Advertisement

MIX: A general purpose multiagent architecture

  • Carlos A. Iglesias
  • José C. González
  • Juan R. Velasco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1037)

Abstract

The MIX multiagent architecture has been conceived as a general purpose distributed framework for the cooperation of multiple heterogeneous agents. This architecture, starting from previous work in our group on multiagent systems, has been redesigned and implemented within a research project investigating a particular class of hybrid systems: those integrated by connectionist and symbolic components.

This paper describes in some detail the principal concepts of the architecture: the network model and the agent model. Around these models, a set of languages and tools have been developed. In particular, an Agent Description Language (MIX-ADL) has been designed to specify agents declaratively in a hierarchy of classes.

Keywords

Multiagent System Agent Model Network Agent Context Vector Network Facility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nicholas M. Avouris and Les Gasser, editors. Distributed Artificial Intelligence: Theory and Praxis, volume 5 of Computer and Information Science. Kluwer Academic Publishers, 1992.Google Scholar
  2. 2.
    M. Barbuceanu and M. S. Fox. The architecture of an agent building shell. In Wooldridge et al. [26]. (In this volume).Google Scholar
  3. 3.
    R. P. Bonasso, D. Kortenkamp, D. P. Miller, and M. Slack. Experiences with an architecture for intelligent, reactive agents. In Wooldridge et al. [26]. (In this volume).Google Scholar
  4. 4.
    Alan H. Bond and Les Gasser, editors. Readings in Distributed Artificial Intelligence. Morgan Kaufmann, 1988.Google Scholar
  5. 5.
    K. Causse et al. Final discussion of the Common Knowledge Representation Language (CKRL). Deliverable D2.3, MLT Consortium, ESPRIT project 2154, May 1993.Google Scholar
  6. 6.
    Tomás Domínguez. Definición de un Modelo Concurrente Orientado a Objetos para Sistemas Multiagente. PhD thesis, Dep. Ingeniería de Sistemas Telemáticos, E.T.S.I. Telecomunicación, Universidad Politécnica de Madrid, 1992.Google Scholar
  7. 7.
    T. Finin and R. Fritzson. KQML — a language and protocol for knowledge and information exchange. In Proceedings of the Thirteenth International Workshop on Distributed Artificial Intelligence, pages 126–136, Lake Quinalt, WA, July 1994.Google Scholar
  8. 8.
    M. Genesereth, R. Fikes, et al. Knowledge Interchange Format, version 3.0. Reference manual. Technical report, Computer Science Department, Stanford University, 1992.Google Scholar
  9. 9.
    Michael R. Genesereth, Dave Gunning, Rick Hull, Larry Kerschberg, Roger King, Bob Neches, and Gio Wiederhold. Reference architecture 13 intelligent integration of information program. Draft, January 1995.Google Scholar
  10. 10.
    Michael R. Genesereth, Narinder P. Singh, and Mustafa A. Syed. A distributed and anonymous knowledge sharing approach to software interoperation. In Proceedings of the Third International Conference on Information and Knowledge Management, CIKM'94, November 1994.Google Scholar
  11. 11.
    Giarratano and Riley. Clips Manuals version 6.0. Software Technology Branch — Lyndon B. Johnson Space Center, 1993.Google Scholar
  12. 12.
    José C. González, Juan R. Velasco, Carlos A. Iglesias, Jaime Alvarez, and Andrés Escobero. A multiagent architecture for symbolic-connectionist integration. Technical Report MIX/WP1/UPM/3.0, Dep. Ingeniería de Sistemas Telemáticos, E.T.S.I. Telecomunicación, Universidad Politécnica de Madrid, December 1994.Google Scholar
  13. 13.
    Melanie Hilario, Christian Pellegrini, and Frédéric Alexandre. Modular integration of connectionist and symbolic processing in knowledge-based systems. In Proceedings of the International Symposium on Integrating Knowledge and Neural Heuristics, pages 123–132, Pensacola, Florida, May 1994.Google Scholar
  14. 14.
    ISO/IEC JTC1/SC 21. Draft recommendation X.9tr: ODP trading function ISO/IEC DIS 13235. Technical report, May 1995.Google Scholar
  15. 15.
    Larry R. Medsker. Hybrid Intelligent Systems. Kluwer Academic Publishers, 1995.Google Scholar
  16. 16.
    J. P. Müller. A markovian model for interaction among behavior-based agents. In Wooldridge et al. [26]. (In this volume).Google Scholar
  17. 17.
    S.-J. Pelletier and J.-F. Arcand. Cognitive based multiagent architecture. In Wooldridge et al. [26]. (In this volume).Google Scholar
  18. 18.
    Agostino Poggi. DAISY: an object-oriented system for distributed artificial intelligence. In Wooldridge and Jennings, pages 297–306.Google Scholar
  19. 19.
    A. Sloman and R. Poli. SIM_AGENT: A toolkit for exploring agent designs. In Wooldridge et al. [26]. (In this volume).Google Scholar
  20. 20.
    Reid G. Smith. The contract net protocol: High-level communication and control in a distributed problem solver. In Bond and Gasser [5], pages 357–366.Google Scholar
  21. 21.
    D. D. Steiner, A. Burt, M. Kolb, and Ch. Lerin. The conceptual framework of MAI2L. In Pre-Proceedings of MAAMAW'93, Neuchâtel, Switzerland, August 1993.Google Scholar
  22. 22.
    Katia Sycara and Michael Roboam. Distributed Artificial Intelligence: Theory and Praxis, chapter 2. EMMA: An Architecture for Enterprise Modeling and Integration, pages 197–213. Volume 5 of Avouris and Gasser [2], 1992.Google Scholar
  23. 23.
    Juan R. Velasco, José C. González, Carlos A. Iglesias, and Luis Magdalena. Multiagent based control systems: a hybrid approach to distributed process control. In A.E.K. Sahraoui and J.A. de la Puente, editors, Preprints of the 13th IFAC Workshop on Distributed Computer Control Systems, DCCS-95, pages 7–12, Toulouse, France, September 1995.Google Scholar
  24. 24.
    Sankar Virdhagriswaran. Heterogeneous information systems integration — an agent messaging based approach. In Proceedings of the Third International Conference on Information and Knowledge Management (CIKM'94), November 1994.Google Scholar
  25. 25.
    D. Weerasooriya, A. Rao, and K. Ramamohanarao. Design of a concurrent agent-oriented language. In M. Wooldridge and N. R. Jennings, editors, Intelligent Agents: Theories, Architectures, and Languages (LNAI Volume 890), pages 386–402. Springer-Verlag: Heidelberg, Germany, January 1995.Google Scholar
  26. 26.
    M. Wooldridge, J. P. Müller, and M. Tambe, editors. Intelligent Agents Volume II — Proceedings of the 1995 Workshop on Agent Theories, Architectures, and Languages (ATAL-95, volume ??? of Lecture Notes in Artificial Intelligence. Springer-Verlag, 1996. (In this volume).Google Scholar
  27. 27.
    Michael Wooldridge and Nicholas Jennings, editors. Agent theories, architectures, and languages, Amsterdam, The Netherlands, August 1994. ECAI.Google Scholar
  28. 28.
    Akinori Yonezawa and Etsuya Shibayama. Object-oriented concurrent programming in ABCL/1. In Bond and Gasser [5], pages 434–445.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Carlos A. Iglesias
    • 1
  • José C. González
    • 1
  • Juan R. Velasco
    • 1
  1. 1.Dep. Ing. Sistemas Telemáticos, E.T.S.I. TelecomunicaciónUniversidad Politécnica de MadridMadridSpain

Personalised recommendations