Biopolymers II pp 245-274

Biodegradable polymer scaffolds to regenerate organs

  • R. C. Thomson
  • M. C. Wake
  • M. J. Yaszemski
  • A. G. Mikos
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 122)


The problem of donor scarcity precludes the widespread utilization of whole organ transplantation as a therapy to treat many diseases for which there is often no alternative treatment. Cell transplantation using biodegradable polymer scaffolds offers the possibility to create completely natural new tissue and replace organ function. Tissue inducing biodegradable polymers can also be utilized to regenerate certain tissues and without the need for in vitro cell culture. Biocompatible, biodegradable polymers play an important role in organ regeneration as temporary substrates to transplanted cells which allow cell attachment, growth, and retention of differentiated function. Novel processing techniques have been developed to manufacture reproducibly scaffolds with high porosities for cell seeding and large surface areas for cell attachment. These scaffolds have been used to demonstrate the feasibility of regenerating several organs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10 References

  1. 1.
    U.S. Department of Health and Human Services, P.H.S., Center for Disease Control (1991) Monthly Vital Statistics Report, 39: 1–28Google Scholar
  2. 2.
    Ishaug SL, Thomson RC, Mikos AG, Langer R (in press). In: Meyers RA (Ed) Encyclopedia of Molecular Biology and Biotechnology, VCH, New YorkGoogle Scholar
  3. 3.
    Peppas NA, Langer R (1994) Science, 263: 1715–1720PubMedGoogle Scholar
  4. 4.
    Thomson RC, Ishaug SL, Mikos AG, Langer R (in press). In: Meyers RA (ED) Encyclopedia of Molecular Biology: Fundamentals and Applications, VCH Publishers, New YorkGoogle Scholar
  5. 5.
    Langer R, Vacanti JP (1993) Science, 260: 920–926PubMedGoogle Scholar
  6. 6.
    Vacanti JP, Morse MA, Saltzman WM, Domb AJ, Perez-Atayde A, Langer R (1988) J Pediatr Surg, 23: 3–9Google Scholar
  7. 7.
    Wilson JM, Birinyi LK, Salomon RN, Libby P, Callow AD, Mulligan RC (1989) Science, 244: 1344–1346PubMedGoogle Scholar
  8. 8.
    Mikos AG, Papadaki MG, Kouvroukoglou S, Ishaug SL, Thomson RC (1994) Biotechnol Bioeng, 43: 673–677CrossRefGoogle Scholar
  9. 9.
    Freed LE, Vunjak-Novakovic G, Marquis JC, Langer, R (1994) Biotechnol Bioeng, 43: 597–604CrossRefGoogle Scholar
  10. 10.
    Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AG, Langer R (1993) J Biomed Mater Res, 27: 11–23CrossRefPubMedGoogle Scholar
  11. 11.
    Vacanti CA, Kim W, Upton J, Vacanti MP, Mooney D, Schloo B, Vacanti JP (1993) Transplant Proc, 25: 1019–1021PubMedGoogle Scholar
  12. 12.
    Wilkins LM, Watson SR, Prosky SJ, Meunier SF, Parenteau NL (1994) Biotechnol Bioeng, 43: 747–756CrossRefGoogle Scholar
  13. 13.
    Yannas IV (1988) in: Nimni ME (Ed) Collagen III, CRC Press, Boca Raton, Florida, pp 87–115Google Scholar
  14. 14.
    Bellamkonda R, Aebischer P (1994) Biotechnol Bioeng, 43: 543–554CrossRefGoogle Scholar
  15. 15.
    Woerly S (1993) Biomaterials, 14: 1056–1058CrossRefPubMedGoogle Scholar
  16. 16.
    Cieslinski DA, Humes HD (1994) Biotechnol Bioeng, 43: 678–681CrossRefGoogle Scholar
  17. 17.
    Uyama S, Kaufmann PM, Tadeka T, Vacanti JP (1993) Transplantation, 55: 932–935PubMedGoogle Scholar
  18. 18.
    Mooney D, Hansen L, Vacanti J, Langer R, Farmer S, Ingber D (1992) J Cell Physiol, 151: 497–505CrossRefPubMedGoogle Scholar
  19. 19.
    Healy KE, Lom B, Hockberger PE (1994) Biotechnol Bioeng, 43: 792–800CrossRefGoogle Scholar
  20. 20.
    Folkman J, Klagsbrun M (1987) Science, 235: 442–447PubMedGoogle Scholar
  21. 21.
    Langer R (1990) Science, 249: 1527–1533PubMedGoogle Scholar
  22. 22.
    Gilding DK (1981) in: DF Williams (Ed) Biocompatibility of Clinical Implant Materials, CRC Press, Boca Raton, Florida, pp 209–232Google Scholar
  23. 23.
    Pulapura S, Kohn J (1992) J Biomater Appl, 6: 216–250PubMedGoogle Scholar
  24. 24.
    Sawhney AS, Pathak CP, Hubell JA (1993) Macromolecules, 26: 581–587CrossRefGoogle Scholar
  25. 25.
    Vert M, Christel P, Chabot F, Leray J (1984) in: Hastings GW, Ducheyne P (Ed) Macromolecular Biomaterials, CRC Press, Boca Raton, Florida, pp 119–142Google Scholar
  26. 26.
    Benicewicz BC, Hopper PK (1991) J Bioact Compat Polym 6: 64–94Google Scholar
  27. 27.
    Engelberg I, Kohn J (1990) Biomaterials, 12: 292–304CrossRefGoogle Scholar
  28. 28.
    von Recum HA, Cleek RL, Eskin SG, Mikos AG (in press) BiomaterialsGoogle Scholar
  29. 29.
    Cima LG, Vacanti JP, Vacanti C, Ingberg D, Mooney D, Langer R (1991) J Biomech Eng, 113: 143–151PubMedGoogle Scholar
  30. 30.
    Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R (1993) J Biomed Mater Res, 27: 183–189CrossRefPubMedGoogle Scholar
  31. 31.
    Mooney DJ, Mazzoni CL, Organ GM, Puelacher WC, Vacanti JP, Langer R (1994) in: Mikos AG, Murphy RM, Bernstein H, Peppas NA (Ed) Biomaterials for Drug and Cell Delivery, MRS Symposium Proceedings, Vol 331, Materials Research Society, Pittsburgh, Pennsylvania, pp 47–52Google Scholar
  32. 32.
    Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer, R, Winslow DN, Vacanti JP (1994) Polymer, 35: 1068–1077CrossRefGoogle Scholar
  33. 33.
    Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R (1993) Biomaterials, 14: 323–330CrossRefPubMedGoogle Scholar
  34. 34.
    Mooney DJ, Organ G, Vacanti JP, Langer R (1994) Cell Transplantation, 3: 203–210PubMedGoogle Scholar
  35. 35.
    Thomson RC, Yaszemski MJ, Powers JM, Mikos AG (in press) J Biomater Sci Polym EdGoogle Scholar
  36. 36.
    Mikos AG, Lyman MD, Freed LE, Langer R (1994) Biomaterials, 15: 55–58CrossRefPubMedGoogle Scholar
  37. 37.
    Wald HL, Sarakinos G, Lyman MD, Mikos AG, Vacanti JP, Langer R (1993) Biomaterials, 14: 270–278CrossRefPubMedGoogle Scholar
  38. 38.
    Vacanti CA, Langer R, Schloo B, Vacanti JP (1991) Plast Reconstr Surg, 88: 753–759PubMedGoogle Scholar
  39. 39.
    Wald HL (1989) Chondrocyte Culture on Biodegradable Polymer Substrates. M.S. Thesis Massachusetts Institute of TechnologyGoogle Scholar
  40. 40.
    Ishaug SL, Yaszemski MJ, Bizios R, Mikos AG (1994) J Biomed Mater Res, 28: 1445–1453CrossRefPubMedGoogle Scholar
  41. 41.
    Laurencin CT, Norman ME, Elgendy HM, El-Amin SF, Allcock HR, Pucher SR, Ambrosio, AA (1993) J Biomed Mater Res, 27: 963–973CrossRefPubMedGoogle Scholar
  42. 42.
    Atala A, Vacanti JP, Peters CA, Mandell J, Retik AB, Freeman MR (1992) J Urol, 148: 658–662PubMedGoogle Scholar
  43. 43.
    Organ GM, Mooney DJ, Hansen LK, Schloo B, Vacanti JP (1992) Transplant Proc, 24: 3009–3011PubMedGoogle Scholar
  44. 44.
    Cima LG, Ingber DE, Vacanti JP, Langer R (1991) Biotechnol Bioeng, 38: 145–158CrossRefGoogle Scholar
  45. 45.
    Wake CM, Patrick CW, Mikos AG (1994) Cell Transplantation, 3: 339–343PubMedGoogle Scholar
  46. 46.
    Mikos AG, Sarakinos G, Lyman MD, Ingber DE, Vacanti JP, Langer R (1993) Biotechnol Bioeng, 42: 716–723CrossRefGoogle Scholar
  47. 47.
    Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF (1989) Proc Natl Acad Sci USA, 86: 933–937PubMedGoogle Scholar
  48. 48.
    Tountas CP, Bergman RA, Lewis TW, Stone HE, Pyrek JD, Mendenhall HV (1993) J Appl Biomater, 4: 261–268CrossRefPubMedGoogle Scholar
  49. 49.
    Natsume T, Ike O, Okada T, Takimoto N, Shimizu Y, Ikada Y (1993) J Biomed Mater Res, 27: 867–875CrossRefPubMedGoogle Scholar
  50. 50.
    Chvapil M, Speer DP, Holubec H, Chvapil TA, King DH (1993) J Biomed Mater Res, 27: 313–325CrossRefPubMedGoogle Scholar
  51. 51.
    Cowin SC, Moss-Salentijn L, Moss ML (1991) J Biomech Eng, 113: 191–197PubMedGoogle Scholar
  52. 52.
    Rubin CT, Hausman MR (1988) Rheum Dis Clin N Amer, 14: 503–517Google Scholar
  53. 53.
    Gibson LJ (1985) J Biomech, 18: 317–328CrossRefPubMedGoogle Scholar
  54. 54.
    Carter DR, Hayes WC (1976) Science, 194: 1174–1176PubMedGoogle Scholar
  55. 55.
    Sandberg MM, Aro HT, Vuorio EI (1993) Clin Orthop Related Res, 289: 292–312Google Scholar
  56. 56.
    Yaszemski MJ, Payne RG, Hayes WC, Langer RS, Mikos AG (submitted) BiomaterialsGoogle Scholar
  57. 57.
    Gross TP, Cox QGN, Jinnah RH (1993) Orthopedics, 16: 895–900PubMedGoogle Scholar
  58. 58.
    Einhorn TA, Majeska RJ (1991) Clin Orthop Related Res, 262: 286–297Google Scholar
  59. 59.
    Covey DC, Albright JA (1989) Orthop Rev, 18: 857–863PubMedGoogle Scholar
  60. 60.
    Gerhart TN, Miller RL, Kleshinski SJ, Hayes WC (1988) J Biomed Mater Res, 22: 1071–1082CrossRefPubMedGoogle Scholar
  61. 61.
    Yaszemski MJ, Payne RG, Hayes WC, Langer RS, Aufdemorte TB, Mikos AG (in press) Tissue EngineeringGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • R. C. Thomson
    • 1
  • M. C. Wake
    • 1
  • M. J. Yaszemski
    • 2
  • A. G. Mikos
    • 1
  1. 1.Cox Laboratory for Biomedical Engineering, Department of Chemical Engineering and Institute of Biosciences and BioengineeringRice UniversityHoustonUSA
  2. 2.Department of Orthopaedic SurgeryWilford Hall Medical CenterLackland AFBUSA

Personalised recommendations