Advertisement

How Important Is Research on Pollution Levels in Antarctica? Historical Approach, Difficulties and Current Trends

  • Małgorzata Szopińska
  • Jacek Namieśnik
  • Żaneta Polkowska
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 239)

Abstract

Despite the fact that Antarctica is a continent notably free from large negative impact of human activities, literature data can be the basis for concluding that this is not an area free from anthropogenic pollutants. Pollutants, which are identified in various elements of the environment of Antarctica, are mostly connected with long-range atmospheric transport (LRAT) and deposition in this area. The study presents: a historical overview of research pertaining to the presence of pollutants in entire Antarctica; a description of the development of research on pollutants in various environmental samples conducted in this area since 1960; a detailed description of contemporary analytical research (2000–2014); information on concentration levels of a broad range of pollutants present in various elements of the environment. The data collected can provide grounds for concluding that pollutants present in this area can contribute to gradual degradation of Antarctic ecosystem.

Keywords

Antarctica Pollutants Analytical studies Long-range atmospheric transport 

List of Acronyms

AFS

Atomic fluorescence spectrometry

CCAMLR

The Commission for the Conservation of Antarctic Marine Living Resources

CD

Conductometry detector

CFCs

Chlorofluorocarbons

CHLs

Chlordanes

COMNAP

Council of Managers of National Antarctic Program

CZE

Capillary zone electrophoresis

DDD

Dichlorodiphenyldichloroethane

DDE

Dichlorodiphenyldichloroethane

DDT

Dichlorodiphenyltrichloroethane

DLCs

Dioxin-like compounds

ECD

Electron capture detector

GC-MS

Gas chromatography–mass spectrometry

GPC

Gel permeation chromatography

HBB

Hexabromobenzene

HCB

Hexachlorobenzene

HCFCs

Hydrochlorofluorocarbons

HCHs

Hexachlorocyclohexanes

HPLC

High-performance liquid chromatography

IC

Ion chromatography

ICP-AES

Inductively coupled plasma atomic emission spectrometry

ICP-MS

Inductively coupled plasma mass spectrometry

ICP-OES

Inductively coupled plasma optical emission spectrometry

IDMS

Isotope dilution mass spectrometry

LC-MS/MS

Liquid chromatography with tandem mass spectrometry detection

LOD

Limit of detection

LOQ

Limit of quantification

LRAT

Long-range atmospheric transport

NNA

Neuron activation analysis

OC

Organochlorine compound

OCP

Organochlorine pesticides

PAHs

Polycyclic aromatic hydrocarbons

PBDEs

Polybrominated diphenyl ethers

PCBs

Polychlorinated biphenyls

PCDDs

Polychlorinated dibenzodioxins

PCDFs

Polychlorinated dibenzofurans

PCNs

Polychlorinated naphthalenes

PFBS

Perfluorobutane sulfonate

PFHxA

Perfluorohexanoic acid

PFNA

Perfluorononanoic acid

PFOA

Perfluorooctanoic acid

PFOS

Perfluorooctanesulfonic acid

POPs

Persistent organic pollutants

QqQ

Triple quadrupole

SFC

Supercritical fluid chromatography

SML

Surface microlayer

TC

Thermal conductivity

TLC

Thin-layer chromatography

TOC

Total organic carbon

TOF

Time of flight analyzer

XRF

X-ray fluorescence

References

  1. Ahn I-Y, Lee SH, Kimt KT, Shim JH, Kim D-Y (1996) Baseline heavy metal concentrations in the Antarctic clam, Laternula elliptica in Maxwell Bay, King George Island, Antarctica. Mar Pollut Bull 32:59–598Google Scholar
  2. Ahrens L, Xie Z, Ebinghaus R (2010) Distribution of perfluoroalkyl compounds in seawater from Northern Europe, Atlantic Ocean, and Southern Ocean. Chemosphere 78:1011–1016Google Scholar
  3. Aisable J, Balks M, Foght J, Waterhouse A (2004) Hydrocarbon spills on Antarctic soils: effects and management. Environ Sci Technol 38:1265–1274Google Scholar
  4. Aislabie J, Balks M, Astori N, Stevenson G, Symons R (1999) Polycyclic aromatic hydrocarbons in fuel-oil contaminated soils, Antarctica. Chemosphere 39:2201–2207Google Scholar
  5. Alam IA, Sadiq M (1993) Metal concentrations in antarctic sediment samples collected during the Trans-Antarctica 1990 expedition. Mar Pollut Bull 26:523–527Google Scholar
  6. Albert MR, Shultz EF (2002) Snow and firn properties and air–snow transport processes at Summit, Greenland. Atmos Environ 36:2789–2797Google Scholar
  7. Andrade S, Poblet A, Scagliola M, Vodopivez C, Curtosi A, Pucci A, Marcovecchio J (2001) Distribution of heavy metals in surface sediments from an Antarctic marine ecosystem. Environ Monit Assess 66:147–158Google Scholar
  8. Antony R, Mahalinganathan K, Thamban M, Nair S (2011) Organic carbon in Antarctic snow: spatial trends and possible sources. Environ Sci Technol 45:9944–9950Google Scholar
  9. Aono S, Tanabe S, Fujise Y, Kat H, Tatsukawa R (1997) Persistent organochlorines in minke whale (Balaenoptera acutorostrata) and their prey species from the Antarctic and the North Pacific. Environ Pollut 98:81–89Google Scholar
  10. Aronson RB, Thatje S, Mc Clintock JB, Hughes K (2011) Anthropogenic impacts on marine ecosystems in Antarctica. Ann N Y Acad Sci 1223:82–107Google Scholar
  11. Bacci E, Calamari D, Gaggi C, Fanelli R, Focardi S, Morosini M (1986) Chlorinated hydrocarbons in lichen and moss samples from the Antarctic Peninsula. Chemosphere 15:747–754Google Scholar
  12. Baek S-Y, Choi S-D, Chang Y-S (2011) Three-year atmospheric monitoring of organochlorine pesticides and polychlorinated biphenyls in Polar Regions and the South Pacific. Environ Sci Technol 45:4475–4482Google Scholar
  13. Bargagli R, Brown DH, Nelli L (1995) Metal biomonitoring with mosses: procedures for correcting for soil contamination. Environ Pollut 89:169–175Google Scholar
  14. Bargagli R (2008) Environmental contamination in Antarctic ecosystems. Sci Total Environ 400:212–226Google Scholar
  15. Bargagli R, Monaci F, Bucci C (2007) Environmental biogeochemistry of mercury in Antarctic ecosystems. Soil Biol Biochem 39(1):352–360Google Scholar
  16. Bargagli R, Sanchez-Hernandez JC, Martella L, Monaci F (1998) Mercury, cadmium and lead accumulation in Antarctic mosses growing along nutrient and moisture gradients. Polar Biol 19:316–322Google Scholar
  17. Bargagli R, Sanchez-Hernandez JC, Monaci F (1999) Baseline concentrations of elements in the Antarctic macrolichen Umbilicaria decussata. Chemosphere 38:475–487Google Scholar
  18. Bargagli R (2001) Trace metals in Antarctic organisms and the development of circumpolar biomonitoring networks. Rev Environ Contam Toxicol 171:53–110Google Scholar
  19. Bengtson Nash M, Xiao H, Schlabach M, King C, Stark JS, Hung H (2011) Contaminant profiles of air and soil around Casey station, Antarctica; Discerning local and distant contaminant sources, Society for Environmental Toxicology and Chemistry (SETAC) Europe Proceedings, 21. http://milano.setac.eu/?contentid=291. Accessed 28 Oct 2015
  20. Bengtson Nash S, Rintoul SR, Kawaguchi S, Staniland I, Hoff J, Tierney M, Bossi R (2010) Perfluorinated compounds in the Antarctic region: ocean circulation provides prolonged protection from distant sources. Environ Pollut 158:2985–2991Google Scholar
  21. Bicego MC, Weber RR, Goncalves Ito RR (1996) Aromatic hydrocarbons on surface waters of Admiralty Bay, King George Island, Antarctica. Mar Pollut Bull 32:549–553Google Scholar
  22. Bidleman TF, Walla MD, Roura R, Carr E, Schmidt S (1993) Organochlorine pesticides in the atmosphere of the Southern Ocean and Antarctica. Mar Pollut Bull 26:258–262Google Scholar
  23. Boccaletti C, Felice P, Santini E (2014) Integration of renewable power systems in an Antarctic Research Station. Renew Energ 62:582–591Google Scholar
  24. Borghesi N, Corsolini S, Focardi S (2008) Levels of polybrominated diphenyl ethers (PBDEs) and organochlorine pollutants in two species of Antarctic fish (Chionodraco hamatus and Trematomus bernacchii). Chemosphere 73:155–160Google Scholar
  25. Borghesi N, Corsolini S, Leonards P, Brandsma S, Boer J, Focardi S (2009) Polybrominated diphenyl ether contamination levels in fish from the Antarctic and the Mediterranean Sea. Chemosphere 77:693–698Google Scholar
  26. Borghini F, Grimalt JO, Sanchez-Hernandez JC, Bargagli R (2005) Organochlorine pollutants in soils and mosses from Victoria Land (Antarctica). Chemosphere 58:271–278Google Scholar
  27. Boutron CF, Patterson CC (1983) The occurrence of lead in Antarctic recent snow, firn deposited over the last two centuries and prehistoric ice. Geochim Cosmochim Acta 47:1355–1368Google Scholar
  28. Boutron C (1979) Alkali and alkaline earth enrichments in aerosols deposited in Antarctic snow. Atmos Environ (1967) 13:919–924Google Scholar
  29. Boutron C, Echevin M, Lorius C (1972) Chemistry of polar snows. Estimation of rates of deposition in Antarctica. Geochim Cosmochim Acta 36:1029–1041Google Scholar
  30. Boutron C, Leclerc M, Risler N (1984) Atmospheric trace elements in antarctic prehistoric ice collected at a coastal ablation area. CACGP Symposium on Tropospheric Chemistry with Emphasis on Sulphur and Nitrogen Cycles and the Chemistry of Clouds and Precipitation. Atmos Environ (1967) 18:1947–1953Google Scholar
  31. Boutron C (1982) Atmospheric trace metals in the snow layers deposited at the South Pole from 1928 to 1977. Atmos Environ (1967) 16:2451–2459Google Scholar
  32. Boutron CF, Bolshov MA, Koloshnikov VG, Patterson CC, Barkov NI (1990) Direct determination of lead in vostok antarctic ancient ice by laser excited atomic fluorescence spectrometry. Atmos Environ 24:1797–1800Google Scholar
  33. Brasso RL, Polito MJ (2013) Trophic calculations reveal the mechanism of population-level variation in mercury concentrations between marine ecosystems: case studies of two polar seabirds. Mar Pollut Bull 75:244–249Google Scholar
  34. Burniston DA, Strachan WJM, Hoff JT, Wania F (2007) Changes in surface area and concentrations of semivolatile organic contaminants in aging snow. Environ Sci Technol 41:4932–4937Google Scholar
  35. Burn-Nunes LJ, Vallelonga P, Loss RD, Burton GR, Moy A, Curran M, Rosman KJR (2011) Seasonal variability in the input of lead, barium and indium to Law Dome, Antarctica. Geochim Cosmochim Acta 75:1–20Google Scholar
  36. Burton HR (1981) Chemistry, physics and evolution of Antarctic saline lakes. Hydrobiologia 82:339–362Google Scholar
  37. Bustnes JO, Tveraa T, Henden JA, Janssen K, Skaare JU (2006) Organochlorines in Antarctic and Arctic Avian top predators: a comparison between the South Polar Skua and two species of Northern Hemisphere Gulls. Environ Sci Technol 40:2826–2831Google Scholar
  38. Cabrerizo A, Dachs J, Barceló D, Jones KC (2012) Influence of organic matter content and human activities on the occurrence of organic pollutants in Antarctic soils, lichens, grass, and mosses. Environ Sci Technol 46:1396–1405Google Scholar
  39. Cabrerizo A, Dachs J, Barceló D, Jones KC (2013) Climatic and biogeochemical controls on the remobilization and reservoirs of persistent organic pollutants in Antarctica. Environ Sci Technol 47:4299–4306Google Scholar
  40. Cabrerizo A, Galbán-Malagón C, Del Vento S, Dachs J (2014) Sources and fate of polycyclic aromatic hydrocarbons in the Antarctic and Southern Ocean atmosphere. Global Biogeochem Cycles 28:1424–1436Google Scholar
  41. Cai M, Yang H, Xie Z, Zhao Z, Wang F, Lu Z, Sturm R, Ebinghaus R (2012) Per- and polyfluoroalkyl substances in snow, lake, surface runoff water and coastal seawater in Fildes Peninsula, King George Island, Antarctica. J Hazard Mater 209–210:335–342Google Scholar
  42. Capelli R, Minganti V, Chiarini C, Pellegrini R (1998) Mercury in snow layers from the Antarctica. Int J Environ Anal Chem 71:289–296Google Scholar
  43. Caricchia AM, Chiavarini S, Cremisini C, Morabito R, Perini A, Pezza M (1995) Determination of PAH in atmospheric particulates in the area of the Italian base in Antarctica: report on monitoring activities during the last three scientific expeditions. Environ Pollut 87:345–356Google Scholar
  44. Caroli S (2001) Environmental chemistry in Antarctica: the quest for accuracy. In: Caroli S, Cescon P, Walton DWH (eds) Environmental contamination in Antarctica. The challenge to analytical chemistry. Elsevier, Amsterdam, pp 1–32Google Scholar
  45. Carrasco MA, Prendez M (1991) Element distribution of soils of continental Chile and the Antarctic Peninsula. Projection to atmospheric pollution. Water Air Soil Pollut 57–58:713–722Google Scholar
  46. Chiuchiolo AL, Dickhut RM, Cochran MA, Ducklow HW (2004) Persistent organic pollutants at the base of the Antarctic marine food web. Environ Sci Technol 38(13):3551–3557Google Scholar
  47. Choi S-D, Baek S-Y, Chang Y-S, Wania F, Ikonomou MG, Yoon Y-J, Hong S (2008) Passive air sampling of polychlorinated biphenyls and organochlorine pesticides at the Korean Arctic and Antarctic research stations: implications for long-range transport and local pollution. Environ Sci Technol 42:7125–7131Google Scholar
  48. Ciaralli L, Giordano R, Lombardi G, Beccaloni E, Sepe A, Costantini S (1998) Antarctic marine sediments: distribution of element and textural characters. Microchem J 59:77–88Google Scholar
  49. Cincinelli A, Dickhut RM (2011) Levels and trends of organochlorine pesticides (OCPS) in Antarctica. Environ Res J 5(4):523–545Google Scholar
  50. Cincinelli A, Martellini T, Bittoni L, Russo A, Gambaro A, Lepri L (2008) Natural and anthropogenic hydrocarbons in the water column of the Ross Sea (Antarctica). J Mar Syst 73:208–220Google Scholar
  51. Cincinelli A, Martellini T, Del Bubba M, Lepri L, Corsolini S, Borghesi N, King MD, Dickhut RM (2009) Organochlorine pesticide air–water exchange and bioconcentration in krill in the Ross Sea. Environ Pollut 157:2153–2158Google Scholar
  52. Cipro CVZ, Bustamante P, Taniguchi S, Montone RC (2012) Persistent organic pollutants and stable isotopes in pinnipeds from King George Island, Antarctica. Mar Pollut Bull 64:2650–2655Google Scholar
  53. Cipro CVZ, Taniguchi S, Montone RC (2010) Occurrence of organochlorine compounds in Euphausia superba and unhatched eggs of Pygoscelis genus penguins from Admiralty Bay (King George Island, Antarctica) and estimation of biomagnification factors. Chemosphere 78:767–771Google Scholar
  54. Cipro CVZ, Yogui GT, Bustamante P, Taniguchi S, Sericano JL, Montone RC (2011) Organic pollutants and their correlation with stable isotopes in vegetation from King George Island, Antarctica. Chemosphere 85:393–398Google Scholar
  55. Clarke A, Law R (1981) Aliphatic and aromatic hydrocarbons in benthic invertebrates from two sites in Antarctica. Mar Pollut Bull 12:10–14Google Scholar
  56. COMNAP Information (2015).https://www.comnap.aq/Information/SitePages/Home.aspx. Accessed 18 Sep 2015
  57. Corsolini S, Borghesi N, Ademollo N, Focardi S (2011) Chlorinated biphenyls and pesticides in migrating and resident seabirds from East and West Antarctica. Environ Int 37:1329–1335Google Scholar
  58. Corsolini S, Borghesi N, Schiamone A, Focardi S (2007) Polybrominated diphenyl ethers, polychlorinated dibenzo-dioxins, -furans, and -biphenyls in three species of Antarctic Penguins. Environ Sci Pollut Res 14:421–429Google Scholar
  59. Corsolini S, Covaci A, Ademollo N, Focardi S, Schepens P (2006) Occurrence of organochlorine pesticides (OCPs) and their enantiomeric signatures, and concentrations of polybrominated diphenyl ethers (PBDEs) in the Adelie penguin food web, Antarctica. Environ Pollut 140:371–382Google Scholar
  60. Corsolini S, Kannan K, Imagawa T, Focardi S, Giesy J (2002a) Polychloronaphtalenes and other dioxin-like compounds in Arctic and Antarctic marine food webs. Environ Sci Technol 36:3490–3496Google Scholar
  61. Corsolini S, Romeo T, Ademollo N, Greco S, Focardi S (2002b) POPs in key species of marine Antarctic ecosystem. Microchem J 73:187–193Google Scholar
  62. Corsolini S (2009) Industrial contaminants in Antarctic biota. J Chromatogr A 1216:598–612Google Scholar
  63. Court GS, Davis LS, Focardi S, Bargargli R, Fossi C, Leonzio C, Marili L (1997) Chlorinated hydrocarbons in the tissues of South Polar Skuas (Catharacta maccormicki) and Adélie Penguins (Pygoscelis adeliea) from Ross Sea, Antarctica. Environ Pollut 97:295–301Google Scholar
  64. Crespi VC, Genova N, Tositti L, Tubertini O, Bettoli G, Oddone M, Meloni S, Berzero A (1993) Trace elements distribution in Antarctic sediments by neutron activation analysis. J Rad Nucl Chem 168:107–114Google Scholar
  65. Cripps GC (1992) The extent of hydrocarbon contamination in the marine environment from a research station in the Antarctic. Mar Pollut Bull 25:288–292Google Scholar
  66. Crockett AB, White GJ (2003) Mapping sediment contamination and toxicity in winter quarters bay, McMurdo station, Antarctica port station for the United States Antarctic Program (USAP), and is located Ad-Jacent to Winter Quarters Bay (WQB), a small embayment on Ross Island. Environ Monit Assess 85:257–275Google Scholar
  67. Curtosi A, Pelletier E, Vodopivez CL, Mac Cormack WP (2007) Polycyclic aromatic hydrocarbons in soil and surface marine sediment near Jubany Station (Antarctica). Role of permafrost as a low-permeability barrier. Sci Total Environ 383:193–204Google Scholar
  68. Curtosi A, Pelletier E, Vodopivez C, Louis R, Mac Cormack WP (2010) Presence and distribution of some persistent toxic substances in sediments and marine organisms of Potter Cove, Antarctica. Arch Environ Contam Toxicol 59:582–592Google Scholar
  69. Dastidar PG, Ramachandran S (2008) Intellectual structure of Antarctic science: a 25-years analysis. Scientometrics 77:389–414Google Scholar
  70. Dauner ALL, Hernández E, MacCormack WP, Martins CC (2014) Molecular characterization of anthropogenic sources of sedimentary organic matter from Potter Cove, King George Island, Antarctica. Sci Total Environ 502:408–416Google Scholar
  71. Delmas RJ, Gravenhorst G (1983) Background precipitation acidity. In: Acid deposition. Commission of the Communities, Brussels, pp 82–107Google Scholar
  72. Delmas R, Boutron C (1978) Sulfate in Antarctic snow: spatio-temporal distribution, Sulfur in the Atmosphere Proceedings of the International Symposium Held in Dubrovnik. Yugoslavia, 7–14 Sep 1977, pp 723–728Google Scholar
  73. Dickhut RM, Cincinelli A, Cochran M, Ducklow HW (2005) Atmospheric concentrations and air-water flux of organochlorine pesticides along the Western Antarctic Peninsula. Environ Sci Technol 39:465–470Google Scholar
  74. Dodds K (2010) Governing Antarctica: contemporary challenges and the enduring legacy of the 1959 Antarctic Treaty. Global Policy 1:108–115Google Scholar
  75. Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983Google Scholar
  76. Edwards R, Sedwick P, Land E (2001) Iron in East Antarctic snow: implications for atmospheric iron deposition and algal production in Antarctic waters. Geophys Res Lett 28:3907–3910Google Scholar
  77. Edwards R, Sedwick P, Morgan V, Boutron C (2006) Iron in ice cores from Law Dome: a record of atmospheric iron deposition for maritime East Antarctica during the Holocene and Last Glacial Maximum. Geochem Geophy Geosy 7:1–15Google Scholar
  78. Fischer WH, Lodge JP, Wartburg AF, Pate JB (1967) Estimation of some atmospheric trace gases in Antarctica. Environ Sci Technol 78:1967–1969Google Scholar
  79. Fischer R, Weller R, Jacobi H-W, Ballschmiter K (2002) Levels and pattern of volatile organic nitrates and halocarbons in the air at Beumayer Station (70°S), Antarctic. Chemosphere 48:981–992Google Scholar
  80. Focardi S, Gaggi C, Chemello G, Bacci E (1991) Organochlorine residues in moss and lichen samples from two Antarctic areas. Polar Record 27:241–244Google Scholar
  81. Fortner SK, Lyons BW, Olesik JW (2011) Eolian deposition of trace elements onto Taylor Valley Antarctic glaciers. Appl Geochem 26:1897–1904Google Scholar
  82. Fuoco R, Capodaglio R, Muscatello B, Radaelli M (2009a) Persistent organic pollutants (POPs) in the Antarctic environment. A review of findings. The SCAR Action Group on Environmental Contamination in Antarctica. http://www.iau.gub.uy/medioambiente/docs-mamb/Otros-docs/POPs_in_Antarctica.pdf. Accessed 28 Oct 2015
  83. Fuoco R, Colombini MP, Ceccarini A, Abete C (1996) Polychlorobiphenyls in Antarctica. Microchem J 54:384–390Google Scholar
  84. Fuoco R, Giannarelli S, Onor M, Ghimenti S, Abete C, Termine M, Francesconi S (2012) A snow/firn four-century record of polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs) at Talos Dome (Antarctica). Microchem J 105:133–141Google Scholar
  85. Fuoco R, Giannarelli S, Wei Y, Ceccarini A, Abete C, Francesconi S, Termine M (2009b) Persistent organic pollutants (POPs) at Ross Sea (Antarctica). Microchem J 92:44–48Google Scholar
  86. Galbán-Malagón C, Cabrerizo A, Caballero G, Dachs J (2013a) Atmospheric occurrence and deposition of hexachlorobenzene and hexachlorocyclohexanes in the Southern Ocean and Antarctic Peninsula. Atmos Environ 80:41–49Google Scholar
  87. Galbán-Malagón CJ, Del Vento S, Berrojalbiz N, Ojeda M-J, Dachs J (2013b) Polychlorinated biphenyls, hexachlorocyclohexanes and hexachlorobenzene in seawater and phytoplankton from the Southern Ocean (Weddell, South Scotia, and Bellingshausen Seas). Environ Sci Technol 47:5578–5587Google Scholar
  88. Galbán-Malagón CJ, Del Vento S, Cabrerizo A, Dachs J (2013c) Factors affecting the atmospheric occurrence and deposition of polychlorinated biphenyls in the Southern Ocean. Atmos Chem Phys 13:12029–12041Google Scholar
  89. Gambaro A, Manodori L, Zangrando R, Cincinelli A, Capodaglio G, Cescon P (2005) Atmospheric PCB concentrations at Terra Nova Bay. Environ Sci Technol 39:9406–9411Google Scholar
  90. Gasparics T, Marıa R (2000) Determination of trace elements in Antarctic krill samples by inductively coupled atomic emission and graphite furnace atomic absorption spectrometry. Microchem J 67:279–284Google Scholar
  91. Geisz HN, Dickhut RM, Cochran MA, Fraser WR, Ducklow HW (2008) Melting glaciers: a probable source of DDT to the Antarctic Marine Ecosystem. Environ Sci Technol 42:3958–3962Google Scholar
  92. Giordano R, Lombardi G, Ciaralli L, Beccaloni E, Sepe A, Ciprotti M, Costantini S (1999) Major and trace elements in sediments from Terra Nova. Sci Total Environ 227:29–40Google Scholar
  93. Gjessing Y (1989) Excess and deficit of sulfate in polar snow. Atmos Environ 23:155–160Google Scholar
  94. Gjessing Y (1984) Marine and non-marine contribution to the chemical composition of snow at the Riiser-Larsenisen Ice Shelf in Antarctica. Atmos Environ (1967) 18:825–830Google Scholar
  95. Görlach U, Boutron CF (1992) Variations in heavy metals concentrations in Antarctic snows from 1940 to 1980. J Atmos Chem 14:205–222Google Scholar
  96. Green G, Skerratt JH, Leeming R, Nichols PD (1992) Hydrocarbon and coprostanol levels in seawater, sea-ice algae and sediments near Davis station in eastern Antarctica: a regional survey and preliminary results for a field fuel spill experiment. Mar Pollut Bull 25:293–302Google Scholar
  97. Green WJ, Ferdelman GF, Canfield DE (1989) Metal dynamics in Lake Vanda (Wright Valley, Antarctica). Chem Geol 76:85–94Google Scholar
  98. Guerra MBB, Neto EL, Prianti MTA, Pereira-Filho ER, Schaefer CEGR (2013) Post-fire study of the Brazilian Scientific Antarctic Station: toxic element contamination and potential mobility on the surrounding environment. Microchem J 110:21–27Google Scholar
  99. Hale RC, Kim SL, Harvey E, Guardia MJ, Mainor TM, Bush EO, Jacobs EM (2008) Antarctic research bases: local sources of polybrominated diphenyl ether (PBDE) flame retardants. Environ Sci Technol 42:1452–1457Google Scholar
  100. Han Y, Huh Y, Hong S, Hur S, Motoyama H (2013) Evidence of air-snow mercury exchange recorded in the snowpack at Dome Fuji. Antarctica. Geosci J 18:105–113Google Scholar
  101. Herbert BMJ, Halsall CJ, Jones KC, Kallenborn R (2006a) Field investigation into the diffusion of semi-volatile organic compounds into fresh and aged snow. Atmos Environ 40:1385–1393Google Scholar
  102. Herbert BMJ, Villa S, Halsall CJ (2006b) Chemical interactions with snow: understanding the behavior and fate of semi-volatile organic compounds in snow. Ecotox Environ Safe 63:3–16Google Scholar
  103. Hong S, Boutron CF, Edwards R, Morgan V (1998) Heavy metals in Antarctic Ice from Law Dome: initial results. Environ Res A 78:94–103Google Scholar
  104. Hong S, Soyol-Erdene T-O, Hwang HJ, Hong SB, Hur SD, Motoyama H (2012) Evidence of global-scale As, Mo, Sb, and Tl atmospheric pollution in the Antarctic Snow. Environ Sci Technol 46:11550–11557Google Scholar
  105. Houde M, De Silva AO, Muir DC, Letcher RJ (2011) Monitoring of perfluorinated compounds in aquatic biota: an updated review. Environ Sci Technol 19:7962–7973Google Scholar
  106. House DA, Hoare RA, Popplewell KB, Henderson RA, Prebble WM, Wilson AT (1966) Chemistry in the Antarctic. J Chem Educ 43:502–505Google Scholar
  107. Huang T, Sun L, Wang Y, Chu Z, Qin X, Yang L (2014) Transport of nutrients and contaminants from ocean to island by emperor penguins from Amanda Bay, East Antarctic. Sci Total Environ 468–469:578–583Google Scholar
  108. Ianni C, Magi E, Soggia F, Rivaro P, Frache R (2010) Trace metal speciation in coastal and off-shore sediments from Ross Sea (Antarctica). Microchem J 96:203–212Google Scholar
  109. Inomata ONK, Montone RC, Lara WH, Weber RR, Toledo HHB (1996) Tissue distribution of organochlorine residues – PCBs and pesticides – in Antarctic penguins. Antarct Sci 8:253–255Google Scholar
  110. Jerez S, Motas M, Benzal J, Diaz J, Barbosa A (2013a) Monitoring trace elements in Antarctic penguin chicks from South Shetland. Mar Pollut Bull 69:67–75Google Scholar
  111. Jerez S, Motas M, Benzal J, Diaz J, Vidal V, D’Amico V, Barbosa A (2013b) Distribution of metals and trace elements in adult and juvenile penguins from the Antarctic Peninsula area. Environ Sci Pollut Res Int 20:3300–3311Google Scholar
  112. Jerez S, Motas M, Palacios MJ, Valera F, Cuervo JJ, Barbosa A (2011) Concentration of trace elements in feathers of three Antarctic penguins: geographical and interspecific differences. Environ Pollut 159:2412–2419Google Scholar
  113. Jiratu P, Gabrielli P, Marteel A, Plane JMC, Planchon FAM, Gauchard PA, Ferrari CP, Boutron CF, Adams FC, Hong S, Cescon P, Barbante C (2009) Atmospheric depletion of mercury over Antarctica during glacial periods. Nat Geosci 2:505–508Google Scholar
  114. Kallenborn R, Breivik K, Eckhardt S, Lunder CR, Manø S, Schlabach M, Stohl A (2013) Long-term monitoring of persistent organic pollutants (POPs) at the Norwegian Troll station in Dronning Maud Land, Antarctica. Atmos Chem Phys Discuss 13:6219–6246Google Scholar
  115. Kallenborn R, Oehme M, Wynn-Williams DD, Schlabach M, Harris J (1998) Ambient air levels and atmospheric long-range transport of persistent organochlorines to Signy Island, Antarctica. Sci Total Environ 220:167–180Google Scholar
  116. Kang J-H, Son M-H, Hur SD, Hong S, Motoyama H, Fukui K, Chang Y-S (2012) Deposition of organochlorine pesticides into the surface snow of East Antarctica. Sci Total Environ 433:290–295Google Scholar
  117. Kennicutt M II, McDonald S, Sericano J (1995) Human contamination of the marine environment - Arthur Harbor and McMurdo Sound, Antarctica. Environ Sci Technol 29:1279–1287Google Scholar
  118. Kim M, Kennicutt MC, Qian Y (2006) Molecular and stable carbon isotopic characterization of PAH contaminants at McMurdo Station, Antarctica. Mar Pollut Bull 52:1585–1590Google Scholar
  119. Klánová J, Matykiewiczová N, Mácka Z, Prosek P, Láska K, Klán P (2008) Persistent organic pollutants in soils and sediments from James Ross Island, Antarctica. Environ Pollut 152:416–423Google Scholar
  120. Köler P (2013) Stulecie zdobycia południowego bieguna ziemi. Kwart Hist Nauki Tech 58:57–75, http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.cejsh-11f2d66e-c096-4c87-9b37-327c9f94f8d7. Accessed 29 Oct 2015Google Scholar
  121. Kozak K, Polkowska Ż, Ruman M, Kozioł K, Namieśnik J (2013) Analytical studies on the environmental state of the Svalbard archipelago - critical source of information about anthropogenic global impact. Trends Anal Chem 50:107–126Google Scholar
  122. Krahn MM, Hanson MB, Baird RW, Boyer RH, Burrows DG, Emmons CK, Ford JKB, Jones LL, Noren DP, Ross PS, Schorr GS, Collier TK (2007) Persistent organic pollutants and stable isotopes in biopsy samples (2004/2006) from southern resident killer whales. Mar Pollut Bull 54:1903–1911Google Scholar
  123. Kvenvolden KA, Rapp JB, Golan-Bac M, Hostettler FD (1987) Multiple sources of alkanes in Quaternary oceanic sediment of Antarctica. Org Geochem 11:291–302Google Scholar
  124. Lana NB, Berton P, Covaci A, Ciocco NF, Barrera-Oro E, Atencio A, Altamirano JC (2014) Fingerprint of persistent organic pollutants in tissues of Antarctic notothenioid fish. Sci Tot Environ 499:89–98Google Scholar
  125. Larsson P, Järnmark C, Södergren A (1992) PCBs and chlorinated pesticides in the atmosphere and aquatic organisms of Ross Island, Antarctica. Mar Pollut Bull 25:281–287Google Scholar
  126. Legrand BMR, Delmas RJ (1986) Relative contributions of tropospheric and stratospheric sources to nitrate in Antarctic snow. Tellus 38B:236–249Google Scholar
  127. Legrand M, Angelis M, Delmas RJ (1984) Ion chromatographic determination of common ions at ultratrace levels in Antarctic snow and ice. Anal Chim Acta 156:181–192Google Scholar
  128. Legrand MR, Lorius C, Barkov NI, Petrov VN (1988) Vostok (Antarctica) ice core: atmospheric chemistry changes over the last climatic cycle (160,000 years). Atmos Environ (1967) 22:317–331Google Scholar
  129. Lenihan HS (1992) Benthic marine pollution around McMurdo Station, Antarctica: a summary of findings. Mar Pollut Bull 25:318–323Google Scholar
  130. Li Y, Geng D, Liu F, Wang T, Zhang Q, Jiang H (2012) Study of PCBs and PBDEs in King George Island, Antarctica, using PUF passive air sampling. Atmos Environ 51:140–145Google Scholar
  131. Llorca M, Farré M, Tavano MS, Alonso B, Koremblit G, Barceló D (2012) Fate of a broad spectrum of perfluorinated compounds in soils and biota from Tierra del Fuego and Antarctica. Environ Pollut 163:158–166Google Scholar
  132. Lu Z, Cai M, Wang J, Yang H, He J (2012) Baseline values for metals in soils on Fildes Peninsula, King George Island, Antarctica: the extent of anthropogenic pollution. Environ Monit Assess 184:7013–7021Google Scholar
  133. Luke BG, Johnstone GW, Woehler EJ (1989) Organochlorine pesticides, PCBs and mercury in antarctic and subantarctic seabirds. Chemosphere 19:2007–2021Google Scholar
  134. Ma X, Zhang H, Zhou H, Na G, Wang Z, Chen C, Chen J (2014) Occurrence and gas/particle partitioning of short- and medium-chain chlorinated paraffins in the atmosphere of Fildes Peninsula of Antarctica. Atmos Environ 90:10–15Google Scholar
  135. Machado A, Lima EF, Chemale F Jr, Liz JD, Avila JN (2001) Química mineral de rochas vulcânicas da Península Fildes (Ilha Rei George), Antártica. Revista Brasileira de Geociências 31:299–306 (in Portuguese)Google Scholar
  136. Magi E, Tanwar S (2014) “Extreme Mass Spectrometry”: the role of mass spectrometry in the study of the Antarctic Environment. J Mass Spectrom 49:1071–1085Google Scholar
  137. Majer AP, Petti MAV, Corbisier TN, Ribeiro AP, Theophilo CYS, Ferreira PADL, Figueira RCL (2014) Bioaccumulation of potentially toxic trace elements in benthic organisms of Admiralty Bay (King George Island, Antarctica). Mar Pollut Bull 79:321–325Google Scholar
  138. Malcolm HM, Boyd IL, Osborn D, French MC, Freestone P (1994) Trace metals in Antarctic fur seal (Arctocephalus gazella) livers from Bird Island, South Georgia. Mar Pollut Bull 28:375–380Google Scholar
  139. Mão de Ferro A, Mota AM, Canário J (2014) Pathways and speciation of mercury in the environmental compartments of Deception Island, Antarctica. Chemosphere 95:227–233Google Scholar
  140. Mão de Ferro A, Mota AM, Canário J (2013) Sources and transport of As, Cu, Cd and Pb in the environmental compartments of Deception Island, Antarctica. Mar Pollut Bull 77:341–348Google Scholar
  141. Martins CC, Bícego MC, Rose NL, Taniguchi S, Lourenço R, Figueira RCL, Montone RC (2010) Historical record of polycyclic aromatic hydrocarbons (PAHs) and spheroidal carbonaceous particles (SCPs) in marine sediment cores from Admiralty Bay, King George Island, Antarctica. Environ Pollut 158:192–200Google Scholar
  142. Mazzera D, Hayes T, Lowenthal D, Zielinska B (1999) Quantification of polycyclic aromatic hydrocarbons in soil at McMurdo Station, Antarctica. Sci Total Environ 229:65–71Google Scholar
  143. McClurg TP (1984) Trace metals and chlorinated hydrocarbons in Ross seals from Antarctica. Mar Pollut Bull 15:384–389Google Scholar
  144. Merlin OH, Salvador GL, Vitturi LM, Pistolato M, Rampazzo G (1989) Preliminary results on trace element geochemistry of sediments from the Ross Sea, Antarctica. Boll Oceanol Teor Applic 7:97–108Google Scholar
  145. Michelutti N, Blais JM, Mallory ML, Brash J, Thienpont J, Kimpe LE, Douglas MSV, Smol JP (2010) Trophic position influences the efficacy of seabirds as metal biovectors. Proc Natl Acad Sci U S A 107:10543–10548Google Scholar
  146. Montone RC, Taniguchi S, Weber RR (2003) PCBs in the atmosphere of King George Island, Antarctica. Sci Tot Environ 308:167–173Google Scholar
  147. Montone RC, Taniguchi S, Weber RR (2001) Polychlorinated biphenyls in marine sediments of Admiralty Bay, King George Island. Mar Pollut Bull 42:611–614Google Scholar
  148. Montone RC, Weber RR, Taniguchi S (2005) PCBs and chlorinated pesticides (DDTs, HCHs and HCB) in the atmosphere of the southwest Atlantic and Antarctic oceans. Mar Pollut Bull 50:778–782Google Scholar
  149. Moreno JEA, Gerpe MS, Moreno VJ, Vodopivez C (1997) Heavy metals in Antarctic organisms. Polar Biol 17:131–140Google Scholar
  150. Murozumi M, Chow TJ, Patterson C (1969) Chemical concentrations of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata. Geochim Cosmochim Acta 33:1247–1294Google Scholar
  151. Myers CE, Hatcher RF, Tucker RC, Waugh NS (1980) Environmental assessment of Antarctic research. Environ Sci Technol 14(6):668–672Google Scholar
  152. Negoita TG, Covaci A, Gheorghe A, Schepens P (2003) Distribution of polychlorinated biphenyls (PCBs) and organochlorine pesticides in soils from the East Antarctic coast. J Environ Monit 5:281–286Google Scholar
  153. Negri A, Burns K, Boyle S, Brinkman S, Webster N (2006) Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environ Pollut 143:456–476Google Scholar
  154. Nemirovskaya I (2006) Organic compounds in the snow-ice cover of eastern Antarctica. Geochem Int 44:825–834Google Scholar
  155. Neubauer J, Heumann KG (1988) Nitrate trace determinations in snow and firn core samples of ice shelves at the Weddell Sea, Antarctica. Atmos Environ (1967) 22:537–545Google Scholar
  156. Niemistö L, Perttilä M (1995) Trace elements in the Weddell Sea water and sediments in the continental shelf area. Chemosphere 31:3643–3650Google Scholar
  157. Olech M, Kwiatek WM, Dutkiewicz EM (1998) Lead pollution in the Antarctic Region. X-Ray Spectrom 27:232–235Google Scholar
  158. Osyczka P, Dutkiewicz EM, Olech M (2007) Trace elements concentrations in selected moss and lichen species collected within Antarctic research stations. Pol J Ecol 55:39–48Google Scholar
  159. Ouyang X, Leonards P, Legler J, van der Oost R, de Boer J, Lamoree M (2015) Comprehensive two-dimensional liquid chromatography coupled to high resolution time of flight mass spectrometry for chemical characterization of sewage treatment plant effluents. J Chrom A 1380:139–145Google Scholar
  160. Palais JM (1988) Chemical composition of ice containing tephra layers in the Byrd Station ice core, Antarctica. Quatern Res 30:315–330Google Scholar
  161. Peel DA (1975) Organochlorine residues in Antarctic snow. Nature 254:324–325Google Scholar
  162. Peterle TJ (1969) DDT in Antarctic snow. Nature 224:620Google Scholar
  163. Petri G, Zauke CP (1993) Trace metals in crustaceans, in the Antarctic Ocean. Ambio 22:529–536Google Scholar
  164. Planchon FAM, Boutron CF, Barbante C, Wolff EW, Cozzi G, Gaspari V, Cescon P (2001) Ultrasensitive determination of heavy metals at the sub-picogram per gram level in ultraclean Antarctic snow samples by inductively coupled plasma sector field mass spectrometry. Anal Chim Acta 450:193–205Google Scholar
  165. Planchon FAM, Boutron CF, Barbante C, Cozzi G, Gaspari V, Wolff EW, Ferrari CP, Cescon P (2002) Short-term variations in the occurrence of heavy metals in Antarctic snow from Coats Land since the 1920s. Sci Tot Environ 300:129–142Google Scholar
  166. Platt HM, Mackie PR (1980) Distribution and fate of aliphatic and aromatic hydrocarbons in Antarctic fauna and environment. Helgoländer Meeresunters 33:236–245Google Scholar
  167. Płotka J, Tobiszewski M, Sulej AM, Kupska M, Górecki T, Namieśnik J (2013) Green chromatography. J Chrom A 1307:1–20Google Scholar
  168. Poblet A, Andrade S, Scagliola M, Vodopivez C, Curtosi A, Pucci A, Marcovecchio J (1997) The use of epilithic Antarctic lichens (Usnea aurantiacoatra and U. antartica) to determine deposition patterns of heavy metals in the Shetland Islands, Antarctica. Sci Total Environ 207:187–194Google Scholar
  169. Poigner H, Monien P, Monien D, Kriews M, Brumsack HJ, Wilhelms-Dick D, Abele D (2013) Influence of the porewater geochemistry on Fe and Mn assimilation in Laternula elliptica at King George Island (Antarctica). Estuar Coast Shelf Sci 135:285–295Google Scholar
  170. Polar Foundation Information (2014) http://www.polarfoundation.org. Accessed 12 Jan 2014
  171. Ribeiro AP, Figueira RCL, Martins CC, Silva CRA, França EJ, Bícego MC, Mahiques MM, Montone RC (2010) Arsenic, copper and zinc in marine sediments from the proximity of the Brazilian Antarctic base, Admiralty Bay, King George Island, Antarctica. Annual Activity Report 137–140Google Scholar
  172. Ribeiro AP, Figueira RCL, Martins CC, Silva CRA, França EJ, Montone RC (2011) Arsenic and trace metal contents in sediment profiles from the Admiralty Bay. Mar Pollut Bull 62:192–196Google Scholar
  173. Riidlein N, Heumann KG (1995) Size fractionated impactor sampling of aerosol particles over the Atlantic Ocean from Europe to Antarctica as a methodology for source identification of Cd, Pb, Tl, Ni, Cr, and Fe. J Anal Chem 352:748–755Google Scholar
  174. Risebrough RW, Reiche P, Olcott HS (1969) Current progress in the determination of the polychlorinated biphenyls. Bull Environ Contam Toxicol 4:192–201Google Scholar
  175. Risebrough RW, Carmlgnani GM (1972) Chlorinated hydrocarbons in Antarctic birds. In: Parker BC (ed) Proceedings of the colloquium. Conservation problems in Antarctica. Allen Press, Lawrence, KS, pp 63–78Google Scholar
  176. Risebrough RW, Walker W, Schmidt TT, Lappe BW, Connors CW (1976) Transfer of chlorinated biphenyls to Antarctica. Nature 264:738–739Google Scholar
  177. Risebrough RW, Lappe BW, Younghans-Haug C (1990) PCB and PCT contamination in Winter Quarters Bay, Antarctica. Mar Pollut Bull 21:523–529Google Scholar
  178. Santos IR, Silvafilho EV, Schaefer C, Maria S, Silva CA, Gomes V, Passos MJ, Van Ngan P (2006) Baseline mercury and zinc concentrations in terrestrial and coastal organisms of Admiralty Bay, Antarctica. Environ Pollut 140:304–311Google Scholar
  179. Runcie JW, Riddle MJ (2004) Metal concentrations in macroalgae from East Antarctica. Mar Pollut Bull 49:1109–1126Google Scholar
  180. Saigne C, Kirchner S, Legrand M (1987) Ion-chromatographic measurements of ammonium, fluoride, acetate, formate and methanesulphonate ions at very low levels in antarctic ice. Anal Chim Acta 203:11–21Google Scholar
  181. Santos IR, Fávaro DIT, Schaefer CERG, Silva-Filho EV (2007) Sediment geochemistry in coastal maritime Antarctica (Admiralty Bay, King George Island): evidence from rare earths and other elements. Mar Chem 107:464–474Google Scholar
  182. Santos IR, Silva-Filho EV, Schaefer CEGR, Albuquerque-Filho MR, Campos LS (2005) Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Mar Pollut Bull 50:185–194Google Scholar
  183. SCAR Information (2014) http://www.scar.org/information/. Accessed 13 Feb 2014
  184. Schiavone A, Corsolini S, Borghesi N, Focardi S (2009a) Contamination profiles of selected PCB congeners, chlorinated pesticides, PCDD/Fs in Antarctic fur seal pups and penguin eggs. Chemosphere 76:264–269Google Scholar
  185. Schiavone A, Corsolini S, Kannan K, Tao L, Trivelpiece W, Torrens D Jr, Focardi S (2009b) Perfluorinated contaminants in fur seal pups and penguin eggs from South Shetland, Antarctica. Sci Tot Environ 407:3899–3904Google Scholar
  186. Schiavone A, Kannan K, Horii Y, Focardi S, Corsolini S (2009c) Occurrence of brominated flame retardants, polycyclic musks, and chlorinated naphthalenes in seal blubber from Antarctica: comparison to organochlorines. Mar Pollut Bullet 58:1415–1419Google Scholar
  187. Seeley JV, Seeley SK (2013) Multidimensional gas chromatography: fundamental advances and new applications. Anal Chem 85:557–578Google Scholar
  188. Sen Gupta R, Sarkar A, Kureishey W (1996) PCBs and organochlorine pesticides in krill and water from Antarctica. Deep-Sea Res II 43:119–126Google Scholar
  189. Senthil K, Kannan K, Corsolini S (2002) Polychlorinated dibenzo-p-dioxins, dibenzofurans and polychlorinated biphenyls in polar bear, penguin and south polar skua. Environ Pollut 119:151–161Google Scholar
  190. Siegel SM, Siegel BZ, McMurtry G (1981) Antarctic iron-mercury abundance ratios: evidence for mercury depletion in an active volcanic zone. Water Air Soil Pollut 15:465–469Google Scholar
  191. Smichowski P, Vodopivez C, Muñoz-Olivas R, Gutierrez MA (2006) Monitoring trace elements in selected organs of Antarctic penguin (Pygoscelis adeliae) by plasma-based techniques. Microchem J 82:1–7Google Scholar
  192. Soyol-Erdene T-O, Huh Y, Hong S, Hur SD (2011) A 50-year record of platinum, iridium, and rhodium in Antarctic Snow: volcanic and anthropogenic sources. Environ Sci Technol 45:5929–5935Google Scholar
  193. Sprovieri F, Pirrone N, Hedgecock IM, Stevens RK (2002) Intensive atmospheric mercury measurements at Terra Nova Bay in Antarctica during November and December 2000. J Geophys Res 107:1–9Google Scholar
  194. Stortini AM, Martellini T, Del Bubba M, Lepri L, Capodaglio G, Cincinelli A (2009) N-Alkanes, PAHs and surfactants in the sea surface microlayer and sea water samples of the Gerlache Inlet sea (Antarctica). Microchem J 92:37–43Google Scholar
  195. Subramanian BR, Tanabe S, Hidaka H, Tatsukawa R (1983) DDTs and PCB isomers and congeners in Antarctic Fish. Arch Environ Contam Toxicol 12:621–626Google Scholar
  196. Sun W, Hu C, Weng H, Han Z, Shen C, Pan J (2013) Sources and geographic heterogeneity of trace metals in the sediments of Prydz Bay, East Antarctica. Polar Res 32:1–9Google Scholar
  197. Suttie ED, Wolff EW (1992) Seasonal input of heavy metals to Antarctic snow. Tellus 44B:351–357Google Scholar
  198. Szefer P, Czarnowski W, Pempkowiak J, Holm E (1993) Mercury and major essential elements in seals, penguins, and other representative fauna of the Antarctic. Arch Environ Contam Toxicol 25:422–427Google Scholar
  199. Taniguchi S, Montone RC, Bícego MC, Colabuono FI, Weber RR, Sericano JL (2009) Chlorinated pesticides, polychlorinated biphenyls and polycyclic aromatic hydrocarbons in the fat tissue of seabirds from King George Island, Antarctica. Mar Pollut Bull 58:129–133Google Scholar
  200. Tao L, Kannan K, Kajiwara N, Costa MM, Fillmann G, Takahashi S, Tanabe S (2006) Perfluorooctanesulfonate and related fluoro-chemicals in albatrosses, elephant seals, penguins, and polar skuas from the Southern Ocean. Environ Sci Technol 40:7642–7648Google Scholar
  201. Tartu S, Angelier F, Wingfield JC, Bustamante P, Labadie P, Budzinski H, Chastel O (2015) Corticosterone, prolactin and egg neglect behavior in relation to mercury and legacy POPs in a long-lived Antarctic bird. Sci Tot Environ 505:180–188Google Scholar
  202. Thamban M, Thakur RC (2013) Trace metal concentrations of surface snow from Ingrid Christensen Coast, East Antarctica--spatial variability and possible anthropogenic contributions. Environ Monit Assess 185:2961–2975Google Scholar
  203. Townsend T, Snape I (2008) Multiple Pb sources in marine sediments near the Australian Antarctic Station, Casey. Sci Tot Environ 389:466–474Google Scholar
  204. Trumble SJ, Robinson EM, Noren SR, Usenko S, Davis J, Kanatous SB (2012) Assessment of legacy and emerging persistent organic pollutants in Weddell seal tissue (Leptonychotes weddellii) near McMurdo Sound, Antarctica. Sci Tot Environ 439:275–283Google Scholar
  205. Upreti DK, Pandev V (1994) Heavy metals of Antarctic lichens. 1. Umbilicaria. Feddes Rep 105:197–199Google Scholar
  206. Vallelonga P, Gabrielli P, Balliana E, Wegner A, Delmonte B, Turetta C, Burton G, Vanhaecke F, Rosman KJR, Hongh S, Boutron CF, Cescon P, Barbante C (2010) Lead isotopic compositions in the EPICA Dome C ice core and Southern Hemisphere Potential Source Areas. Quaternary Sci Rev 29:247–255Google Scholar
  207. Vallelonga P, Velde K, Candelone J, Morgan VI, Boutron CF, Rosman KJR (2002) The lead pollution history of Law Dome, Antarctica, from isotopic measurements on ice cores: 1500 AD to 1989 AD. Earth Planet Sci Lett 204:291–306Google Scholar
  208. Van den Brink NW, Riddle MJ, Heuvel-Greve M, Franeker JA (2011) Contrasting time trends of organic contaminants in Antarctic pelagic and benthic food webs. Mar Pollut Bull 62:128–132Google Scholar
  209. Vandal GM, Mason RP, McKnight D, Fitzgerald W (1998) Mercury speciation and distribution in a polar desert lake (Lake Hoare, Antarctica) and two glacial meltwater streams. Sci Total Environ 213:229–237Google Scholar
  210. Vandal GM, Fitzgerald WF, Boutronl CF, Candelone JP (1995) Mercury in ancient ice and recent snow from the Antarctic. In: Ice core studies of global biogeochemical cycle, vol 130. Springer, New York, NY, pp 401–415Google Scholar
  211. Vecchiato M, Argiriadis E, Zambon S, Barbante C, Toscano G, Gambaro A, Piazza R (2015) Persistent Organic Pollutants (POPs) in Antarctica: occurrence in continental and coastal surface snow. Microchem J 119:75–82Google Scholar
  212. Velde K, Vallelonga P, Gaspari V, Cozzi G, Barbante C, Udisti R, Cescon P, Boutron CF (2005) Pb isotope record over one century in snow from Victoria Land, Antarctica. Earth Planet Sci Lett 232:95–108Google Scholar
  213. Venkatesan MI (1988) Organic geochemistry of marine sediments in Antarctic region: marine lipids in McMurdo Sound. Org Geochem 12:13–27Google Scholar
  214. Vodopivez C, Curtosi A, Villaamil E, Smichowski P, Pelletier E, Mac WP (2015) Metals in sediments and soft tissues of the Antarctic clam Laternula elliptica: more evidence as a? possible biomonitor of coastal marine pollution at high latitudes. Sci Tot Environ 502:375–384Google Scholar
  215. Völkening J, Baumann H, Heumann KG (1988) Atmospheric distribution of particulate lead over the Atlantic Ocean from Europe to Antarctica. Atmos Environ (1967) 22:1169–1174Google Scholar
  216. Völkening J, Heumann KG (1988) Determination of heavy metals at the pg/g level in Antarctic snow with DPASV and IDMS. Fresenius' Z Anal Chem 331:174–181Google Scholar
  217. Waheed S, Ahmad S, Rahman A, Qureshi IH (2001) Antarctic marine sediments as fingerprints of pollution migration. J Rad Nucl Chem 250:97–107Google Scholar
  218. Walton DWH, Scarponi G, Cescon P (2001) A scientific framework for environmental monitoring in Antarctica. In: Caroli S, Cescon P, Walton DWH (eds) Environmental contamination in Antarctica. The challenge to analytical chemistry. Elsevier, Amsterdam, pp 33–53Google Scholar
  219. Wania F (1997) Modelling the fate of non-polar organic chemicals in an ageing snow pack. Chemosphere 35:2345–2363Google Scholar
  220. Wania F, Hoff JT, Jia CQ, Mackay D (1998) The effects of snow and ice on the environmental behavior of hydrophobic organic chemicals. Environ Pollut 102:25–41Google Scholar
  221. Wania F, Semkin R, Hoff JT, Mackay D (1999) Modelling the fate of non-polar organic chemicals during the melting of an Arctic snowpack. Hydrol Process 13:2245–2256Google Scholar
  222. Weber K, Goerke H (2003) Persistent organic pollutants (POPs) in antarctic fish: levels, patterns, changes. Chemosphere 53:667–678Google Scholar
  223. Webster J, Webster K, Nelson P, Waterhouse E (2003) The behaviour of residual contaminants at a former station site, Antarctica. Environ Pollut 123:163–179Google Scholar
  224. Witherow RA, Lyons WB (2008) Mercury deposition in a polar desert ecosystem. Environ Sci Technol 42:4710–4716Google Scholar
  225. Wolff EW, Suttie ED, Prrl DA (1999) Antarctic snow record of cadmium, copper, and zinc content during the twentieth century. Atmos Environ 33:1535–1541Google Scholar
  226. Wu Q, Wang X, Zhou Q (2014) Biomonitoring persistent organic pollutants in the atmosphere with mosses: performance and application. Environ Int 66:28–37Google Scholar
  227. Xie Z, Sun L (2008) A 1,800-year record of arsenic concentration in the penguin dropping sediment, Antarctic. Environ Geol 55:1055–1059Google Scholar
  228. Yamamoto Y, Honda K, Hidaka H, Tatsukawa R (1987) Tissue distribution of heavy metals in Weddell seals (Leptonychotes weddellii). Mar Pollut Bull 18:164–169Google Scholar
  229. Yin X, Liu X, Sun L, Zhu R, Xie Z, Wang Y (2006) A 1500-year record of lead, copper, arsenic, cadmium, zinc level in Antarctic seal hairs and sediments. Sci Total Environ 371:252–257Google Scholar
  230. Yogui GT, Sericano JL, Montone RC (2011) Accumulation of semivolatile organic compounds in Antarctic vegetation: a case study of polybrominated diphenyl ethers. Sci Total Environ 409:3902–3908Google Scholar
  231. Yogui GT, Sericano JL (2009) Levels and pattern of polybrominated diphenyl ethers in eggs of Antarctic seabirds: endemic versus migratory species. Environ Pollut 157:975–980Google Scholar
  232. Yogui GT, Sericano JL (2008) Polybrominated diphenyl ether flame retardants in lichens and mosses from King George Island, maritime Antarctica. Chemosphere 73:1589–1593Google Scholar
  233. Yuguang W, Junlin Z (1991) Determination of rare earths and other trace elements in samples of Antarctica by neutron activation analysis. J Rad Nucl Chem 151:345–355Google Scholar
  234. Zhang L, Dickhut R, DeMaster D, Pohl K, Lohmann R (2013) Organochlorine pollutants in Western Antarctic Peninsula sediments and benthic deposit feeders. Environ Sci Technol 47:5643–5651Google Scholar
  235. Zoccolillo L, Amendola L, Cafaro C, Insogna S (2007) Volatile chlorinated hydrocarbons in Antarctic superficial snow sampled during Italian ITASE expeditions. Chemosphere 67:1897–1903Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Małgorzata Szopińska
    • 1
  • Jacek Namieśnik
    • 1
  • Żaneta Polkowska
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of ChemistryGdansk University of TechnologyGdanskPoland

Personalised recommendations