Degradation Processes of Pesticides Used in Potato Cultivations

  • M. KurekEmail author
  • H. Barchańska
  • M. Turek
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 242)


Potato is one of the most important crops, after maize, rice and wheat. Its global production is about 300 million tons per year and is constantly increasing. It grows in temperate climate and is used as a source of starch, food, and in breeding industry.

Potato cultivation requires application of numerous agro-technical products, including pesticides, since it can be affected by insects, weeds, fungi, and viruses. In the European Union the most frequently used pesticides in potato cultivations check are: thiamethoxam, lambda-cyhalothrin and deltamethrin (insecticides), rimsulfuron (herbicide) and metalaxyl (fungicide).

Application of pesticides improves crop efficiency, however, as pesticides are not totally selective, it affects also non-target organisms. Moreover, the agrochemicals may accumulate in crops and, as a consequence, negatively influence the quality of food products and consumer health. Additional risks of plant protection products are related to their derivatives, that are created both in the environment (soil, water) and in plant organisms, since many of these compounds may exhibit toxic effects.

This article is devoted to the degradation processes of pesticides used in potato crop protection. Attention is also paid to the toxicity of both parent compounds and their degradation products for living organisms, including humans. Information about the level of pesticide contamination in the environment (water, soil) and accumulation level in edible plants complement the current knowledge about the risks associated with widespread use of thiamethoxam, lambda-cyhalothrin and deltamethrin, rimsulfuron and metalaxyl in potato cultivation.


Potatoes Pesticides Thiamethoxam Lambda-cyhalothrin Deltamethrin Rimsulfuron Metalaxyl Biodegradation Hydrolysis Photodegradation Pesticides toxicity 


  1. Abdel-Daim M, El-Bialy BE, Rahman HGA, Radi AM, Hefny HA, Hassan AM (2016) Antagonistic effects of Spirulina platensis against sub-acute deltamethrin toxicity in mice: biochemical and histopathological studies. Biomed Pharmacother 77:79–85Google Scholar
  2. Alalm MG, Tawfik A, Ookawara S (2015) Combined solar advanced oxidation and PAC adsorption for removal of pesticides from industrial wastewater. J Mater Environ 6(3):800–809Google Scholar
  3. Allinson G, Zhang P, Bui AD, Allinson M, Rose G, Marshall S, Pettigrove V (2015) Pesticide and trace metal occurrence and aquatic benchmark exceedances in surface waters and sediments of urban wetlands and retention ponds in Melbourne, Australia. Environ Sci Pollut Res 22:10214–10226. doi: 10.1007/s11356-015-4206-3CrossRefGoogle Scholar
  4. Ansari RW, Shukla RK, Yadav RS, Seth K, Pant AB, Singh D, Agrawal AK, Islam F, Khanna VK (2012) Cholinergic dysfunctions and enhanced oxidative stress in the neurobehavioral toxicity of lambda-cyhalothrin in developing rats. Neurotox Res 22:292–309. doi: 10.1007/s12640-012-9313-zCrossRefGoogle Scholar
  5. Antwi FB, Reddy GVP (2015) Toxicological effects of pyrethroids on non-target aquatic insects. Environ Toxicol Pharmacol 40:915–923. doi: 10.1016/j.etap.2015.09.023CrossRefGoogle Scholar
  6. Bailey AM, Coffey MD (1985) Biodegradation of metalaxyl in avocado soils. Phytopathology 75:135–137Google Scholar
  7. Bakırcı GT, Acay DBY, Bakırcı F, Ötles S (2014) Pesticide residues in fruits and vegetables from the Aegean region, Turkey. Food Chem 160:379–392Google Scholar
  8. Balfour NJ, Carreck NL, Blanchard HE, Ratnieks FLW (2015) Size matters: significant negative relationship between mature plant mass and residual neonicotinoid levels in seed-treated oilseed rape and maize crops. Agric Ecosyst Environ 215:85–88Google Scholar
  9. Barceloux DG (2008) Potatoes, tomatoes, and solanine toxicity (Solanum tuberosum L., Solanum lycopersicum L.). In: Barceloux DG (ed) Medical toxicology of natural substances: foods, fungi, medicinal herbs, toxic plants, and venomous animals. Wiley, Hoboken, NJ, pp 77–83Google Scholar
  10. Bass C, Denholm I, Williamson MS, Nauen R (2015) The global status of insect resistance to neonicotinoid insecticides. Pest Biochem Phys 121:78–87Google Scholar
  11. Beketov MA, Liess M (2008) Acute and delayed effects of the neonicotinoid insecticide thiacloprid on seven freshwater arthropods. Environ Toxicol Chem 27:461–470Google Scholar
  12. Bermúdez-Couso A, Nóvoa-Muñoz JC, Arias-Estévez M, Fernández-Calviño D (2013) Influence of different abiotic and biotic factors on the metalaxyl and carbofuran dissipation. Chemosphere 90:2526–2533. doi: 10.1016/j.chemosphere.2012.10.090CrossRefGoogle Scholar
  13. Bhaskar N, Shahani L, Taparia N, Bhatnagar P (2012) Effect of deltamethrin containing formulation on developing chick embryo: morphological and skeletal changes. Int J Toxicol Pharmacol Res 4:81–87Google Scholar
  14. Bhaskar N, Shahani L, Bhatnagar P (2015) Toxicological implications of a commercial formulation of deltamethrin (Decis®) in developing chick embryo. Hum Ecol Risk Assess. doi: 10.1080/10807039.2015.1071647CrossRefGoogle Scholar
  15. Biziuk M (2001) Pestycydy—występowanie, oznaczanie i unieszkodliwianie. Wydawnictwo Naukowo-Techniczne, WarszawaGoogle Scholar
  16. Blacquiere T, Smagghe G, Van Gestel CA, Mommaerts V (2012) Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21:973–992Google Scholar
  17. Bonmatin J-M, Giorio C, Girolami V, Goulson D, Kreutzweiser DP, Krupke C, Liess M, Long E, Marzaro M, Mitchell AED, Noome DA, Simon-Delso N, Tapparo A (2015) Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res 22:35–67. doi: 10.1007/s11356-014-3332-7CrossRefGoogle Scholar
  18. Buerge IJ, Poiger T, Muller MD, Buser HR (2003) Enantioselective degradation of metalaxyl in soils: chiral preference changes with soil pH. Eviron Sci Technol 37:2668–2674Google Scholar
  19. Burrows HD, Canle M, Santaballa JA, Steenken S (2002) Reaction pathways and mechanisms of photodegradation of pesticides. J Photochem Photobiol B Biol 67:71–108. doi: 10.1016/S1011-1344(02)00277-4CrossRefGoogle Scholar
  20. Cao Y, Tang H, Chen D, Li L (2015) A novel method based on MSPD for simultaneous determination of 16 pesticide residues in tea by LC–MS/MS. J Chromatogr B 998–999:72–79. doi: 10.1016/j.jchromb.2015.06.013CrossRefGoogle Scholar
  21. Carreck NL, Ratnieks FLW (2014) The dose makes the poison: have ‘field realistic’ rates of exposure of bees to neonicotinoid insecticide been overestimated in laboratory studies. J Apicult Res 53:607–614Google Scholar
  22. Chang DC, Park CS, Kim SY, Lee YB (2012) Growth and tuberization of hydroponically grown potatoes. Potato Res 55:69–81Google Scholar
  23. Chang J, Wang Y, Wang H, Li J, Xu P (2016) Bioaccumulation and enantioselectivity of type I and type II pyrethroid pesticides in earthworm. Chemosphere 144:1351–1357. doi: 10.1016/j.chemosphere.2015.10.011CrossRefGoogle Scholar
  24. Chen S, Liu W (2008) Toxicity of chiral pesticide rac-metalaxyl and R-metalaxyl to Daphnia magna. Bull Environ Contam Toxicol 81:531–534. doi: 10.1007/s00128-008-9567-6CrossRefGoogle Scholar
  25. Chen S, Lai K, Li Y, Hu M, Zhang Y, Zen Y (2011) Biodegradation of deltamethrin and its hydrolysis product 3-phenoxybenzaldehyde by a newly isolated Streptomyces aureus strain HP-S-0. Appl Microbiol Biotechnol 90:1471–1483Google Scholar
  26. Chen S, Dong YH, Chang C, Deng Y, Zhang XF, Zhong G, Song H, Hu M, Zhang LH (2013) Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway. Bioresour Technol 132:16–23Google Scholar
  27. Chen S, Deng Y, Chang C, Lee J, Cheng Y, Cui Z, Zhou J, He F, Hu M, Zhang LH (2015) Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19. Sci Rep 5:8784. doi: 10.1038/srep08784CrossRefGoogle Scholar
  28. Chiipanthenga M, Maliro M, Demo P, Njoloma J (2012) Potential of aeroponics system in the production of quality potato (Solanum tuberosum l.) seed in developing countries. J Biotechnol 11:3993–3999Google Scholar
  29. Colombo R, Ferreira TCR, Suellen AA, Carneiro RL, Lanza MRV (2013) Application of the response surface and desirability design to the Lambda-cyhalothrin degradation using photo-Fenton reaction. J Environ Manage 118:32–39Google Scholar
  30. Commission Regulation 441/2012, 24 May 2012, amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for bifenazate, bifenthrin, boscalid, cadusafos, chlorantraniliprole, chlorothalonil, clothianidin, cyproconazole, deltamethrin, dicamba, difenoconazole, dinocap, etoxazole, fenpyroximate, flubendiamide, fludioxonil, glyphosate, metalaxyl-M, meptyldinocap, novaluron, thiamethoxam, and triazophos in or on certain productsGoogle Scholar
  31. Commission Regulation 524/2011, 26 May 2011, amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for biphenyl, deltamethrin, ethofumesate, isopyrazam, propiconazole, pymetrozine, pyrimethanil and tebuconazole in or on certain productsGoogle Scholar
  32. Commission Regulation 617/2014, 3 June 2014, amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for ethoxysulfuron, metsulfuron-methyl, nicosulfuron, prosulfuron, rimsulfuron, sulfosulfuron and thifensulfuron-methyl in or on certain productsGoogle Scholar
  33. Commission Regulation 834/2013, 30 August 2013, amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for acequinocyl, bixafen, diazinon, difenoconazole, etoxazole, fenhexamid, fludioxonil, isopyrazam, lambda-cyhalothrin, profenofos and prothioconazole in or on certain productsGoogle Scholar
  34. Corcellas C, Eljarrat E, Barcelo D (2015) First report of pyrethroid bioaccumulation in wild river fish: a case study in Iberian river basins (Spain). Environ Int 75:110–116Google Scholar
  35. Council Directive 98/83/EC, 3 November 1998, on the quality of water intended for human consumptionGoogle Scholar
  36. Cycoń M, Żmijowska A, Piotrowska-Seget Z (2014) Enhancement of deltamethrin degradation by soil bioaugmentation with two different strains of Serratia marcescens. Int J Environ Sci Technol 11:1305–1316. doi: 10.1007/s13762-013-0322-0CrossRefGoogle Scholar
  37. Dąbrowska D, Kot-Wasik A, Namieśnik J (2002) Degradacja związków organicznychw środowisku. Chemia i Inżynieria Ekologiczna 10:1077–1083Google Scholar
  38. de Lafontaine Y, Beauvais C, Cessna AJ, Gagnon P, Hudon C, Poissant L (2014) Sulfonylurea herbicides in an agricultural catchment basin and its adjacent wetland in the St. Lawrence River basin. Sci Total Environ 479–480:1–10. doi: 10.1016/j.scitotenv.2014.01.094CrossRefGoogle Scholar
  39. de Urzedo AP et al (2007) Photolytic degradation of the insecticide thiamethoxam in aqueous medium monitored by direct infusion electrospray ionization mass spectrometry. J Mass Spectrom 42:1319–1325. doi: 10.1002/jms.1204CrossRefGoogle Scholar
  40. Devisri S, Iyer PR (2013) Degradation of deltamethrin by organisms isolated from Koovam river water. Int J Curr Microbiol App Sci 2(10):106–111Google Scholar
  41. Dinelli G, Vicari A, Accinelli C (1998) Degradation and side effects of three sulfonylurea herbicides in soil. J Environ Qual 27:1459–1464. doi: 10.2134/jeq1998.00472425002700060023xCrossRefGoogle Scholar
  42. Doe JE, Lander DR, Doerrer NG, Heard N, Hines RN, Lowit AB, Pastoor T, Phillips RD, Sargent D, Sherman JH, Tanir JY, Embry MR (2016) Use of the RISK21 roadmap and matrix: human health risk assessment of the use of a pyrethroid in bed netting. Crit Rev Toxicol 46:54–73. doi: 10.3109/10408444.2015.1082974CrossRefGoogle Scholar
  43. EFSA (2005) Conclusion regarding the peer review of the pesticide risk assessment of the active substance rimsulfuron. EFSA Sci Rep 45:1–61Google Scholar
  44. Elliott M, Janes NF (1978) Synthetic pyrethroids—a new class of insecticide. Chem Soc Rev 7:473–505. doi: 10.1039/CS9780700473CrossRefGoogle Scholar
  45. Europa (2013) Bees & pesticides: commission goes ahead with plan to better protect bees. Accessed 26 Jan 2016
  46. Fang L, Zhang S, Chen Z, Du H, Zhu Q, Dong Z, Li H (2016) Risk assessment of pesticide residues in dietary intake of celery in China. Reg Toxicol Pharmacol 73:578–586Google Scholar
  47. Feo ML, Ginebreda A, Eljarrat E, Barceló D (2010) Presence of pyrethroid pesticides in water and sediments of Ebro River Delta. J Hydrol 393:156–162. doi: 10.1016/j.jhydrol.2010.08.012CrossRefGoogle Scholar
  48. Fetoui H, Garoui EM, Zeghal N (2009) Lambda-cyhalothrin-induced biochemical and histopathological changes in the liver of rats: ameliorative effect of ascorbic acid. Exp Toxicol Pathol 61:189–196. doi: 10.1016/j.etp.2008.08.002CrossRefGoogle Scholar
  49. Grant RJ, Daniell TJ, Betts WB (2002) Isolation and identification of synthetic pyrethroid-degrading bacteria. J Appl Microbiol 92(3):534–540. doi: 10.1046/j.13652672.2002.01558.xCrossRefGoogle Scholar
  50. Guo W, Zhang F, Lin C, Wang LZ (2012) Direct growth of TiO2 nanosheet arrays on carbon fibers for highly efficient photocatalytic degradation of methyl orange. Adv Mater 24(35):4761–4764Google Scholar
  51. Guzsvany V, Csandi J, Gaal F (2006) NMR study of the influence of pH on the persistence of some neonicotinoids in water. Acta Chim Slov 53:52–57Google Scholar
  52. Han J, Fang P, Xu X, Li-Zheng X, Shen H, Ren Y (2015) Study of the pesticides distribution in peel, pulp and paper bag and the safety of pear bagging. Food Control 54:338–346. doi: 10.1016/j.foodcont.2015.02.021CrossRefGoogle Scholar
  53. He LM, Troiano J, Wang A, Goh K (2008) Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin. Rev Environ Contam Toxicol 195:71–91Google Scholar
  54. Hem L, Park JH, Shim JH (2010) Residual analysis of insecticides (Lambda-cyhalothrin, Lufenuron, Thiamethoxam and Clothianidin) in Pomegranate using GC-ECD or HPLC-UVD. Korean J Environ Agric 29:257–265. doi: 10.5338/KJEA.2010.29.3.257CrossRefGoogle Scholar
  55. Hooker WJ (1981) Compendium of potato diseases. American Phytopathological Society, St PaulGoogle Scholar
  56. Hunt L, Bonetto C, Resh VH, Buss DF, Fanelli S, Marrochi N, Lydy MJ (2016) Insecticide concentrations in stream sediments of soy production regions of South America. Sci Total Environ 547:114–124. doi: 10.1016/j.scitotenv.2015.12.140CrossRefGoogle Scholar
  57. Jalali AM, Van Leeuwen T, Tirry L, De Clercq P (2009) Toxicity of selected insecticides to the two-spot ladybird Adalia bipunctata. Phytoparasitica 37:323–326. doi: 10.1007/s12600-009-0051-6CrossRefGoogle Scholar
  58. Kalathoor R, Botterweck J, Schäffer A, Schmidt B, Schwarzbauer J (2015) Quantitative and enantioselective analyses of non-extractable residues of the fungicide metalaxyl in soil. J Soil Sediment 15:659–670. doi: 10.1007/s11368-014-1027-9CrossRefGoogle Scholar
  59. Katagi T (2002) Abiotic hydrolysis of pesticides in the aquatic environment. Rev Environ Contam Toxicol 175:79–261Google Scholar
  60. Kearney PC, Kaufman DD (1969) Degradation of herbicides. Dekker Inc, New YorkGoogle Scholar
  61. Kolo RJ, Lamai S, Ojutiku RO (2010) Subacute toxicity of Karate to Sarotherodon galilieus (Linne,1758). J Water Chem Technol 32:107–112. doi: 10.3103/S1063455X10020074CrossRefGoogle Scholar
  62. Kondrakow AO, Igantev AN, Frimmel FH, Brase S, Hom H, Revelsky AI (2014) Formation of genotoxic quinones during bisphenol A degradation by TiO2 photocatalysis and UV photolysis: a comparative study. Appl Catal B Environ 160–161:106–114Google Scholar
  63. Koprucu K, Aydm R (2004) The toxic effects of pyrethroid deltamethrin on the common carp (Cyprinus carpio L.) embryos and larvae. Pestic Biochem Physiol 80:47–53. doi: 10.1007/s10653-007-9108-yCrossRefGoogle Scholar
  64. Kryczyński S (2010) Wirusologia roślinna. Wydawnictwo Naukowe PWN, WarszawaGoogle Scholar
  65. Kungolos A, Emmanouil C, Tsiridis V, Tsiropoulos N (2009) Evaluation of toxic and interactive toxic effects of three agrochemicals and copper using a battery of microbiotests. Sci Total Environ 1:4610–4615. doi: 10.1016/j.scitotenv.2009.04.038CrossRefGoogle Scholar
  66. Laabs V, Amelung W, Pinto A, Altstaedt A, Zech W (2000) Leaching and degradation of corn and soybean pesticides in an Oxisol of the Brazilian Cerrados. Chemosphere 41:1441–1449Google Scholar
  67. Laberge M, Rollinson R (2013) Degradation of thiamethoxam via photocatalysis: kinetics, mineralization, and toxicity. Worcester Polytechnic Institute, WorcesterGoogle Scholar
  68. Lazzarini M, Salum C, Del Bel EA (2005) Combined treatment of ascorbic acid or alpha-tocopherol with dopamine receptor antagonist or nitric oxide synthase inhibitor potentiates cataleptic effect in mice. Psychopharmacology (Berl) 181:71–79Google Scholar
  69. Lee JH, Shan G, Watanabe T, Stoutamire DW, Gee SJ, Hammock BD (2002) Enzyme-linked immunosorbent assay for the pyrethroid deltamethrin. J Agric Food Chem 50:5526–5532. doi: 10.1021/jf030519pCrossRefGoogle Scholar
  70. Li Y, Dong F, Liu X, Xu J, Chen X, Han Y, Cheng Y, Jian Q, Zheng Y (2013) Enantioselective separation and transformation of metalaxyl and its major metabolite metalaxyl acid in tomato and cucumber. Food Chem 141:10–17Google Scholar
  71. Liquing Z, Guoguang L, Dezhi S, Kun Y (2006) Hydrolysis of thiamethoxam. Environ Contam Toxicol 6:942–949. doi: 10.5902/2179460X17302CrossRefGoogle Scholar
  72. Liu P, Liu Y, Liu Q, Liu J (2009) Photodegradation mechanism of deltamethrin and fenvalerate. J Environ Sci 22:1123–1128Google Scholar
  73. Liu L, Liu Z, Bai H, Sun DD (2012) Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane. Water Res 46(4):1101–1112Google Scholar
  74. Liu PY, Li B, Liu HD, Tian L (2014a) Photochemical behavior of fenpropathrin and lambda cyhalothrin in solution. Environ Sci Pollut Res 21:1993–2001Google Scholar
  75. Liu T, Zhu L, Han Y, Wang J, Wang J, Zhao Y (2014b) The cytotoxic and genotoxic effects of metalaxy-M on earthworms (Eisenia fetida). Environ Toxicol Chem 33(10):2344–2350Google Scholar
  76. Lopes RP, de Urzedo APFM, Nascentes CC, Augusti R (2008) Degradation of the insecticides thiamethoxam and imidacloprid by zero-valent metals exposed to ultrasonic irradiation in water medium: electrospray ionization mass spectrometry monitoring. Rapid Commun Mass Spectrom 22:3472–3480Google Scholar
  77. Maienfisch P (2001) Chemistry and biology of thiamethoxam: a second generation neonicotinoid. Pest Manag Sci 57:906–913Google Scholar
  78. Maienfisch P (2006) Synthesis and properties of thiamethoxam and related compounds. Z Naturforsch 61b:353–359Google Scholar
  79. Main AR, Headley JV, Peru KM, Michel NL, Cessna AJ, Morrissey CA (2014) Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada’s prairie Pothole region. PLoS One 9:e92821. doi: 10.1371/journal.pone.0092821CrossRefGoogle Scholar
  80. Maloney SE, Maule A, Smith ARW (1988) Microbial transformation of the pyrethroid insecticides: permethrin, deltamethrin, fastac, fenvalerate, and fluvalinate. Appl Environ Microbiol 54:2874–2876Google Scholar
  81. Manigandan G, Nelson R, Jeevan P (2013) Biodegradation of lambda cyhalothrin by Pseudomonas fluorescens and Trichoderma viridae. J Microbiol Biotechnol Res 3:42–44Google Scholar
  82. Maradani A, Sabahi Q, Resekh A, Almasi A (2016) Lethal and sublethal effects of three insecticides on the aphid parasitoid, Lysiphlebus fabarum Marshall (Hymenoptera: Aphidiidae). Phytoparasitica 8:1–8Google Scholar
  83. Martins JM, Marmoud A (1999) Transport of rimsulfuron and its metabolites in soil columns. Chemosphere 38(3):601–616. doi: 10.1016/S0045-6535(98)00197-0CrossRefGoogle Scholar
  84. Martins JMF, Chevre N, Spack L, Tarradellas J, Mermoud A (2001) Degradation in soil and water and ecotoxicity of rimsulfuron and its metabolites. Chemosphere 45:515–522. doi: 10.1016/S0045-6535(01)00040-6CrossRefGoogle Scholar
  85. Marucchini C, Zadra C (2002) Stereoselective degradation of metalaxyl and metalaxyl-M in soil and sunflower plants. Chirality 14:32–38Google Scholar
  86. Masiá A, Campo J, Vázquez-Roig P, Blasco C, Picó Y (2013) Screening of currently used pesticides in water, sediments and biota of the Guadalquivir river basin (Spain). J Hazard Mater 263:95–104Google Scholar
  87. Massoud AH, Derbalah AS, Brelal El-Sayed B (2008) Microbial detoxification of metalaxyl in aquatic system. J Environ Sci 20:262–267Google Scholar
  88. Mickaël H et al (2012) A common pesticide decreases foraging success and survival in honey bees. Science 336:348–350. doi: 10.1126/science.1215039CrossRefGoogle Scholar
  89. Mir NA, Khan A, Muneer M, Vijayalakhsm S (2013) Photocatalytic degradation of a widely used insecticide Thiamethoxam in aqueous suspension of TiO2: adsorption, kinetics, product analysis and toxicity assessment. Sci Total Environ 458–460:388–398Google Scholar
  90. Mugni H, Paracampo A, Marrochi N, Bonetto C (2013) Acute toxicity of cypermethrin to the non-target organism Hyalella curvispina. Environ Toxicol Pharmacol 35:88–92Google Scholar
  91. Myresiotis KC, Vryzas Z, Papadopoulou-Mourkidou E (2012) Biodegradation of soil-applied pesticides by selected strains of plant growth-promoting rhizobacteria (PGPR) and their effects on bacterial growth. Biodegradation 23:297–310Google Scholar
  92. Nageswara Rao T, Venkata-Ramasubbih A, Parvathi T (2012) Development and validation of a HPLC-UV method for simultaneous determination of five sulfonylurea herbicide residues in soybean oil followed by Matrix Solid-Phase Dispersion. Int J Chem Environ Pharm Res 3:117–121. doi: 10.5402/2012/908795CrossRefGoogle Scholar
  93. Nahri-Niknafs B, Ahmadi A (2013) Photodegradation of deltamethrin and fenvalerate under simulated solar light irradiation and identification of photoproducts. Rev Chim 64(8):828–831Google Scholar
  94. Nauen R, Ebbinghaus-Kintscher U, Salgado VL, Kaussmann M (2003) Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic Biochem Phys 73(2):55–69. doi: 10.1016/S0048-3575(03)00065-8CrossRefGoogle Scholar
  95. Palanisamy B, Babu CM, Sundaravel S, Anandan S, Murugesan V (2013) Sol–gel synthesis of mesoporous mixed Fe2O3/TiO2 photocatalyst: application for degradation of 4-chlorophenol. J Hazard Mater 252–253:233–242Google Scholar
  96. Páleníková A, Martínez-Domínguez G, Arrebola FJ, Romero-González R, Hrouzková S, Frenich AG (2015) Determination of pesticides and transformation products in Ginkgo biloba nutraceutical products by chromatographic techniques coupled to mass spectrometry. Food Anal Methods 8:20194–22201Google Scholar
  97. Pandey G, Dorrian SJ, Russell J, Oakeshott JG (2009) Biotransformation of the neonicotinoid insecticides imidacloprid and thiamethoxam by Pseudomonas sp. 1G. Biochem Biophys Res Commun 380:710–714. doi: 10.1016/j.bbrc.2009.01.156CrossRefGoogle Scholar
  98. Pang N, Wang T, Hu J (2016) Method validation and dissipation kinetics of four herbicides in maize and soil using QuEChERS sample preparation and liquid chromatography tandem mass spectrometry. Food Chem 190:793–800Google Scholar
  99. Patel N, Jaiswall R, Warang T, Scarduelli G, Dashora A, Ahuja BL, Kothan DC, Miotello A (2014) Efficient photocatalytic degradation of organic water pollutants using V–N-codoped TiO2 thin films. Appl Catal B Environ 150–151:74–81Google Scholar
  100. Pavan FA, Dallago RM, Zanella R, Martins AF (1999) Determination of deltamethrin in cattle dipping baths by high-performance liquid chromatography. J Agric Food Chem 47:174–176Google Scholar
  101. Peackock TJ, Mikell AT Jr, Moore MT, Smith S Jr (2014) Application of a redox gradostat reactor for assessing rhizosphere microorganism activity on lambda-cyhalothrin. Bull Environ Contam Toxicol 92:347–351. doi: 10.1007/s00128-014-1202-0CrossRefGoogle Scholar
  102. Pohorecka K, Skubida P, Miszczak A, Semkiw P, Sikorski P, Zagibajło K, Teper D, Kołtowski Z, Zdańska D, Skubida M, Bober A (2012) Residues of neonicotinoid insecticides in bee collected plant materials from oilseed rape crops and their effect on bee colonies. J Apic Sci 56:115–134Google Scholar
  103. Rahman IQ, Ahmad M, Misra KS, Lohani M (2013) Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Mater Lett 91:170–174Google Scholar
  104. Rana S, Jindal V, Mandal K, Kaur G, Gupta VK (2015) Thiamethoxam degradation by Pseudomonas and Bacillus strains isolated from agricultural soils. Environ Monit Assess 187:300. doi: 10.1007/s10661-015-4532-4CrossRefGoogle Scholar
  105. Rosenbom AE, Kjær J, Olsen P (2010) Long-term leaching of rimsulfuron degradation products through sandy agricultural soils. Chemosphere 79:830–838Google Scholar
  106. Rosenkrantz RT, Cedergreen N, Baun A, Kusk KO (2013) Influence of pH, light cycle, and temperature on ecotoxicity of four sulfonylurea herbicides towards Lemna gibba. Ecotoxicology 22:33–41Google Scholar
  107. Rouchaud J, Neus O, Callens D, Bulcke R (1997) Soil metabolism of the herbicide rimsulfuron under laboratory and field conditions. J Agric Food Chem 45:3283–3291Google Scholar
  108. Ruan Z, Zhai Y, Song J, Shi Y, Li K et al (2013) Molecular cloning and characterization of a newly isolated pyrethroid-degrading esterase gene from a genomic library of ochrobactrum anthropi YZ-1. PLoS One 8(10):e77329. doi: 10.1371/journal.pone.0077329CrossRefGoogle Scholar
  109. Sanchez-Bayo F, Goka K (2014) Pesticide residues and bees—a risk assessment. PLoS One 9:e94482Google Scholar
  110. Saravanan R, Karthikeyan S, Gupta VK, Sekaran G, Narayanan V, Stephen A (2013) Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater Sci Eng 33:91–98Google Scholar
  111. Schneider GE, Koeppe MK, Naidu MV, Horne P, Brown HM, Mucha CF (1993) Fate of rimsulfuron in the environment. J Agric Food Chem 41:2404–2410Google Scholar
  112. Schwartz BJ, Sparrow FK, Heard EN, Thede BM (2000) Simultaneous derivatization and trapping of volatile products from aqueous photolysis of thiamethoxam insecticide. J Agric Food Chem 48:4671–4675. doi: 10.1021/jf990966yCrossRefGoogle Scholar
  113. Scrano L, Bufo SA, Peruccci P, Meallier P, Mansour M (1999) Photolysis and hydrolysis of rimsulfuron. Pestic Sci 55:955–961. doi: 10.1007/3-540-26531-7_46CrossRefGoogle Scholar
  114. Seńczuk W (2005) Toksykologia współczesna. Wydawnictwo Lekarskie PZWL, WarszawaGoogle Scholar
  115. Sharma D, Awasthi MD (1997) Adsorption and movement of metalaxyl in soils under unsaturated flow conditions. Plant Soil 195:293–298Google Scholar
  116. Sheets LP, Li AA, Minnema DJ, Collier RH, Creeke MR, Peffer RC (2015) A critical review of neonicotinoid insecticides for developmental neurotoxicity. Crit Rev Toxicol 46:153–190Google Scholar
  117. Shen C-C, Shen D-S, Shentu J-L, Wang M-Z, Wan M-Y (2015a) Could humic acid relieve the biochemical toxicities and DNA damage caused by nickel and deltamethrin in earthworms (Eisenia foetida)? Environ Sci Proc Imp 17:2074–2081Google Scholar
  118. Shen X, Zemin X, Zhang X, Yang F (2015b) Stable carbon isotope fractionation during the biodegradation of lambda-cyhalothrin. Sci Total Environ 532:415–419Google Scholar
  119. Sikorska K, Wędzisz A (2009) Nowoczesne pestycydy—spinosad. Bromat Chem Toksykol 2:203–212Google Scholar
  120. Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon M, Downs C (2015) Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res Int 22:5–34Google Scholar
  121. Sivaperumal P, Anand P, Riddhi L (2015) Rapid determination of pesticide residues in fruits and vegetables, using ultra-high-performance liquid chromatography/time-of-flight mass spectrometry. Food Chem 168:356–365Google Scholar
  122. Šojić D, Despotović V, Orcić D, Szabó E, Arany E, Armakoviś S, Illés E, Gajda-Schrantz K, Dombi A, Alapi T, Sajben-Nagy E, Palágyi A, Vágvölgyi SC, Manczinger L, Bjelica L, Abramović B (2012) Degradation of thiamethoxam and metoprolol by UV, O3 and UV/O3 hybrid processes: kinetics, degradation intermediates and toxicity. J Hydrol 472–473:314–327Google Scholar
  123. Song J et al (2013) Biodegradation of nicosulfuron by a Talaromyces flavus LZM1. Bioresour Technol 140:243–248. doi: 10.1016/j.biortech.2013.02.086CrossRefGoogle Scholar
  124. Song H, Zhou Z, Liu Y, Deng S, Xu H (2015) Kinetics and mechanism of fenpropathrin biodegradation by a newly isolated Pseudomonas aeruginosa sp. strain JQ-41. Curr Microbiol 71:326–332Google Scholar
  125. Starner K, Goh KS (2012) Detections of the neonicotinoid insecticide imidacloprid in surface waters of three agricultural regions of California, USA, 2010–2011. Bull Environ Contam Toxicol 88(3):316–321. doi: 10.1007/s00128-011-0515-5CrossRefGoogle Scholar
  126. Stoner KA, Eitzer BD (2012) Movement of soil-applied imidacloprid and thiamethoxam into nectar and pollen of squash (Cucurbita pepo). PLoS One 7:e39114Google Scholar
  127. Sukul P, Spiteller M (2000) Metalaxyl: persistence, degradation, metabolism and analytical methods. Rev Environ Contam Toxicol 164:1–26Google Scholar
  128. Sulimma L, Bullach A, Kusari S, Lamshoft M, Zuhlke S, Spiteller M (2013) Enantioselective degradation of the chiral fungicides metalaxyl and furalaxyl by Brevibacillus brevis. Chirality 25:336–340Google Scholar
  129. Szpyrka E, Kurdziel A, Matyaszek A, Podbielska M, Rupar J, Słowik-Borowiec M (2015) Evaluation of pesticide residues in fruits and vegetables from the region of south-eastern Poland. Food Control 48:137–142Google Scholar
  130. Tabaeran IV, Narahashi T (1998) Potent modulation of tetrodotoxin sensitive and tetrodotoxin resistant sodium channels by the type II pyrethroid deltamethrin. Pharmacol Therapeut 284:958–965Google Scholar
  131. Taillebois E, Langlois P, Cunha T, Seraphin D, Thany SH (2014) Synthesis and biological activity of fluorescent neonicotinoid insecticide thiamethoxam. Bioorg Med Chem Lett 24:3552–3555. doi: 10.1016/j.bmcl.2014.05.052CrossRefGoogle Scholar
  132. Tallur PN, Megadi VB, Ninnekar HZ (2008) Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation 19:77–82Google Scholar
  133. The potato: tuber, International year of potato 2008. Accessed 8 Sept 2015
  134. The PPDB: Pesticides Properties DataBase, University of Hertfordshire. Accessed 8 Sept 2015
  135. Tuzmen N, Canadan N, Kaya E, Demiryas N (2008) Biochemical effects of chlorpyrifos and deltamethrin on altered antioxidative defense mechanism and lipid peroxidation in rat liver. Cell Biochem Funct 26:119–124. doi: 10.1002/cbf.1411CrossRefGoogle Scholar
  136. University of Kentucky, College of Agriculture, Food and Environment. Accessed 8 Sept 2015
  137. Ural MS, Saglam N (2005) A study on the acute toxicity of pyrethroid deltamethrin on the fry rainbow trout (Oncorhynchus mykiss Walbaum, 1792). Pestic Biochem Phys 83:124–131. doi: 10.1016/j.pestbp.2005.04.004CrossRefGoogle Scholar
  138. Van den Brink PJ, Van Smeden JM, Bekele RS, Dierick W, De Gelder DM, Noteboom M, Roessink I (2016) Acute and chronic toxicity of neonicotinoids to nymphs of a mayfly species and some notes on seasonal differences. Environ Toxicol Chem 35:128–133Google Scholar
  139. Van Dijk TC, Van Staalduinen MA, Van der Sluijs JP (2013) Macroinvertebrate decline in surface water polluted with imidacloprid. PLoS One 8:e62374Google Scholar
  140. Wang S, Kimber SWL, Kennedy IR (1997) The dissipation of lambda-cyhalothrin from cotton production systems. J Environ Sci Health B 32:335–352Google Scholar
  141. Wang M, Guiquin Y, Wang X, Yao Y, Min H, Lu Z (2011) Nicotine degradation by two novel bacterial isolates of Acinetobacter sp. TW and Sphingomonas sp. TY and their responses in the presence of neonicotinoid insecticides. J Microbial Biotechnol 27:1633–1640Google Scholar
  142. Wang M, Zhang Q, Cong L, Yin W, Wang M (2014) Enantioselective degradation of metalaxyl in cucumber, cabbage, spinach and pakchoi. Chemosphere 95:241–246. doi: 10.1016/j.chemosphere.2013.08.084CrossRefGoogle Scholar
  143. Webb ME, Smith AG (2011) Pantothenate biosynthesis in higher plants. Adv Bot Res 58:204Google Scholar
  144. Wilson PC, Whitwell T, Klaine SJ (2001) Metalaxyl toxicity, uptake, and distribution in several ornamental plant species. J Environ Qual 30:411–417Google Scholar
  145. Wu Y, Liu X, Dong F, Xu J, Zheng Y (2012) Dissipation and residues of rimsulfuron in potato and soil under field conditions. Bull Environ Contam Toxicol 89:1264–1267Google Scholar
  146. Xiao Y, Chen S, Gao Y, Hu W, Hu M, Zhong G (2015) Isolation of a novel beta-cypermethrin degrading strain Bacillus subtilis BSF01 and its biodegradation pathway. Appl Microbiol Biotechnol 99:2849–2859. doi: 10.1007/s00253-014-6164-yCrossRefGoogle Scholar
  147. Xu P, Diao J, Liu D, Zhou Z (2011) Enantioselective bioaccumulation and toxic effects of metalaxyl in earthworm Eisenia foetida. Chemosphere 83:1074–1079. doi: 10.1016/j.chemosphere.2011.01.047CrossRefGoogle Scholar
  148. Yao K, Zhu L, Duan Z, Chen Z, Li Y, Zhu X (2008) Comparison of R-metalaxyl and rac-metalaxyl in acute, chronic, and sublethal effect on aquatic organisms: Daphnia magna, Scenedesmus quadricanda, and Danio rerio. Environ Toxicol 24:148–156. doi: 10.1002/tox.20415CrossRefGoogle Scholar
  149. Yao W, Zhang B, Huang C, Ma C, Song X, Xu Q (2012) Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions. J Mater Chem 22:4050–4055Google Scholar
  150. Yousef MI (2010) Vitamin E modulates reproductive toxicity of pyrethroid lambda-cyhalothrin in male rabbits. Food Chem Toxicol 48:1152–1159. doi: 10.1016/j.fct.2010.02.002CrossRefGoogle Scholar
  151. Yu C, Li G, Kumar S, Yang K, Jin R (2014) Phase transformation synthesis of novel Ag2O/Ag2CO3 heterostructures with high visible light efficiency in photocatalytic degradation of pollutants. Adv Mater 26(6):892–898Google Scholar
  152. Zabar R, Komel T, Fabjan J, Bavcon Kralj M, Trebše P (2012) Photocatalytic degradation with immobilised TiO2 of three selected neonicotinoid insecticides: imidacloprid, thiamethoxam and clothianidin. Chemosphere 89:293–301. doi:10.1016/jGoogle Scholar
  153. Zhang P, Zhu W, Qiu J, Wang D, Wang X, Wang Y, Zhou Z (2014) Evaluating the enantioselective degradation and novel metabolites following a single oral dose of metalaxyl in mice. Pest Biochem Physiol 116:32–39. doi: 10.1016/j.pestbp.2014.09.008CrossRefGoogle Scholar
  154. Zhang H et al (2016) Biodegradation potential of deltamethrin by the Bacillus cereus strain Y1 in both culture and contaminated soil. Int Biodeter Biodegr 106:53–59Google Scholar
  155. Zhao MR, Liu WP (2009) Enantioselectivity in the immunotoxicity of the insecticide acetofenate in an in vitro model. Environ Toxicol Chem 28:578–585Google Scholar
  156. Zhao M, Chen F, Wang C, Zhang Q, Gan J, Liu W (2010) Integrative assessment of enantioselectivity in endocrine disruption and immunotoxicity of synthetic pyrethroids. Environ Pollut 158:1968–1973Google Scholar
  157. Zheng W, Liu W (1999) Kinetics and mechanism of the hydrolysis of imidacloprid. Pest Sci 55:482–485Google Scholar
  158. Zheng S, Jiang W, Cai Y, Dionysiou DD, O’Shea EK (2014) Adsorption and photocatalytic degradation of aromatic organoarsenic compounds in TiO2 suspension. Catal Today 224:83–88Google Scholar
  159. Zhou G et al (2012) Biodegradation of the neonictoinoid insecticide thiamethoxam by the nitrogen-fixing and plant-growth-promoting rhizbacterium Ensifer adhaerens strain TMX-23. Appl Microbiol Biotechnol 97:4065–4074. doi: 10.1007/s00253-012-4638-3CrossRefGoogle Scholar
  160. Zuno-Floriano FG et al (2012) Effect of Acinetobacter sp on metalaxyl degradation and metabolite profile of potato seedlings (Solanum tuberosum L.) Alpha Variety. PLoS One 7(2):e31221. doi: 10.1371/journal.pone.0031221CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of ChemistrySilesian University of TechnologyGliwicePoland

Personalised recommendations