Lanthanide Organometallics as Single-Molecule Magnets

  • María José Heras Ojea
  • Lewis C. H. Maddock
  • Richard A. LayfieldEmail author
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 64)


Innovative synthetic chemistry has underpinned many important advances in molecular magnetism, particularly so with the development of single-molecule magnets (SMMs). Recently, the organometallic approach to SMMs has provided a series of eye-catching materials based on certain lanthanides that have re-energised a mature field of magnetism research. This chapter summarises the main highlights and shows that three lanthanides – terbium, dysprosium and erbium – and two ligands, cyclopentadienyl and cyclo-octatetraenyl, have played pivotal roles. The chapter considers the lanthanides in terms of conceptually simple models of 4f electronic structure and spin–orbit coupling and their relationship with the popular oblate and prolate depictions of electron density. For organisational purposes, the chapter is loosely divided by ligand hapticity, beginning with a review of η5-cyclopentadienyl compounds of dysprosium, from the discovery of the first organometallic SMM in 2010 to a series of cationic dysprosium metallocenes and radical-bridged SMMs that currently define the state of the art. Ingenious combinations of the η8-cyclo-octatetraenyl ligand with erbium, and the SMM properties of the ensuing compounds, are described. Less widely used organometallic ligands such as η6-arene and η7-cycloheptatrienyl are also considered, as are heteroaromatic ligands in which a carbon atom is replaced by an isolobal fragment based on, e.g., boron or phosphorus.

Organometallic chemistry has provided a valuable approach to the design of lanthanide SMMs that complements the impressive achievements made with Werner-type coordination chemistry. Important challenges remain to be surmounted, and the main message is that if SMMs are to achieve their potential in the arena of device technology then there is a clear need for more research into this fascinating family of magnetic materials.


Cyclo-octatetraenyl Cyclopentadienyl Dysprosium Erbium Sandwich complexes Single-molecule magnet Terbium 



The authors thank the Royal Society Newton Fund, the European Research Council (Consolidator Grant RadMag), the EPSRC and the University of Sussex for financial support.


  1. 1.
    Liu JL, Chen YC, Tong ML (2018). Chem Soc Rev 47:2431PubMedGoogle Scholar
  2. 2.
    Feng M, Tong ML (2018). Chem A Eur J 24:7574Google Scholar
  3. 3.
    Gupta SK, Murugavel R (2018). Chem Commun 54:3685Google Scholar
  4. 4.
    Lu J, Guo M, Tang J (2017). Chem Asian J 12:2772PubMedGoogle Scholar
  5. 5.
    Pointillart F, Cador O, Le Guennic B, Ouahab L (2017). Coord Chem Rev 346:150Google Scholar
  6. 6.
    Frost JM, Harriman KLM, Murugesu M (2016). Chem Sci 7:2470PubMedGoogle Scholar
  7. 7.
    Woodruff DN, Winpenny REP, Layfield RA (2013). Chem Rev 113:5110PubMedGoogle Scholar
  8. 8.
    Cornia A, Seneor P (2017). Nat Mater 16:505PubMedGoogle Scholar
  9. 9.
    Layfield RA (2014). Organometallics 33:1084Google Scholar
  10. 10.
    Harriman KLM, Murugesu M (2016). Acc Chem Res 49:1158PubMedGoogle Scholar
  11. 11.
    Day BM, Guo F-S, Layfield RA (2018). Acc Chem Res 51:1880PubMedGoogle Scholar
  12. 12.
    Layfield RA, McDouall JJW, Sulway SA, Tuna F, Collison D, Winpenny REP (2010). Chem A Eur J 16:4442Google Scholar
  13. 13.
    Rinehart JD, Long JR (2011). Chem Sci 2:2078Google Scholar
  14. 14.
    Benelli C, Gatteschi D (2015) Introduction to molecular magnetism: from transition metals to lanthanides. Wiley-VCH, WeinheimGoogle Scholar
  15. 15.
    Gatteschi D, Sessoli R, Villain J (2011) Molecular nanomagnets. Oxford University Press, OxfordGoogle Scholar
  16. 16.
    Ungur L, Chibotaru LF (2016). Inorg Chem 55:10043PubMedGoogle Scholar
  17. 17.
    Chilton NF (2015). Inorg Chem 54:2097PubMedGoogle Scholar
  18. 18.
    Zhang P, Zhang L, Wang C, Xue S, Lin SY, Tang J (2014). J Am Chem Soc 136:4484PubMedGoogle Scholar
  19. 19.
    Tuna F, Smith CA, Bodensteiner M, Ungur L, Chibotaru LF, McInnes EJL, Winpenny REP, Collison D, Layfield RA (2012). Angew Chem Int Ed 51:6976Google Scholar
  20. 20.
    Burns CP, Wilkins BO, Dickie CM, Latendresse TP, Vernier L, Vignesh KR, Bhuvanesh NS, Nippe M (2017). Chem Commun 53:8419Google Scholar
  21. 21.
    Burns CP, Yang X, Wofford JD, Bhuvanesh NS, Hall MB, Nippe M (2018). Angew Chem Int Ed 57:8144Google Scholar
  22. 22.
    Pugh T, Chilton NF, Layfield RA (2016). Angew Chem Int Ed 55:11082Google Scholar
  23. 23.
    Guo FS, Day BM, Chen YC, Tong ML, Mansikkamäki A, Layfield RA (2018). Science 362:1400PubMedGoogle Scholar
  24. 24.
    Guo FS, Day BM, Chen YC, Tong ML, Mansikkamäki A, Layfield RA (2017). Angew Chem Int Ed 56:11445Google Scholar
  25. 25.
    Goodwin CAP, Ortu F, Reta D, Chilton NF, Mills DP (2017). Nature 548:439PubMedGoogle Scholar
  26. 26.
    Goodwin CAP, Reta D, Ortu F, Chilton NF, Mills DP (2017). J Am Chem Soc 139:18714PubMedGoogle Scholar
  27. 27.
    McClain KR, Gould CA, Chakarawet K, Teat SJ, Groshens TJ, Long JR, Harvey BG (2018). Chem Sci 9:8492Google Scholar
  28. 28.
    Pugh T, Tuna F, Ungur L, Collison D, McInnes EJL, Chibotaru LF, Layfield RA (2015). Nat Commun 6:7492PubMedPubMedCentralGoogle Scholar
  29. 29.
    Pugh T, Vieru V, Chibotaru LF, Layfield RA (2016). Chem Sci 7:2128PubMedGoogle Scholar
  30. 30.
    Pugh T, Chilton NF, Layfield RA (2017). Chem Sci 8:2073PubMedGoogle Scholar
  31. 31.
    Demir S, Zadrozny JM, Long JR (2014). Chem A Eur J 20:9524Google Scholar
  32. 32.
    Meng YS, Zhang YQ, Wang ZM, Wang BW, Gao S (2016). Chem A Eur J 22:12724Google Scholar
  33. 33.
    Demir S, Nippe M, Gonzalez MI, Long JR (2014). Chem Sci 5:4702Google Scholar
  34. 34.
    Guo F-S, Layfield RA (2017). Chem Commun 53:3130Google Scholar
  35. 35.
    Gould CA, Darago LE, Gonzalez MI, Demir S, Long JR (2017). Angew Chem Int Ed 56:10103Google Scholar
  36. 36.
    Demir S, Jeon IR, Long JR, Harris TD (2015). Coord Chem Rev 289:149Google Scholar
  37. 37.
    Rinehart JD, Fang M, Evans WJ, Long JR (2011). Nat Chem 3:538PubMedGoogle Scholar
  38. 38.
    Rinehart JD, Fang M, Evans WJ, Long JR (2011). J Am Chem Soc 133:14236PubMedGoogle Scholar
  39. 39.
    Demir S, Zadrozny JM, Nippe M, Long JR (2012). J Am Chem Soc 134:18546PubMedGoogle Scholar
  40. 40.
    Demir S, Gonzalez MI, Darago LE, Evans WJ, Long JR (2017). Nat Commun 8:2144PubMedPubMedCentralGoogle Scholar
  41. 41.
    Liu S-S, Ziller JW, Zhang Y-QQ, Wang B-WW, Evans WJ, Gao S (2014). Chem Commun 50:11418Google Scholar
  42. 42.
    Liu S-S, Yan B, Meng Z-S, Gao C, Wang BW, Gao S (2017). Inorg Chem Commun 86:312Google Scholar
  43. 43.
    Meng YS, Xu L, Xiong J, Yuan Q, Liu T, Wang BW, Gao S (2018). Angew Chem Int Ed 57:4673Google Scholar
  44. 44.
    Harriman KLM, Le Roy JJ, Ungur L, Holmberg RJ, Korobkov I, Murugesu M (2016). Chem Sci 8:231PubMedPubMedCentralGoogle Scholar
  45. 45.
    Rausch J, Apostolidis C, Walter O, Lorenz V, Hrib CG, Hilfert L, Kühling M, Busse S, Edelmann FT (2015). New J Chem 39:7656Google Scholar
  46. 46.
    Da Jiang S-D, Wang B-WW, Sun H-L, Wang Z-MM, Gao S (2011). J Am Chem Soc 133:4730PubMedGoogle Scholar
  47. 47.
    Da Jiang S-D, Liu S-S, Zhou L-N, Wang B-W, Wang Z-M, Gao S (2012). Inorg Chem 51:3079PubMedGoogle Scholar
  48. 48.
    Meihaus KR, Long JR (2013). J Am Chem Soc 135:17952PubMedGoogle Scholar
  49. 49.
    Ungur L, Leroy JJ, Korobkov I, Murugesu M, Chibotaru LF (2014). Angew Chem Int Ed 53:4413Google Scholar
  50. 50.
    Le Roy JJ, Ungur L, Korobkov I, Chibotaru LF, Murugesu M (2014). J Am Chem Soc 136:8003PubMedGoogle Scholar
  51. 51.
    Meng Y-S, Wang C-H, Zhang Y-Q, Leng X-B, Wang B-W, Chen Y-F, Gao S (2016). Inorg Chem Front 3:828Google Scholar
  52. 52.
    Chen S-M, Xiong J, Zhang Y-Q, Yuan Q, Wang B-W, Gao S (2018). Chem Sci 9:7540PubMedPubMedCentralGoogle Scholar
  53. 53.
    Hilgar JD, Flores BS, Rinehart JD (2017). Chem Commun 53:7322Google Scholar
  54. 54.
    Hilgar JD, Bernbeck MG, Flores BS, Rinehart JD (2018). Chem Sci 9:7204PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • María José Heras Ojea
    • 1
  • Lewis C. H. Maddock
    • 1
  • Richard A. Layfield
    • 1
    Email author
  1. 1.Department of Chemistry, School of Life SciencesUniversity of SussexBrightonUK

Personalised recommendations