Advertisement

Review of the Ecotoxicological Properties of the Methylenedianiline Substances

  • T. Schupp
  • H. Allmendinger
  • B. T. A. Bossuyt
  • B. Hidding
  • B. Tury
  • R. J. West
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 241)

Abstract

Concerning chronic toxicity, D. magna is the most sensitive species tested against MDA aquatic exposures, with a 21 days-NOEC of 0.00525 mg/L. Exposure of daphnids takes place via the aquatic phase. Other species of the same phylum (Arthropoda) appear to be less sensitive albeit with exposures via soil or sediment, with a 28 days-NOEC of 562 mg/kg d. w. soil (F. candida) and 41.3 mg/kg d. w. sediment (Hyalella azteca), for reproductive and survival endpoints, respectively. Also for acute toxicity, D. magna is more sensitive than the other species, with an 48 h-EC50 that spreads over two orders of magnitude, ranging from 0.019 to 2.7 mg/L. Fish show a more uniform reaction to MDA, with 96 h-LC50 ranging from about 20 to 60 mg/L; chronic data for fish are not available. Acute toxicity data for algae and cyanobacteria are in the range of 1–10 mg/L; based on growth rate, the 72 h-NOECr or ErC10 of MDA to algae is 0.3–9.3 mg/L.

For sediment organisms, the black worm L. variegatus shows the highest sensitivity against MDA with a NOEC between ≤3.75 mg/kg and 30 mg/kg d. w., followed by the amphipod H. azteca. The lower sensitivity of L. variegatus in the second study compared to the first study is obviously attributable to the different feeding regimes (semi-continuous feeding against pre-spiked sediment). One argument might be that semi-continuous feeding allows the organisms to avoid the contaminated food. However, a change from semi-continuous feeding to sediment pre-spiked with nettle powder (Urtica sp.) results in an earlier and much stronger increase in ammonia concentration in the system. This became apparent after both studies on the blackworm were finalized. The ammonia 96 h-EC50 for the blackworm is 0.69 mg/L at pH = 8.2, and the 96 h-EC10 at pH = 8.2 is 0.33 mg/L (Hickey and Vickers, Arch Environ Contam Toxicol 26:292–298, 1994). As a result, the lower NOEC and LOEC in the second study with L. variegatus are probably attributable to interference by ammonia.

MDA binds irreversibly to soil and sediment which may explain the general, but not uniform lower sensitivity of soil and sediment organisms against aquatic organisms. However, species with intense soil or sediment contact (L. variegatus and E. fetida) show in general lower NOEC values than those organisms with less direct contact (3.75 and 11.2 mg/kg d. w., respectively). On the one hand it may be hypothesized that this intense contact to soil bound MDA is one reason for the higher sensitivity; on the other hand, metabolic capacity against MDA of the organisms tested is unknown at this point in time and might as well explain differences in species sensitivity. For plants there are only acute data available, and in respect to acute toxicity L. sativa is more sensitive to MDA than E. fetida.

Limited aquatic data available so far do not indicate that the toxicity of pMDA is different to MDA. In addition, the limited set of data generated with the marine M. macrocopa (crustacean), N. fustulum (diatom) and V. fisheri (bacteria) do not indicate that sea water organisms are more sensitive to MDA than fresh water organisms.

In mammals, MDA is unlikely to interact with the endocrine sexual system; interaction with the adrenergic system cannot be ruled out, and effects of MDA on the thyroid hormone system have been demonstrated. MDA inhibits the thyroid peroxidase which might contribute to the thyroid gland tumors observed in chronic studies with rats and mice. Some anti-androgenic activity in in vitro studies with yeast cell did not prevail in in vivo studies with rats and mice.

Keywords

Methylene dianiline MDA Ecotoxicity PMDA Diaminodiphenylmethane Methylene dianiline Methylene-4-4′-dianiline MDA Polymeric methylene dianiline PMDA Primary aromatic amines Aquatic toxicity Sediment toxicity Terrestrial toxicity Diaminodiphenylmethane 

Notes

Acknowledgement

This work was sponsored by the International Isocyanate Institute, Inc. The views presented in this paper are those of the authors and not necessarily those of the sponsor.

In addition we would like to acknowledge the useful input and translation of the summary provided by S. Shen (Dow Chemical (China) Investment Limited Company, Shanghai, China).

Conflict of interest: T. Schupp worked for BASF, a MDA-producer, until 2012; H. Allmendinger is a consultant for Currenta GmbH & Co. OHG; B.T.A. Bossuyt is working for Huntsman, a MDA-producer; B. Hidding is working for BASF, a MDA-producer; B. Tury is a consultant for International Isocyanates, Inc.; R.J. West is working for Dow Chemical Company, a MDA-producer.

References

  1. Alport DC, Gilbert DS, Outterside SM (eds) (2003) MDI and TDI: safety, health, and the environment—a source book and practical guide. Wiley, West Sussex, EnglandGoogle Scholar
  2. Bringmann G, Meinck F (1964) Wassertoxikologische Beurteilung von Industrieabwässern. Gesund Ing 85(8):229–236Google Scholar
  3. Carvajal-Diaz J (2015) IHS chemical economics handbook: aniline. IHS Inc, Englewood, CO, USAGoogle Scholar
  4. Caspers N, Hamburger B, Kanne R, Klebert W (1986) Ecotoxicity of toluenediisocyanate (TDI), diphenylmethanediisocyanate (MDI), toluenediamine (TDA), diphenylmethanediamine (MDA). International Isocyanate Institute, Manchester, UK, III Report No. 10417Google Scholar
  5. Caspers N, Mueller N (1992) Untersuchungen zum oekologischen Verhalten von Phenylbase MDA 70. Bayer Pharma AG, Wuppertal, Germany, Pruefnummer: 281 A/91Google Scholar
  6. Ciba-Geigy (1982) MDA: three months toxicity study in rats (drinking water). Ciba-Geigy Ltd, Basle, Switzerland, Finalized report TK 10504Google Scholar
  7. CITI (1992) 4-Methylphenylene-1,3-diamine (CAS-No. 95-80-7) & 4,4′-diaminodiphenylmethane (CAS-No. 101-77-8). [Acute toxicity, biodegradability and bioaccumulation data]. In: Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan. Chemical Inspection & Testing Institute Japan, Japan Chemical Industry Ecology-Toxicology & Information Center, Tokyo, pp 3–24 & 4–6. ISBN: 4-89074-101-1Google Scholar
  8. Colón D, Weber EJ, Baughman GL (2002) Sediment-associated reactions of aromatic amines. 2. QSAR development. Environ Sci Technol 36:2443–2450CrossRefGoogle Scholar
  9. Cowen WF, Gastinger AM, Spanier CE, Buckel JR, Bailey RE (1996) Sorption and microbial degradation of tuloene diamines and methylene dianiline in soil under aerobic and anaerobic conditions. International Isocyanate Institute, Manchester, UK, III Report No. 11230Google Scholar
  10. Cowen WF, Gastinger AM, Spanier CE, Buckel JR, Bailey RE (1998) Sorption and microbial degradation of toluenediamines and methylendianiline in soil under aerobic and anaerobic conditions. Environ Sci Technol 32:598–603CrossRefGoogle Scholar
  11. DHHS NTP (1983) NTP technical report on the carcinogenesis studies of 4,4′-methylenedianiline dihydrochloride (CAS No. 13552-44-8) in F344/N rats and B6C3F1 mice (drinking water studies). US Department of Health and Human Services, National Toxicology Program. PB83-238824; NTP-TR-248; NIH Publication no. 83-2504. Research Triangle Park, NCGoogle Scholar
  12. ECHA (2014a) Formaldehyde, oligomeric reaction products with aniline [REACH Dossier]. European Chemicals Agency, Helsinki, Finland, http://echa.europa.eu/registration-dossier/-/registered-dossier/14114. Accessed 21 June 2014Google Scholar
  13. ECHA (2014b) 4,4′-Methylenedianiline [REACh Dossier]. European Chemicals Agency, Helsinki, Finland, http://echa.europa.eu/registration-dossier/-/registered-dossier/15201. Accessed 21 June 2014Google Scholar
  14. Egeler P, Ginzburg N (2001) The toxicity of 4,4′-methylenedianiline (MDA) to Lumbriculus variegatus. International Isocyanate Institute, Manchester, UK, III Report No. 11436. Robust study summary available at: http://echa.europa.eu/registration-dossier/-/registered-dossier/15201/6/3/?documentUUID=cac3546d-bce8-469f-8fb8-9ec304e91916. Accessed 13 May 2015Google Scholar
  15. Egeler P (2002) The toxicity of MDA to Lumbriculus variegatus: second study. International Isocyanate Institute, Manchester, UK, III Report No. 11459. Robust study summary available at: http://echa.europa.eu/registration-dossier/-/registered-dossier/15201/6/3/?documentUUID=fc0116d2-f5e1-4510-970a-766bcde6ec6f. Accessed 13 May 2015Google Scholar
  16. Egeler P (2004) Ammonium chloride: a study on the toxicity to the sediment dweller Hyalella azteca. International Isocyanate Institute, Manchester, UK, III Report No. 11499Google Scholar
  17. Egeler P, Gilberg D (2005a) The toxicity of MDA to Chironomus riparius. International Isocyanate Institute, Manchester, UK, Report No. 11517. Robust study summary available at: http://echa.europa.eu/registration-dossier/-/registered-dossier/15201/6/3/?documentUUID=3b01e515-e9ce-457b-901e-cf317c876e59. Accessed 13 May 2015Google Scholar
  18. Egeler P, Gilberg D (2005b) The toxicity of MDA to Hyalella azteca. International Isocyanate Institute, Manchester, UK, III Report No. 11518. Robust study summary available at: http://echa.europa.eu/registration-dossier/-/registered-dossier/15201/6/3/?documentUUID=a5ed19f2-a4f9-48cf-8a9c-53a06392ef81. Accessed 13 May 2015Google Scholar
  19. Egeler P, Gilberg D (2005c) The optimisation of feeding conditions in sediment tests. International Isocyanate Institute, Manchester, UK, III Report No. 11510Google Scholar
  20. DIN (1980) German Standard Methods for the Examination of Water, Waste Water And Sludge—bio-assays (Group L, No. 38412–12), determination of the effect of waste water and industrial effluences on fish, fish-test (l20). German Institute for Standardization, Berlin, GermanyGoogle Scholar
  21. European Union (2001) 4,4′-Methylenedianiline, CAS-No. 101-77-9, EINECS-No. 202-974-4. European Union risk assessment report, volume 9. Office for Official Publications of the European Union, Luxembourg. ISBN 92-894-0484-1Google Scholar
  22. Freiberger A (1994) Irreversible inhibition of thyroid peroxidase (TPO) by thyreotoxic aromatic amines in vitro. Naunyn-Schmiedeberghs Arch Pharmacol 349(S6):Abs440Google Scholar
  23. Fujiwara K (1981) Aquatic life study phase II, part 2. Accumulation of MDI, TDI, MDA and TDA in fish and their toxicity. International Isocyanate Institute, Manchester, UK, III Report No. 10019Google Scholar
  24. Fujiwara K (1982) Studies on the effect of TDA and MDA on plankton—Daphnia. International Isocyanate Institute, Manchester, UK, III Report No. 10118, Robust study summary available at: http://echa.europa.eu/registration-dossier/-/registered-dossier/15201/6/2/4. Accessed 13 May 2015Google Scholar
  25. Gericke G (2010) Stabilitaet von MDA in Gegenwart von Nitrit bei pH=6. Analysenbericht A20102055. Elastogran GmbH, Elastogranstrasse 60, D-49448 Lemfoerde, GermanyGoogle Scholar
  26. Government of Canada (2014) Draft screening assessment for methylenediphenyl diisocyanates and methylenediphenyl diamines. Government of Canada, Chemicals Management Plan Division, Gatineau, Quebec, Canada. http://www.chemicalsubstanceschimiques.gc.ca/group/diisocyanate-eng.php
  27. Hickey CW, Vickers ML (1994) Toxicity of ammonia to nine native New Zealand freshwater invertebrate species. Arch Environ Contam Toxicol 26:292–298CrossRefGoogle Scholar
  28. Hurlbut J, Schafe EW, Bowle WA (1983) The acute oral toxicity, repellency, and hazard potential of 998 chemicals to one or more species of wild and domestic birds. Arch Environ Contam Toxicol 12:355–382CrossRefGoogle Scholar
  29. ISO 9509 (2006) Water quality—toxicity test for assessing the inhibition of nitrification of activated sludge microorganisms (ISO 9509:2006). http://www.beuth.de/de/norm/din-en-iso-9509/89012595. Accessed 11 Mar 2016
  30. Jaeger R, Collins MA (2011) Assessment of MDA effects from toxicity studies with regard to endocrine modulation. Global Isocyanates Ltd, Manchester, UK, GIL Report No. 2011/CGoogle Scholar
  31. Jaeger R, West RJ, Collins MA (2012) Assessment of MDA effects from toxicity studies with regard to endocrine modulation. Naunyn-Schmiedeberghs Arch Pharmacol 385(S1):Abs. 176Google Scholar
  32. Kaiser KLE, Palabrica VS (1991) Photobacterium phosphoreum toxicity data index. Water Pollut Res J Can 26(3):361–431Google Scholar
  33. Kim M-N, Jang J-C, Lee I-M, Lee H-S, Yoon J-S (2002) Toxicity and biodegradation of diamines. J Environ Sci Health B37(1):53–64CrossRefGoogle Scholar
  34. Kolle SN, Landsiedel R (2010a) Oligomeric MDA: screening for potential androgenic and anti-androgenic activity. International Isocyanate Institute, Manchester, UK, III Report No. 11597Google Scholar
  35. Kolle SN, Landsiedel R (2010b) Oligomeric MDA: screening for potential estrogenic and anti-estrofiggenic activity. International Isocyanate Institute, Manchester, UK, III Report No. 11598Google Scholar
  36. Kolle SN, Landsiedel R (2010c) 4,4′-MDA: screening for potential androgenic and anti-androgenic activity. International Isocyanate Institute, Manchester, UK, III Report No. 11603Google Scholar
  37. Kolle SN, Landsiedel R (2010d) 4,4′-MDA: screening for potential estrogenic and anti-estrogenic activity. International Isocyanate Institute, Manchester, UK, III Report No. 11604Google Scholar
  38. Li H, Lee LS, Jafvert CT, Graveel JG (2000) Effect of substitution on irreversible binding and transformation of aromatic amines with soils in aqueous systems. Environ Sci Technol 34:3674–3680CrossRefGoogle Scholar
  39. MacNab JI (1999) Determination of physical properties of 4,4′-MDA. International Isocyanate Institute, Manchester, UK, III Report No. 11330. Robust study summary available at: http://echa.europa.eu/registration-dossier/-/registered-dossier/15201/6/2/4. Accessed 13 May 2015Google Scholar
  40. Martelli A, Carrozzino R, Mattioli F, Brambilla G (2002) DNA damage induced by 4,4′-methylenedianiline in primary cultures of hepatocytes and thyreocytes from rats and humans. Toxicol Appl Pharmacol 182(3):219–225CrossRefGoogle Scholar
  41. Mitsubishi Chemical Safety Institute (2008a) Acute toxicity of 4,4′-MDA to Selenastrum capricornutum. International Isocyanate Institute, Manchester, UK, III Report No. 11545. Robust study summary available at: http://apps.echa.europa.eu/registered/data/dossiers/DISS-9c7b34e3-c5c4-7414-e044-00144f67d249/AGGR-acfea30d-ad97-4274-b8ce-aabd18d556da_DISS-9c7b34e3-c5c4-7414-e044-00144f67d249.html. Accessed 13 May 2015Google Scholar
  42. Mitsubishi Chemical Safety Institute (2008b) Acute toxicity of 4,4′-MDA to Daphnia magna. International Isocyanate Institute, Manchester, UK, III Report No. 11546. Robust study summary available at: http://echa.europa.eu/registration-dossier/-/registered-dossier/15201/6/2/6. Accessed 13 May 2015Google Scholar
  43. Mitsubishi Chemical Safety Institute (2008c) Chronic toxicity of 4,4′-MDA to Daphnia magna. International Isocyanate Institute, Manchester, UK, III Report No. 11547. Robust study summary available at: http://echa.europa.eu/registration-dossier/-/registered-dossier/15201/6/2/5. Accessed 13 May 2015Google Scholar
  44. Mitsubishi Chemical Safety Institute (2008d) Acute toxicity of 4,4′-MDA to Oryzias latipes. International Isocyanate Institute, Manchester, UK, III Report No. 11548. Robust study summary available at: http://echa.europa.eu/registration-dossier/-/registered-dossier/15201/6/2/2/?documentUUID=194ccb6b-2b28-4265-a6f8-d65c93a0b53b. Accessed 13 May 2015Google Scholar
  45. Moser T, Hamberge R (2012) 4,4′-MDA: reproduction toxicity to the earthworm Eisenia fetida. International Isocyanate Institute, Manchester, UK, III Report no. 11618. Robust study summary available at: http://echa.europa.eu/registration-dossier/-/registered-dossier/15201/6/4/2/?documentUUID=3b463e27-4e1b-46ad-9301-5c0b097066a9. Accessed 13 May 2015Google Scholar
  46. Moser T, Schott C (2011) 4,4′-MDA: toxicity to the collembolan species Folsomia candida. International Isocyanate Institute, Manchester, UK, III Report No. 11614. Robust study summary available at: http://echa.europa.eu/registration-dossier/-/registered-dossier/15201/6/4/3. Accessed 13 May 2015Google Scholar
  47. Munk R, Kirsch P (1988) Golden orfe (Leuciscus idus L., golden variety): report on the study of the acute toxicity. Project No. 10F0621/875279. BASF AG, Ludwigshafen, Germany. Robust study summary available at: http://echa.europa.eu/registration-dossier/-/registered-dossier/15201/6/2/2/?documentUUID=af1adb0e-7097-4248-a158-c5d263c6c040. Accessed 13 May 2015Google Scholar
  48. OECD (1981) OECD guidelines for testing of chemicals, guideline no. 112: dissociation constants in water. Organization for Economic Cooperation and Development, Paris, France, Adopted 12 May 1981CrossRefGoogle Scholar
  49. OECD (2004) OECD guidelines for testing of chemicals, draft guideline no. 218: sediment-water chironomid test using spiked sediment. Organization for Economic Cooperation and Development, Paris, France, Adopted 13 Apr 2004CrossRefGoogle Scholar
  50. Parris GE (1980) Covalent binding of aromatic amines to humates. 1. Reactions with carbonyls and quinones. Environ Sci Technol 14(9):1099–1106CrossRefGoogle Scholar
  51. Rhône-Poulenc Chimie (1977) Biological action of MDI and TDI in water. International Isocyanate Institute, Manchester, UK, III Report No. 10092Google Scholar
  52. Riedhammer C, Schwarz-Schulz B (2001) The newly proposed EU risk assessment concept for the sediment compartment. J Soils Sediments 1(2):105–110CrossRefGoogle Scholar
  53. Rufli H, Mueller K (1985a) Report on the test for acute toxicity of TK 10504 to algae. (OECD guideline no. 201, Paris 1984). Ciba-Geigy Ltd, Basle, Switzerland, Project No. 850731. Robust study summary available at: http://echa.europa.eu/registration-dossier/-/registered-dossier/15201/6/2/6/?documentUUID=a115b7b8-fa62-405b-86e1-cfa39aefab56. Accessed 13 May 2015Google Scholar
  54. Rufli H, Mueller K (1985b) Report on the test for acute toxicity of TK 10504 to Daphnia magna. OECD guideline no. 202 Paris (1984). Ciba-Geigy Ltd, Basle, Switzerland, Robust summary available at: http://echa.europa.eu/registration-dossier/-/registered-dossier/15201/6/2/4/?documentUUID=ca31cdd6-96f7-4ac9-90ed-d22bf43d92ad. Accessed 11 March 2016Google Scholar
  55. Rufli H, Mueller K (1985c) Report on the test for acute toxicity of TK 10504 to zebra fish. OECD guideline no. 203 Paris (1984). Ciba-Geigy Ltd, Basle, Switzerland, Robust study summary available at: http://echa.europa.eu/registration-dossier/-/registered-dossier/15201/6/2/2/?documentUUID=85b4b3f7-7374-4e44-a378-c87738dd654e. Accessed 13 May 2015Google Scholar
  56. Rufli H, Mueller K (1985d) Report on the test for acute toxicity of TK 10504 to rainbow trout. OECD guideline no. 203 Paris (1984). Ciba-Geigy Ltd, Basle, Switzerland, Robust study summary available at: http://echa.europa.eu/registration-dossier/-/registered-dossier/15201/6/2/2/?documentUUID=2713bfaa-a835-45f5-b0cc-be6e96fb6571. Accessed 13 May 2015Google Scholar
  57. Salinas E (2011) 4,4′-MDA: acute toxicity to Daphnia magna. International Isocyanate Institute, Manchester, UK, III Report no. 11612. Robust study summary available at: http://echa.europa.eu/registration-dossier/-/registered-dossier/15201/6/2/4/?documentUUID=5d6b9a75-0832-40fa-bf01-37ff9c025164. Accessed 13 May 2015Google Scholar
  58. Salinas E (2012) Oligomeric MDA: acute toxicity to Daphnia magna. International Isocyanate Institute, Manchester, UK, III Report No. 11624. Robust study summary available at: http://echa.europa.eu/registration-dossier/-/registered-dossier/14114/6/2/4. Accessed 13 May 2015Google Scholar
  59. Schaefer EC, Ponizovsky A (2013) 4,4′-MDA: aerobic and anaerobic transformation in aquatic sediment systems. International Isocyanate Institute, Manchester, UK, III Report No. 11646. Robust study summary available at: http://apps.echa.europa.eu/registered/data/dossiers/DISS-9c7b34e3-c5c4-7414-e044-00144f67d249/AGGR-acfea30d-ad97-4274-b8ce-aabd18d556da_DISS-9c7b34e3-c5c4-7414-e044-00144f67d249.html. Accessed 3 March 2016Google Scholar
  60. Schwarz H (2013) 4,4′-MDA: effect on nitrification in soil. International Isocyanate Institute, Manchester, UK, III Report No. 11643. Robust study summary available at: http://echa.europa.eu/registration-dossier/-/registered-dossier/15201/6/4/5. Accessed 13 May 2015Google Scholar
  61. Schupp T (2014) Methylene-4,4′-dianiline: odd in nitrification inhibition tests. Society of Environmental Toxicology and Chemistry—German Language Branch (SETAC-GLB), September 9–11, Giessen, Germany, p 13. http://www.setac-glb.de/GLB-Tagungen-1996-2014.266.0.html. Accessed 8 May 2015
  62. Tatsumi K, Freyer A, Minard RD, Bollag JM (1994) Enzyme-mediated coupling of 3,4-dichloroaniline to ferulic acid: a model for pollutant binding and humic materials. Environ Sci Technol 28:210–215CrossRefGoogle Scholar
  63. Tullner WW (1960) Endocrine effects of methylenedianiline in the rat, rabbit and dog. Endocrinology 66:470–474CrossRefGoogle Scholar
  64. Van der Hoeven N, Roza P, Henzen L (1992a) Determination of the effect of TDI, TDA, MDI and MDA on the emergence and growth of the plant species Avena sativa and Lactuca sativa according to OECD guideline no. 208. International Isocyanate Institute, Manchester, UK, III Report No. 11024. Robust study summary available at: http://echa.europa.eu/registration-dossier/-/registered-dossier/15201/6/4/4/?documentUUID=2f3a4ca6-39ba-4764-9977-f24dd99dedc5. Accessed 13 May 2015Google Scholar
  65. Van der Hoeven N, Roza P, Henzen L (1992b) Determination of the LC50 (14 days) of TDI, TDA, MDI and MDA to the earthworm Eisena fetida according to OECD guideline no. 207. International Isocyanate Institute, Manchester, UK, III Report No. 11025. Robust study summary available at: http://echa.europa.eu/registration-dossier/-/registered-dossier/15201/6/4/2. Accessed 13 May 2015Google Scholar
  66. Weber EJ, Spidle DL, Thorn KA (1996) Covalent binding of aniline to humic substances. 1. Kinetic studies. Environ Sci Technol 30:2755–2763CrossRefGoogle Scholar
  67. West RJ, Henry KS, Davis JW (2004) Preliminary study to determine appropriate conditions for evaluating chronic toxicity of TDA to sediment-dwelling organisms. International Isocyanate Institute, Manchester, UK, III Report No. 11495Google Scholar
  68. Whiteman FW, Ankley GT, Kahl MD, Rau DM, Balcer MD (1996) Evaluation of interstitial water as a route of exposure for ammonia in sediment tests with benthic macroinvertebrates. Environ Toxicol Chem 15(5):794–801CrossRefGoogle Scholar
  69. Zhang L-L, Wu Z-J, Shi Y-F, Chen L-J, Song Y-C, Juan Y-H (2010) Inhibitory effects of aromatic compounds on soil nitrification. Pedosphere 20(3):326–333CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • T. Schupp
    • 1
  • H. Allmendinger
    • 2
  • B. T. A. Bossuyt
    • 3
  • B. Hidding
    • 4
  • B. Tury
    • 5
  • R. J. West
    • 6
  1. 1.Faculty of Chemical EngineeringMuenster University of Applied ScienceSteinfurtGermany
  2. 2.Currenta GmbH and Co. OHGLeverkusenGermany
  3. 3.Huntsman EuropeEverbergBelgium
  4. 4.BASF SELudwigshafenGermany
  5. 5.Global Isocyanates LimitedManchesterUK
  6. 6.The Dow Chemical CompanyMidlandUSA

Personalised recommendations