Organometallic Magnets pp 253-280 | Cite as
Lanthanide Organometallics as Single-Molecule Magnets
Abstract
Innovative synthetic chemistry has underpinned many important advances in molecular magnetism, particularly so with the development of single-molecule magnets (SMMs). Recently, the organometallic approach to SMMs has provided a series of eye-catching materials based on certain lanthanides that have re-energised a mature field of magnetism research. This chapter summarises the main highlights and shows that three lanthanides – terbium, dysprosium and erbium – and two ligands, cyclopentadienyl and cyclo-octatetraenyl, have played pivotal roles. The chapter considers the lanthanides in terms of conceptually simple models of 4f electronic structure and spin–orbit coupling and their relationship with the popular oblate and prolate depictions of electron density. For organisational purposes, the chapter is loosely divided by ligand hapticity, beginning with a review of η5-cyclopentadienyl compounds of dysprosium, from the discovery of the first organometallic SMM in 2010 to a series of cationic dysprosium metallocenes and radical-bridged SMMs that currently define the state of the art. Ingenious combinations of the η8-cyclo-octatetraenyl ligand with erbium, and the SMM properties of the ensuing compounds, are described. Less widely used organometallic ligands such as η6-arene and η7-cycloheptatrienyl are also considered, as are heteroaromatic ligands in which a carbon atom is replaced by an isolobal fragment based on, e.g., boron or phosphorus.
Organometallic chemistry has provided a valuable approach to the design of lanthanide SMMs that complements the impressive achievements made with Werner-type coordination chemistry. Important challenges remain to be surmounted, and the main message is that if SMMs are to achieve their potential in the arena of device technology then there is a clear need for more research into this fascinating family of magnetic materials.
Keywords
Cyclo-octatetraenyl Cyclopentadienyl Dysprosium Erbium Sandwich complexes Single-molecule magnet TerbiumNotes
Acknowledgements
The authors thank the Royal Society Newton Fund, the European Research Council (Consolidator Grant RadMag), the EPSRC and the University of Sussex for financial support.
References
- 1.Liu JL, Chen YC, Tong ML (2018). Chem Soc Rev 47:2431PubMedGoogle Scholar
- 2.Feng M, Tong ML (2018). Chem A Eur J 24:7574Google Scholar
- 3.Gupta SK, Murugavel R (2018). Chem Commun 54:3685Google Scholar
- 4.Lu J, Guo M, Tang J (2017). Chem Asian J 12:2772PubMedGoogle Scholar
- 5.Pointillart F, Cador O, Le Guennic B, Ouahab L (2017). Coord Chem Rev 346:150Google Scholar
- 6.Frost JM, Harriman KLM, Murugesu M (2016). Chem Sci 7:2470PubMedGoogle Scholar
- 7.Woodruff DN, Winpenny REP, Layfield RA (2013). Chem Rev 113:5110PubMedGoogle Scholar
- 8.Cornia A, Seneor P (2017). Nat Mater 16:505PubMedGoogle Scholar
- 9.Layfield RA (2014). Organometallics 33:1084Google Scholar
- 10.Harriman KLM, Murugesu M (2016). Acc Chem Res 49:1158PubMedGoogle Scholar
- 11.Day BM, Guo F-S, Layfield RA (2018). Acc Chem Res 51:1880PubMedGoogle Scholar
- 12.Layfield RA, McDouall JJW, Sulway SA, Tuna F, Collison D, Winpenny REP (2010). Chem A Eur J 16:4442Google Scholar
- 13.Rinehart JD, Long JR (2011). Chem Sci 2:2078Google Scholar
- 14.Benelli C, Gatteschi D (2015) Introduction to molecular magnetism: from transition metals to lanthanides. Wiley-VCH, WeinheimGoogle Scholar
- 15.Gatteschi D, Sessoli R, Villain J (2011) Molecular nanomagnets. Oxford University Press, OxfordGoogle Scholar
- 16.Ungur L, Chibotaru LF (2016). Inorg Chem 55:10043PubMedGoogle Scholar
- 17.Chilton NF (2015). Inorg Chem 54:2097PubMedGoogle Scholar
- 18.Zhang P, Zhang L, Wang C, Xue S, Lin SY, Tang J (2014). J Am Chem Soc 136:4484PubMedGoogle Scholar
- 19.Tuna F, Smith CA, Bodensteiner M, Ungur L, Chibotaru LF, McInnes EJL, Winpenny REP, Collison D, Layfield RA (2012). Angew Chem Int Ed 51:6976Google Scholar
- 20.Burns CP, Wilkins BO, Dickie CM, Latendresse TP, Vernier L, Vignesh KR, Bhuvanesh NS, Nippe M (2017). Chem Commun 53:8419Google Scholar
- 21.Burns CP, Yang X, Wofford JD, Bhuvanesh NS, Hall MB, Nippe M (2018). Angew Chem Int Ed 57:8144Google Scholar
- 22.Pugh T, Chilton NF, Layfield RA (2016). Angew Chem Int Ed 55:11082Google Scholar
- 23.Guo FS, Day BM, Chen YC, Tong ML, Mansikkamäki A, Layfield RA (2018). Science 362:1400PubMedGoogle Scholar
- 24.Guo FS, Day BM, Chen YC, Tong ML, Mansikkamäki A, Layfield RA (2017). Angew Chem Int Ed 56:11445Google Scholar
- 25.Goodwin CAP, Ortu F, Reta D, Chilton NF, Mills DP (2017). Nature 548:439PubMedGoogle Scholar
- 26.Goodwin CAP, Reta D, Ortu F, Chilton NF, Mills DP (2017). J Am Chem Soc 139:18714PubMedGoogle Scholar
- 27.McClain KR, Gould CA, Chakarawet K, Teat SJ, Groshens TJ, Long JR, Harvey BG (2018). Chem Sci 9:8492Google Scholar
- 28.Pugh T, Tuna F, Ungur L, Collison D, McInnes EJL, Chibotaru LF, Layfield RA (2015). Nat Commun 6:7492PubMedPubMedCentralGoogle Scholar
- 29.Pugh T, Vieru V, Chibotaru LF, Layfield RA (2016). Chem Sci 7:2128PubMedGoogle Scholar
- 30.Pugh T, Chilton NF, Layfield RA (2017). Chem Sci 8:2073PubMedGoogle Scholar
- 31.Demir S, Zadrozny JM, Long JR (2014). Chem A Eur J 20:9524Google Scholar
- 32.Meng YS, Zhang YQ, Wang ZM, Wang BW, Gao S (2016). Chem A Eur J 22:12724Google Scholar
- 33.Demir S, Nippe M, Gonzalez MI, Long JR (2014). Chem Sci 5:4702Google Scholar
- 34.Guo F-S, Layfield RA (2017). Chem Commun 53:3130Google Scholar
- 35.Gould CA, Darago LE, Gonzalez MI, Demir S, Long JR (2017). Angew Chem Int Ed 56:10103Google Scholar
- 36.Demir S, Jeon IR, Long JR, Harris TD (2015). Coord Chem Rev 289:149Google Scholar
- 37.Rinehart JD, Fang M, Evans WJ, Long JR (2011). Nat Chem 3:538PubMedGoogle Scholar
- 38.Rinehart JD, Fang M, Evans WJ, Long JR (2011). J Am Chem Soc 133:14236PubMedGoogle Scholar
- 39.Demir S, Zadrozny JM, Nippe M, Long JR (2012). J Am Chem Soc 134:18546PubMedGoogle Scholar
- 40.Demir S, Gonzalez MI, Darago LE, Evans WJ, Long JR (2017). Nat Commun 8:2144PubMedPubMedCentralGoogle Scholar
- 41.Liu S-S, Ziller JW, Zhang Y-QQ, Wang B-WW, Evans WJ, Gao S (2014). Chem Commun 50:11418Google Scholar
- 42.Liu S-S, Yan B, Meng Z-S, Gao C, Wang BW, Gao S (2017). Inorg Chem Commun 86:312Google Scholar
- 43.Meng YS, Xu L, Xiong J, Yuan Q, Liu T, Wang BW, Gao S (2018). Angew Chem Int Ed 57:4673Google Scholar
- 44.Harriman KLM, Le Roy JJ, Ungur L, Holmberg RJ, Korobkov I, Murugesu M (2016). Chem Sci 8:231PubMedPubMedCentralGoogle Scholar
- 45.Rausch J, Apostolidis C, Walter O, Lorenz V, Hrib CG, Hilfert L, Kühling M, Busse S, Edelmann FT (2015). New J Chem 39:7656Google Scholar
- 46.Da Jiang S-D, Wang B-WW, Sun H-L, Wang Z-MM, Gao S (2011). J Am Chem Soc 133:4730PubMedGoogle Scholar
- 47.Da Jiang S-D, Liu S-S, Zhou L-N, Wang B-W, Wang Z-M, Gao S (2012). Inorg Chem 51:3079PubMedGoogle Scholar
- 48.Meihaus KR, Long JR (2013). J Am Chem Soc 135:17952PubMedGoogle Scholar
- 49.Ungur L, Leroy JJ, Korobkov I, Murugesu M, Chibotaru LF (2014). Angew Chem Int Ed 53:4413Google Scholar
- 50.Le Roy JJ, Ungur L, Korobkov I, Chibotaru LF, Murugesu M (2014). J Am Chem Soc 136:8003PubMedGoogle Scholar
- 51.Meng Y-S, Wang C-H, Zhang Y-Q, Leng X-B, Wang B-W, Chen Y-F, Gao S (2016). Inorg Chem Front 3:828Google Scholar
- 52.Chen S-M, Xiong J, Zhang Y-Q, Yuan Q, Wang B-W, Gao S (2018). Chem Sci 9:7540PubMedPubMedCentralGoogle Scholar
- 53.Hilgar JD, Flores BS, Rinehart JD (2017). Chem Commun 53:7322Google Scholar
- 54.Hilgar JD, Bernbeck MG, Flores BS, Rinehart JD (2018). Chem Sci 9:7204PubMedPubMedCentralGoogle Scholar