Advertisement

Biopolymers II pp 125-175 | Cite as

Biomedical membranes from hydrogels and interpolymer complexes

  • C. L. Bell
  • N. A. Peppas
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 122)

Abstract

Biomedical applications of hydrogel membranes require understanding of their structural characteristics and diffusive behavior. Thus, the subject of this review is the analysis of the response of such biomembranes to their surrounding environment. This responsive behavior may be due to the presence of certain functional groups along the polymer chains or specific interactions between polymer chains (complexation). This behavior is particularly important in the use of these physiologically responsive materials in membrane applications. We begin with an introduction to the structural characteristics and behavior of hydrogel membranes followed by a discussion of the types of environmentally responsive behavior seen with hydrogels. The subject of interpolymer complexation is then treated with emphasis on complexation due to hydrogen bonding and how this type of behavior may be used to produce responsive membranes. Finally, the theories of transport in membranes are reviewed.

Keywords

Polyelectrolyte Complex Microporous Membrane Interpolymer Complex Hydrogel Membrane Solute Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Symbols and Abbreviations

Roman Symbols

a1

activity of swelling agent

c

concentration

D

diffusivity

Da

diffusivity through amorphous polymer portion of semicrystalline polymer

Dc

diffusivity through crystalline polymer portion of semicrystalline polymer

G

shear modulus

Deff

effective diffusivity of solute in porous membrane

Dim

diffusivity of solute i in polymer membrane

Diw

diffusivity of solute i in pure water

D2,1

diffusivity of solute in pure water

D2,13

diffusivity of solute in water swollen polymer

D

diffusivity in bulk solution

E

elastic modulus

Ed

activation energy for diffusion

Fs

drag force between solute and solvent

f

friction factor

G

shear modulus

g

lag coefficient

H

membrane hydration

I

ionic strength

i

ionization

J

solute flux

K

ratio of pore to bulk friction coefficients

Kp

partition coefficient in pores

k

Boltzmann constant

K′

partition coefficient

L

mechanochemical compliance

\(\bar M_c\)

number average molecular weight between crosslinks

\(\bar M_n\)

number average molecular weight of uncrosslinked polymer

Mt

mass released at time t

M

mass released as t approaches ∞

N

Avogadro's number

\(\bar N_s\)

average solute flux

n

diffusional exponent

n1

moles of swelling agent

P

permeability coefficient

P2, 13

permeability coefficient of solute in water swollen polymer

Q

equilibrium volume swelling ratio

q

equilibrium weight swelling ratio

qs

cross-sectional area of solute

R

gas constant

rp

pore radius

rs

solute radius

T

absolute temperature

t

time

Us

net solute velocity

V

volume

Vf,1

free volume of water in swollen membrane

V0

molecular volume of unswollen network

\(\bar V_1\)

molar volume of swelling agent

V′1

free volume of water

V1

donor cell volume

V13

free volume in swollen membrane

x1

mole fraction of swelling agent

Greek Symbols

αs

linear deformation factor

γ1

activity coefficient of swelling agent

δ

membrane thickness

ΔG

total free energy change

ΔGel

elastic free energy

ΔGion

ionic free energy

ΔGmix

free energy of mixing

ΔSel

entropy change due to deformation

ε

porosity

ζ

ratio of pore to bulk diffusivity

λ

ratio of rs to rp

λ2,1

solute difusional jump length in water

λ2,13

solute diffusional jump length in swollen polymer

μ

chemical potential

ν

Poisson's ratio

νe

effective number of crosslinks per unit chain

ρ

density

ρx

crosslinking density

τ

tortuosity

υa

amorphous polymer volume fraction in semicrystalline polymer

υc

crystalline polymer volume fraction in semicrystalline polymer

υ1

volume fraction of swelling agent

υ2

volume fraction of polymer

υs

size of solute

υ2,s

equilibrium polymer volume fraction

υ2,r

polymer volume fraction after crosslinking but before swelling

\(\bar \upsilon _{2,s}\)

specific volume of polymer

Φ(v)

free volume contributions

ϕ(qs)

sieving mechanism parameter

χ

sieving coefficient

χ1

Flory polymer-solvent interaction parameter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5 References

  1. 1.
    Kudela V (1985). In: Mark HF, Kroschwitz JI (eds) Encyclopedia of polymer science and technology. Wiley-Interscience, New York pp 783–807Google Scholar
  2. 2.
    Peppas NA (1991) J Bioact and Compat Polym 6: 241–246Google Scholar
  3. 3.
    Peppas NA, Barr-Howell BD (1986). In: Peppas NA (ed) Hydrogels in medicine and pharmacy. CRC, Boca Raton pp 28–55Google Scholar
  4. 4.
    Brannon-Peppas L (1990). In: Brannon-Peppas L, Harland RS (eds) Absorbent polymer technology. Elsevier, Amsterdam pp 45–66Google Scholar
  5. 5.
    Flory PJ, Rehner R Jr (1943) J Chem Phys 11: 521CrossRefGoogle Scholar
  6. 6.
    Flory PJ (1953) Principles of Polymer Chemistry. Cornell University Press, IthacaGoogle Scholar
  7. 7.
    Peppas NA, Lucht LM (1984) Chem Eng Comm 30: 291Google Scholar
  8. 8.
    Kovac J (1978) Macromolecules 11: 362CrossRefGoogle Scholar
  9. 9.
    Galli A and Brummage WH (1983) J Chem Phys 79: 2411CrossRefGoogle Scholar
  10. 10.
    Oppermann W (1992). In: Harland RS, Prud'homme RK (eds) Polyelectrolyte gels: Properties, Preparation, and Applications, American Chemical Society, Washington, DC pp 159–170Google Scholar
  11. 11.
    Siegel RA (1990). In: Kost J (ed) Pulsed and self-regulated drug delivery. CRC Press, Boca Raton, Florida pp 129–155Google Scholar
  12. 12.
    Peppas NA, Khare AR (1993) Adv Drug Del Rev 11: 1–35CrossRefGoogle Scholar
  13. 13.
    Brannon-Peppas L, Peppas NA (1991) Chem Eng Sci 46: 715–722CrossRefGoogle Scholar
  14. 14.
    Brannon-Peppas L, Peppas NA (1988) Polym Bull 20: 285–289CrossRefGoogle Scholar
  15. 15.
    Brannon-Peppas L, Peppas N (1990). In: Brannon-Peppas L, Harland RS (eds) Absorbent Polymer Technology. Elsevier pp 67–75Google Scholar
  16. 16.
    Hooper HH, Baker JP, Blanch HW, Prausnitz JP (1990) Macromolecules 23: 1096–1104CrossRefGoogle Scholar
  17. 17.
    Konak C, Bansil R (1989) Polymer 30: 677–680CrossRefGoogle Scholar
  18. 18.
    Nielsen LE (1974) Mechanical properties of polymers and composites. Marcel Dekker, Inc, New York vol I p 39Google Scholar
  19. 19.
    Treloar LRG (1975) The physics of rubber elasticity. Oxford University Press, OxfordGoogle Scholar
  20. 20.
    Dubrovskii SA, Ilavsky M, Arkhipovich GN (1992). Polym Bull 29: 587–594CrossRefGoogle Scholar
  21. 21.
    Zrinyi M, Horkay F (1987) Polymer 28: 1139–1143CrossRefGoogle Scholar
  22. 22.
    Kuhn W, Hagarty B, Katchalsky A, Eisenberg H (1950) Nature 165(4196): 514–516Google Scholar
  23. 23.
    Liu G, Guillet JE, Al-Takrity ETB, Jenkins AD, Walton DRM (1991) Macromolecules 24: 68–74CrossRefGoogle Scholar
  24. 24.
    Horsky J (1987) Polym Comm 29: 110–111Google Scholar
  25. 25.
    Katchalsky A (1949) Experientia pp 319–320Google Scholar
  26. 26.
    Katchalsky A, Kunzle O, Kuhn W (1950) J Polym Sci 5: 283–300CrossRefGoogle Scholar
  27. 27.
    Katchalsky A, Michaeli I (1955) J Polym Sci 15: 68–86CrossRefGoogle Scholar
  28. 28.
    Katchalsky A (1949) J Polym Sci 4: 393–412Google Scholar
  29. 29.
    Steinberg IZ, Oplatka A, Katchalsky A (1966) Nature 210: 568–571Google Scholar
  30. 30.
    Ohmine I, Tanaka T (1992) J Chem Phys 77: 5725–5729CrossRefGoogle Scholar
  31. 31.
    Nicoli D, Young C, Tanaka T, Pollak A, Whitsides G (1983) Macromolecules 16: 887–890CrossRefGoogle Scholar
  32. 32.
    Kokufuta E, Tanaka T (1991) Macromolecules 24: 1605–1607CrossRefGoogle Scholar
  33. 33.
    Sato E, Tanaka T (1992) Nature 358: 482–485CrossRefGoogle Scholar
  34. 34.
    Annaka M, Tanaka T, Osada Y (1992) Macromolecules 25: 4826–4827CrossRefGoogle Scholar
  35. 35.
    Khare AR, Peppas NA (1991) Polym News 16: 230–236Google Scholar
  36. 36.
    Brannon-Peppas L, Peppas NA (1991) Inter J Pharm 70: 53–57CrossRefGoogle Scholar
  37. 37.
    Brannon-Peppas L, Peppas NA (1991) Chem Eng Sci 46: 715–722CrossRefGoogle Scholar
  38. 38.
    Brannon-Peppas L, Peppas NA (1991) J Contr Rel 16: 319–330CrossRefGoogle Scholar
  39. 39.
    Brannon-Peppas L, Peppas NA (1989) J Contr Rel 8: 267–274CrossRefGoogle Scholar
  40. 40.
    Khare AR, Peppas NA (1993) Polymer 34: 4736–4739CrossRefGoogle Scholar
  41. 41.
    Hariharan D (1993) PhD thesis. Purdue University, West Lafayette, IN, USAGoogle Scholar
  42. 42.
    Peppas NA, Foster LK (1994) J Appl Polym Sci 52: 763–768CrossRefGoogle Scholar
  43. 43.
    Siegel RA, Firestone BA (1988) Macromolecules 21: 3254–3259CrossRefGoogle Scholar
  44. 44.
    Firestone BA, Siegel RA (1988) Polym Comm 29: 204–208Google Scholar
  45. 45.
    Siegel RA, Falamarzian M, Firestone BA, Moxley BC (1988) J Contr Rel 8: 79–182CrossRefGoogle Scholar
  46. 46.
    Tirrell DA (1987) J Contr Rel 6: 15–21CrossRefGoogle Scholar
  47. 47.
    Borden KA, Eum KM, Langley KH, Tirrell DA (1987) Macromolecules 20: 454–456CrossRefGoogle Scholar
  48. 48.
    Gehrke SH, Cussler EL (1989) Chem Eng Sci 44: 559–566CrossRefGoogle Scholar
  49. 49.
    Bromberg LE (1991) J Membr Sci 62: 117–130CrossRefGoogle Scholar
  50. 50.
    Bromberg LE (1991) J Membr Sci 62: 131–143CrossRefGoogle Scholar
  51. 51.
    Ito Y, Inaba M, Chung D-J, Imanishi Y (1992) Macromolecules 25: 7313–7316CrossRefGoogle Scholar
  52. 52.
    Osada Y, Honda K, Ohta M (1986) J Membr Sci 27: 327–338CrossRefGoogle Scholar
  53. 53.
    Tanaka T (1979) Polymer 20: 1404–1412CrossRefGoogle Scholar
  54. 54.
    Hirotsu S, Hirokawa Y, Tanaka T (1987) J Chem Phys 87: 1392–1395CrossRefGoogle Scholar
  55. 55.
    Sagrario Beltran, John P Baker, Herbert H Hooper, Harvey W Blanch, John M Prausnitz (1991) Macromolecules 24: 549–551CrossRefGoogle Scholar
  56. 56.
    Beltran S, Hooper HH, Blanch HW, Prausnitz JM (1990) J Chem Phys 92: 2061–2066CrossRefGoogle Scholar
  57. 57.
    Hoffman AS, Afrassiabi A, Dong LC (1986) J Contr Rel 4: 213–222CrossRefGoogle Scholar
  58. 58.
    Dong LC, Hoffman AS (1982). In: Paul S Russo (ed) ACS Symposium Series: Reversible Polymeric Gels and Related Systems. American Chemical Society pp 237–244Google Scholar
  59. 59.
    Cole C-A, Schreiner SM, Priest JH, Monji N, Hoffman AS (1987). In: Paul S Russo (ed) ACS Symposium Series: Reversible Polymeric Gels and Related Systems. American Chemical Society pp 245–254Google Scholar
  60. 60.
    Dong LC, Yan Q, Hoffman AS (1992) J Contr Rel 19: 171–178CrossRefGoogle Scholar
  61. 61.
    Park TG, Hoffman AS (1992) J Appl Polym Sci 46: 659–671CrossRefGoogle Scholar
  62. 62.
    Kabra BG, Gehrke SH (1991) Polym Comm 32: 322–323Google Scholar
  63. 63.
    Okano T, Bae YH, Jacobs H, Kim SW (1990) J Contr Rel 11: 255–265CrossRefGoogle Scholar
  64. 64.
    Gutowska A, Bae YH, Feijen J, Kim SW (1992) J Contr Rel 22: 95–104CrossRefGoogle Scholar
  65. 65.
    Feil H, Bae YH, Feijen J, Kim SW (1991) J Membr Sci 64: 283–294CrossRefGoogle Scholar
  66. 66.
    Bae TH, Okano T, Kim SW (1989) J Contr Rel 9: 271–279CrossRefGoogle Scholar
  67. 67.
    Feil H, Bae YH, Feijen J, Kim SW (1992) Macromolecules 25: 5528–5530CrossRefGoogle Scholar
  68. 68.
    Yoshida R, Sakai K, Okano T, Sakurai Y (1992) J Biomater Sci Polym (ed) 3: 243–252Google Scholar
  69. 69.
    Freitas RFS, Cussler EL (1987) Chem Eng Sci 42: 97–103CrossRefGoogle Scholar
  70. 70.
    Trank SJ, Cussler EL (1987) Chem Eng Sci 42: 381CrossRefGoogle Scholar
  71. 71.
    Marchetti M, Prager S, Cussler EL (1990) Macromolecules 23: 1760–1765CrossRefGoogle Scholar
  72. 72.
    Otake K, Inomata H, Konno M, Saito S (1989) J Chem Phys 91: 1345–1350CrossRefGoogle Scholar
  73. 73.
    Ishihara K, Matsui K (1986) J Polym Sci: Polym Lett (ed) 24: 413–417Google Scholar
  74. 74.
    Ishihara K, Kobayashi M, Shinohara I (1984) Polymer J 16: 647–651Google Scholar
  75. 75.
    Ishihara K, Kobayashi M, Ishimaru N, Shinohara I (1984) Polymer J 16: 625–631Google Scholar
  76. 76.
    Ito Y, Casolaro M, Kono K, Imanishi Y (1989) J Contr Rel 10: 195–203CrossRefGoogle Scholar
  77. 77.
    Chung DJ, Ito Y, Imanishi Y (1992) J Contr Rel 18: 45–54CrossRefGoogle Scholar
  78. 78.
    Heller J, Chang AC, Rodd G, Grodsky GM (1990) J Contr Rel 13: 295–302CrossRefGoogle Scholar
  79. 79.
    Kim SW, Pai CM, Makino K, Seminoff LA, Holmberg DL, Gleeson JM, Wilson DE, Mack EJ (1990) J Contr Rel 11: 193–201CrossRefGoogle Scholar
  80. 80.
    Horbett TA, Ratner BD, Kost J, Singh M (1984). In: Anderson JM, Kim SW (eds) Recent advances in drug delivery systems. Plenum Press, New York, pp 209–220Google Scholar
  81. 81.
    Doi M, Mitsumoto M, Hirose Y (1992) Macromolecules 25: 5504–5511CrossRefGoogle Scholar
  82. 82.
    Shiga T, Hirose Y, Okada A, Kurauchi T (1993) J Appl Polym Sci 47: 113–119CrossRefGoogle Scholar
  83. 83.
    Shinkai S, Nakaji T, Ogawa T, Shigematsu K, Manabe O (1981) J Am Chem Soc 103: 111–115CrossRefGoogle Scholar
  84. 84.
    Irie M, Kuwatchaku D (1986) Macromolecules 19: 2476–2480CrossRefGoogle Scholar
  85. 85.
    Irie M (1986) Macromolecules 19: 2890–2892CrossRefGoogle Scholar
  86. 86.
    Peiffer DG, Lundberg RD (1985) Polymer 26: 1058–1068CrossRefGoogle Scholar
  87. 87.
    Khoklov AR, Kramarenko EYu, Makhaeva EE, Starodubtzev SG (1992) Macromolecules 25: 4779–4783CrossRefGoogle Scholar
  88. 88.
    Bekturov E, Bimendina L (1981) Adv Polym Sci 41: 99–147Google Scholar
  89. 89.
    Osada Y (1987) Adv Polym Sci 82: 2–46Google Scholar
  90. 90.
    Chatterjee SK, Yadav D, Sudipta Ghosh, Khan AM (1989) J Polym Sci: Part A: Polym Chem 27: 3855–3863CrossRefGoogle Scholar
  91. 91.
    Kopylova YeM, Valuyeva SP, El'tsefon BS, Rogacheva VB, Zezin AB (1987) Vysokomolekul Soed A29: 517–524Google Scholar
  92. 92.
    Kono K, Tabata F, Takagishi T (1993) J Membr Sci 76: 233–243CrossRefGoogle Scholar
  93. 93.
    Kalyuzhnaya RI, Rudman AR, Vengerova NA, Razvodovskii YeF, El'tsefon BS, Zezin AB (1975) Vysokomolekul Soed A17: 2786–2792Google Scholar
  94. 94.
    Kalyuzhnaya RI, Volynskii AL, Rudman AR, Vengerova NA, Razvodovskii YeF, El'tsefon BS, Zezin AB (1976) Vysokomolekul Soed A18: 71–76Google Scholar
  95. 95.
    Khokhlov AR, Kramarenko EYu, Makhaeva EE, Starodubtzev SG (1992) Macromolecules 25: 4779–4783CrossRefGoogle Scholar
  96. 96.
    Samsonov GV (1979) Vysokomolekul Soed A21: 723–733Google Scholar
  97. 97.
    Tsuchida E, Abe K (1982) Adv Polym Sci 45: 1–119Google Scholar
  98. 98.
    Ferguson J, Shah SAO (1968) European Polym J 4: 343–354CrossRefGoogle Scholar
  99. 99.
    Matuszewska-Czerwik J, Polowinski S (1988) Polym Bull 19: 149–154CrossRefGoogle Scholar
  100. 100.
    Van de Grampel HT, Santing AGM, Tan YY, Challa G (1992) J Polym Sci: Part A, Polym Chem (ed) 30: 787–796Google Scholar
  101. 101.
    Bimendina LA, Roganov VV, Ye A Bekturov (1974) Vysokomolekul Soed A16: 2810–2814Google Scholar
  102. 102.
    Ohno H, Abe K, Tsuchida E (1978) Makromol Chem 179: 755–763CrossRefGoogle Scholar
  103. 103.
    Chatterjee SK, Rajabi FH, Farahani BV, Chatterjee N (1991) Polym Comm 32: 473–476Google Scholar
  104. 104.
    Chatterjee SK, Chatterjee N, Amarendra M Khan, Sudipta Ghosh (1991) Polym Comm 32: 220–224Google Scholar
  105. 105.
    Jeun SH, Park SM, Ree T (1989) J Polym Sci: Part C: Polym Lett 27: 161–165CrossRefGoogle Scholar
  106. 106.
    Park SM, Jeun SH, Ree T (1989), J Polym Sci: Part A: Polym Chem 27: 4109–4117CrossRefGoogle Scholar
  107. 107.
    Lee JY, Painter PC, Coleman MM (1988) Macromolecules 21: 346–354CrossRefGoogle Scholar
  108. 108.
    Lee JY, Painter PC, Coleman MM (1988) Macromolecules 21: 954–960CrossRefGoogle Scholar
  109. 109.
    Lichkus AM, Painter PC, Coleman MM (1988) Macromolecules 21: 2636–2641CrossRefGoogle Scholar
  110. 110.
    Staikos G, Bokias G (1991) Makromol Chem 192: 2649–2657CrossRefGoogle Scholar
  111. 111.
    Kim O-K, Choi LS, Long T, McGrath K, Armistead JP, Yoon TH (1993) Macromolecules 26: 379–384CrossRefGoogle Scholar
  112. 112.
    Bailey FE Jr, Lundberg RD, Callard RW (1964) J Polym Sci: Part A 2: 845–851CrossRefGoogle Scholar
  113. 113.
    Antipina AD, Baranovskii WYu, Papisov IM, Kabanov VA (1972) Vysokomol Soyed A14: 941–949Google Scholar
  114. 114.
    Osada Y, Sato M (1976) J Polym Sci: Polym Lett (ed) 14: 129–134CrossRefGoogle Scholar
  115. 115.
    Osada Y (1979) J Polym Sci: Polym Chem 17: 3485–3498Google Scholar
  116. 116.
    Baranovsky V, Shenkov S, Rashkov I, Borisov G (1991) European Polym J 27: 643–647CrossRefGoogle Scholar
  117. 117.
    Bokias G, Staikos G, Iliopoulos I, Audebert R (1994) Macromolecules 27: 427–431CrossRefGoogle Scholar
  118. 118.
    Papisov IM, Baranovskii VYu, Sergieva YeI, Antipina AD, Kabanov VA (1974) Vysokomol Soyed A16: 1133–1141Google Scholar
  119. 119.
    Oyama HT, Tang WT, Frank CW (1987) Macromolecules 20: 474–480CrossRefGoogle Scholar
  120. 120.
    Oyama HT, Tang WT, Frank CW (1987) Macromolecules 20: 1839–1847CrossRefGoogle Scholar
  121. 121.
    Hemker DJ, Garza V, Frank CW (1987) Macromolecules 23: 4411–4418CrossRefGoogle Scholar
  122. 122.
    Hemker DJ, Frank CW (1987) Macromolecules 23: 4404–4410CrossRefGoogle Scholar
  123. 123.
    Scranton AB, Klier J, Peppas NA (1991) J Polym Sci: Part B: Polymer PhysicsGoogle Scholar
  124. 124.
    Daoust H, Darveau R, Laberge F (1990) Polymer 31: 1946–1949CrossRefGoogle Scholar
  125. 125.
    Jeon SH, Ree T (1988) J Polym Sci: Part A: Polym Chem 26: 1419–1428CrossRefGoogle Scholar
  126. 126.
    Chen H-L, Morawetz H (1982) Macromolecules 15: 1445–1447CrossRefGoogle Scholar
  127. 127.
    Soutar I, Swanson L (1990) Macromolecules 23: 5170–5172CrossRefGoogle Scholar
  128. 128.
    Adachi H, Nishi S, Kotaka T (1982) Polym, J 14: 985–992Google Scholar
  129. 129.
    Nishi S, Kotaka T (1985) Macromolecules 18: 1519–1525CrossRefGoogle Scholar
  130. 130.
    Nishi S, Kotaka T (1989) Polym J 21: 393–402CrossRefGoogle Scholar
  131. 131.
    Nishi S, Kotaka T (1986) Polym J 21: 393–402CrossRefGoogle Scholar
  132. 132.
    Osada Y, Takeuchi Y (1981) J Polym Sci: Polym Lett (ed) 19: 303–308CrossRefGoogle Scholar
  133. 133.
    Osada Y (1980) J Polym Sci: Polym Lett (ed) 18: 281–286CrossRefGoogle Scholar
  134. 134.
    Khokhlov and Kramarenko EY (1993) Makromol Chem, Theory Simul 2: 169–177Google Scholar
  135. 135.
    Drummond RK, Klier J, Alameda JA, Peppas NA (1989) Macromolecules 22: 3816–3818CrossRefGoogle Scholar
  136. 136.
    Klier J, Scranton AB, Peppas NA (1990) Macromolecules 23: 4944–4949CrossRefGoogle Scholar
  137. 137.
    Bell CL (1994) PhD thesis. Purdue UniversityGoogle Scholar
  138. 138.
    Peppas NA, Klier J (1991) J Contr Rel 16: 203–214CrossRefGoogle Scholar
  139. 139.
    Flynn GL, Yalkowsky SH, Roseman TJ (1974) J Pharm Sci 63: 479–510PubMedGoogle Scholar
  140. 140.
    Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford, 2 editionGoogle Scholar
  141. 141.
    Peppas NA, Meadows DL (1983) J Membr Sci 16: 361–377CrossRefGoogle Scholar
  142. 142.
    Anderson JL, Quinn JA (1974) Biophys J 14: 130–150PubMedGoogle Scholar
  143. 143.
    Dubin SB, Lunacek JH, Benedek GB (1967) Proc Natl Acad Sci USA 57: 1164–1171PubMedGoogle Scholar
  144. 144.
    Gladden JK, Dole M (1953) J Am Chem Soc 75: 3900–3904CrossRefGoogle Scholar
  145. 145.
    Brenner H, Gaydos LJ (1977) J Coll Interfac Sci 58: 312–356CrossRefGoogle Scholar
  146. 146.
    Deen WM (1987) AIChE J 33: 1409–1425CrossRefGoogle Scholar
  147. 147.
    Malone DM, Quinn JL (1978) Chem Eng Sci 33: 1429–1440CrossRefGoogle Scholar
  148. 148.
    Smith III FG, Deen WM (1980) J Coll Interfac Sci 78: 444–465Google Scholar
  149. 149.
    Kim JT, Anderson JL (1991) Ind Eng Chem Res 30: 1008–1016CrossRefGoogle Scholar
  150. 150.
    Yasuda H, Peterlin A, Colton CK, Smith KA, Merrill EW (1969) Die Makromol Chem 126: 177–186CrossRefGoogle Scholar
  151. 151.
    Yasuda H, Lamaze CE, Ikenberry LD (1968) Die Makromol Chem 118: 19–35CrossRefGoogle Scholar
  152. 152.
    Yasuda H, Ikenberry LD, Lamaze CE (1969) Die Makromol Chem 125: 108–118CrossRefGoogle Scholar
  153. 153.
    Yasuda H, Lamaze CE (1971) J Macromol Sci Phys B5: 111–134Google Scholar
  154. 154.
    Kim SW, Cardinal JR, Wisnewski S, Zentner GM (1990). In: Rowland SP (ed) Water in Polymers. American Chemical Society, Washington, DC pp 347–359Google Scholar
  155. 155.
    Peppas NA, Reinhart CT (1983) J Membr Sci 15: 275–287CrossRefGoogle Scholar
  156. 156.
    Reinhart CT, Peppas NA (1984) J Membr Sci 18: 227–239CrossRefGoogle Scholar
  157. 157.
    Burzak K, Fujisato T, Hatada M, Ikada Y (1994) Biomaterials, 15: 231–238CrossRefPubMedGoogle Scholar
  158. 158.
    Peppas NA, Moynihan HJ (1985) J Appl Polym Sci 30: 2589–2606CrossRefGoogle Scholar
  159. 159.
    Harland RS, Peppas NA (1987) Polym Bull 18: 553–556CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • C. L. Bell
    • 1
  • N. A. Peppas
    • 1
  1. 1.School of Chemical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations