbai, India. Environ Monit Assess 129:471–481Google Scholar
  93. Sokolova IM, Lannig G (2008) Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implication of global climate change. Clim Res 37:181–201Google Scholar
  94. Steen Redeker E, Blust R (2004) Accumulation and toxicity of cadmium in the aquatic oligochaete Tubifex tubifex: a kinetic modelling approach. Environ Sci Technol 38:537–543Google Scholar
  95. Steen Redeker E, Bervoets L, Blust R (2004) Dynamic model for the accumulation of cadmium and zinc from water and sediment by the aquatic oligochaete Tubifex tubifex. Environ Sci Technol 38:6193–6200Google Scholar
  96. Tevesz MJS, Soster FM, McCall PL (1980) The effects of size-selective feeding by oligochaetes on the physical properties of river sediments. J Sediment Petrol 50:561–568Google Scholar
  97. USEPA (2000) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates, 2nd edn. The United States Environmental Protection Agency, EPA 600/R-99/064Google Scholar
  98. Verdonschot PFM (1981) Some notes on the ecology of aquatic oligochaetes in the Delta Region of the Netherlands. Arch Hydrobiol 92:53–70Google Scholar
  99. Verdonschot PFM (2006) Beyond masses and blooms: the indicative value of oligochaetes. Hydrobiologia 564:127–142Google Scholar
  100. Volpers M, Neumann D (2005) Tolerance of two tubificid species (Tubifex tubifex and Limnodrilus hoffmeisteri) to hypoxic and sulfidic conditions in novel, long-term experiments. Arch Hydrobiol 164:13–38Google Scholar
  101. Wang WX, Fisher NS (1996) Assimilation of trace elements and carbon by the mussel Mytilus edulis: effects of food composition. Limnol Oceanogr 147:197–207Google Scholar
  102. Wang WX, Fisher NS (1999) Assimilation efficiencies of chemical contaminants in aquatic invertebrates: a synthesis. Environ Toxicol Chem 18:2034–2045Google Scholar
  103. Warren LA, Tessier A, Hare L (1998) Modelling cadmium accumulation by benthic invertebrates in situ: The relative contributions of sediment and overlying water reservoirs to organism cadmium concentrations. Limnol Oceanogr 43:1442–1454Google Scholar
  104. Wavre H, Brinkhurst RO (1971) Interactions between some tubificid oligochaete and bacteria found in the sediments of Toronto Harbour, Ontario. J Fish Res Bd Can 28:335–341Google Scholar
  105. Weis JS (2014) Physiological, developmental and behavioral effects of marine pollution. Springer, DordrechtGoogle Scholar
  106. White DS, Keilty TJ (1988) Burrowing avoidance assays of contaminated Detroit River sediments, using the freshwater oligochaete Stylodrilus heringianus (Lumbriculidae). Arch Environ Contam Toxicol 17:673–681Google Scholar
  107. White DS, Klahr PC, Robbins JA (1987) Effects of temperature and density on sediment reworking by Stylodrilus heringianus (Oligochaeta: Lumbriculidae). J Great Lakes Res 13:147–156Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Leire Méndez-Fernández
    • 1
    Email author
  • Pilar Rodriguez
    • 1
  • Maite Martínez-Madrid
    • 2
  1. 1.Department of Zoology and Animal Cell BiologyUniversity of the Basque CountryBilbaoSpain
  2. 2.Department of Genetics, Physical Anthropology and Animal PhysiologyUniversity of the Basque CountryBilbaoSpain

Personalised recommendations