Advertisement

pp 1-41 | Cite as

Functionalization of C(sp2)–H Bonds of Arenes and Heteroarenes Assisted by Photoredox Catalysts for the C–C Bond Formation

  • Pierre H. DixneufEmail author
  • Jean-François SouléEmail author
Chapter
Part of the Topics in Organometallic Chemistry book series

Abstract

The formation of C–C bonds from arenes and heteroarenes through transition metal-catalyzed C–H bond functionalizations is one of the major achievements of these last decades. It is now possible to perform such transformations under mild reaction conditions with the help of visible light photocatalysis leading to eco-friendly and safer process to build organic molecules or materials. This chapter will focus on photoredox catalysis which involves a C(sp2)–H bond functionalization step for the formation of C(sp2)–C bonds [i.e., direct arylations and (perfluoro)alkylations] and will show how this hot topic contributes to the development of green chemistry.

Keywords

C(sp2)–H bond C–C bond formation MLTC photoredox catalysis Visible light 

References

  1. 1.
    Satoh T, Miura M (2007) Chem Lett 36(2):200–205Google Scholar
  2. 2.
    Seregin IV, Gevorgyan V (2007) Chem Soc Rev 36(7):1173–1193Google Scholar
  3. 3.
    Bellina F, Rossi R (2009) Chem Rev 110(2):1082–1146Google Scholar
  4. 4.
    Chen X, Engle KM, Wang D-H, Yu J-Q (2009) Angew Chem Int Ed 48(28):5094–5115Google Scholar
  5. 5.
    Colby DA, Bergman RG, Ellman JA (2009) Chem Rev 110(2):624–655Google Scholar
  6. 6.
    Litvinas ND, Brodsky BH, Du BJ (2009) Angew Chem Int Ed 48(25):4513–4516 S4513/4511-S4513/4512Google Scholar
  7. 7.
    Cho SH, Kim JY, Kwak J, Chang S (2011) Chem Soc Rev 40(10):5068–5083Google Scholar
  8. 8.
    Liu C, Zhang H, Shi W, Lei A (2011) Chem Rev 111(3):1780–1824Google Scholar
  9. 9.
    Yeung CS, Dong VM (2011) Chem Rev 111(3):1215–1292Google Scholar
  10. 10.
    Arockiam PB, Bruneau C, Dixneuf PH (2012) Chem Rev 112(11):5879–5918Google Scholar
  11. 11.
    Mercier LG, Leclerc M (2013) Acc Chem Res 46(7):1597–1605Google Scholar
  12. 12.
    Dixneuf PH, Doucet H (eds) C-H bond activation and catalytic functionalization Vol I (2015) & Vol II (2016) C-H bond activation and catalytic functionalization I. Springer International Publishing, ChamGoogle Scholar
  13. 13.
    Bheeter CB, Chen L, Soulé J-F, Doucet H (2016) Cat Sci Technol 6(7):2005–2049Google Scholar
  14. 14.
    Lyons TW, Sanford MS (2010) Chem Rev 110(2):1147–1169Google Scholar
  15. 15.
    Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F (2012) Angew Chem Int Ed 51(41):10236–10254Google Scholar
  16. 16.
    Gafney HD, Adamson AW (1972) J Am Chem Soc 94(23):8238–8239Google Scholar
  17. 17.
    Balzani V, Juris A (2001) Coord Chem Rev 211(1):97–115Google Scholar
  18. 18.
    Yoon TP, Ischay MA, Du J (2010) Nat Chem 2:527–532Google Scholar
  19. 19.
    Tucker JW, Stephenson CRJ (2012) J Org Chem 77(4):1617–1622Google Scholar
  20. 20.
    Prier CK, Rankic DA, MacMillan DWC (2013) Chem Rev 113(7):5322–5363Google Scholar
  21. 21.
    Ravelli D, Fagnoni M, Albini A (2013) Chem Soc Rev 42(1):97–113Google Scholar
  22. 22.
    Angnes RA, Li Z, Correia CRD, Hammond GB (2015) Org Biomol Chem 13(35):9152–9167Google Scholar
  23. 23.
    Romero NA, Nicewicz DA (2016) Chem Rev 116(17):10075–10166Google Scholar
  24. 24.
    Douglas JJ, Sevrin MJ, Stephenson CRJ (2016) Org Process Res Dev 20(7):1134–1147Google Scholar
  25. 25.
    Shaw MH, Twilton J, MacMillan DWC (2016) J Org Chem 81(16):6898–6926Google Scholar
  26. 26.
    Courant T, Masson G (2016) J Org Chem 81(16):6945–6952Google Scholar
  27. 27.
    Fabry DC, Rueping M (2016) Acc Chem Res 49(9):1969–1979Google Scholar
  28. 28.
    Xie J, Jin H, Hashmi ASK (2017) Chem Soc Rev 46(17):5193–5203Google Scholar
  29. 29.
    Qin Q, Jiang H, Hu Z, Ren D, Yu S (2017) Chem Rec 17(8):754–774Google Scholar
  30. 30.
    Boubertakh O, Goddard J-P (2017) Eur J Org Chem 2017(15):2072–2084Google Scholar
  31. 31.
    Cano-Yelo H, Deronzier A (1984) J Chem Soc. Perkin Trans 2(6):1093–1098Google Scholar
  32. 32.
    Luca OR, Gustafson JL, Maddox SM, Fenwick AQ, Smith DC (2015) Org Chem Front 2(7):823–848Google Scholar
  33. 33.
    Liu Y-X, Xue D, Wang J-D, Zhao C-J, Zou Q-Z, Wang C, Xiao J (2013) Synlett 24(04):507–513Google Scholar
  34. 34.
    Tobisu M, Furukawa T, Chatani N (2013) Chem Lett 42(10):1203–1205Google Scholar
  35. 35.
    Yang F, Koeller J, Ackermann L (2016) Angew Chem Int Ed 55(15):4759–4762Google Scholar
  36. 36.
    Ghosh I, Shaikh RS, König B (2017) Angew Chem Int Ed 56(29):8544–8549Google Scholar
  37. 37.
    Natarajan P, Bala A, Mehta SK, Bhasin KK (2016) Tetrahedron 72(19):2521–2526Google Scholar
  38. 38.
    Yuan K, Soulé J-F, Dorcet V, Doucet H (2016) ACS Catal 8121–8126Google Scholar
  39. 39.
    Yuan K, Soulé J-F, Doucet H (2015) ACS Catal 5(2):978–991Google Scholar
  40. 40.
    Hfaiedh A, Yuan K, Ben Ammar H, Ben Hassine B, Soulé J-F, Doucet H (2015) ChemSusChem 8:1794–1804Google Scholar
  41. 41.
    Skhiri A, Beladhria A, Yuan K, Soulé J-F, Ben Salem R, Doucet H (2015) Eur J Org Chem (20):4428–4436Google Scholar
  42. 42.
    Hagui W, Besbes N, Srasra E, Roisnel T, Soulé J-F, Doucet H (2016) Org Lett 18(17):4182–4185Google Scholar
  43. 43.
    Arora A, Weaver JD (2016) Org Lett 18(16):3996–3999Google Scholar
  44. 44.
    Nagib DA, MacMillan DWC (2011) Nature 480(7376):224–228Google Scholar
  45. 45.
    Dolbier WR (1997) Fluorinated free radicals. In: Organofluorine chemistry. Springer, Berlin, pp 97–163Google Scholar
  46. 46.
    Heaton CA, Miller AK, Powell RL (2001) J Fluor Chem 107(1):1–3Google Scholar
  47. 47.
    Iqbal N, Choi S, Ko E, Cho EJ (2012) Tetrahedron Lett 53(15):2005–2008Google Scholar
  48. 48.
    Straathof NJW, Gemoets HPL, Wang X, Schouten JC, Hessel V, Noël T (2014) ChemSusChem 7(6):1612–1617Google Scholar
  49. 49.
    Su Y, Kuijpers KPL, König N, Shang M, Hessel V, Noël T (2016) Chem Eur J 22(35):12295–12300Google Scholar
  50. 50.
    Lin Q, Chu L, Qing F-L (2013) Chin J Chem 31(7):885–891Google Scholar
  51. 51.
    Prakash GKS, Hu J (2007) Acc Chem Res 40(10):921–930Google Scholar
  52. 52.
    Su Y-M, Hou Y, Yin F, Xu Y-M, Li Y, Zheng X, Wang X-S (2014) Org Lett 16(11):2958–2961Google Scholar
  53. 53.
    Wang L, Wei X-J, Lei W-L, Chen H, Wu L-Z, Liu Q (2014) Chem Commun 50(100):15916–15919Google Scholar
  54. 54.
    Beatty JW, Douglas JJ, Cole KP, Stephenson CRJ (2015) Nat Commun 6:7919Google Scholar
  55. 55.
    Beatty Joel W, Douglas James J, Miller R, McAtee Rory C, Cole Kevin P, Stephenson Corey RJ (2016) Chem 1(3):456–472Google Scholar
  56. 56.
    Tucker JW, Narayanam JMR, Krabbe SW, Stephenson CRJ (2010) Org Lett 12(2):368–371Google Scholar
  57. 57.
    Furst L, Matsuura BS, Narayanam JMR, Tucker JW, Stephenson CRJ (2010) Org Lett 12(13):3104–3107Google Scholar
  58. 58.
    Swift EC, Williams TM, Stephenson CRJ (2016) Synlett 27(05):754–758Google Scholar
  59. 59.
    McCallum T, Barriault L (2016) Chem Sci 7(7):4754–4758Google Scholar
  60. 60.
    Klauck FJR, James MJ, Glorius F (2017) Angew Chem Int Ed Engl 56(40):12336–12339Google Scholar
  61. 61.
    Lebée C, Languet M, Allain C, Masson G (2016) Org Lett 18(6):1478–1481Google Scholar
  62. 62.
    Xue D, Jia Z-H, Zhao C-J, Zhang Y-Y, Wang C, Xiao J (2014) Chem Eur J 20(10):2960–2965Google Scholar
  63. 63.
    Cano-Yelo H, Deronzier A (1987) J Photochem 37(2):315–321Google Scholar
  64. 64.
    Zhang J, Chen J, Zhang X, Lei X (2014) J Org Chem 79(21):10682–10688Google Scholar
  65. 65.
    Candish L, Freitag M, Gensch T, Glorius F (2017) Chem Sci 8(5):3618–3622Google Scholar
  66. 66.
    DiRocco DA, Dykstra K, Krska S, Vachal P, Conway DV, Tudge M (2014) Angew Chem Int Ed 53(19):4802–4806Google Scholar
  67. 67.
    Li G-X, Morales-Rivera CA, Wang Y, Gao F, He G, Liu P, Chen G (2016) Chem Sci 7(10):6407–6412Google Scholar
  68. 68.
    Jin J, MacMillan DWC (2015) Nature 525(7567):87–90Google Scholar
  69. 69.
    Garza-Sanchez RA, Tlahuext-Aca A, Tavakoli G, Glorius F (2017) ACS Catal 7(6):4057–4061Google Scholar
  70. 70.
    Kalyani D, McMurtrey KB, Neufeldt SR, Sanford MS (2011) J Am Chem Soc 133(46):18566–18569Google Scholar
  71. 71.
    Liang L, Xie M-S, Wang H-X, Niu H-Y, Qu G-R, Guo H-M (2017) J Org Chem 82(11):5966–5973Google Scholar
  72. 72.
    Xie J, Yuan X, Abdukader A, Zhu C, Ma J (2014) Org Lett 16(6):1768–1771Google Scholar
  73. 73.
    Gao G-L, Yang C, Xia W (2017) Chem Commun 53(6):1041–1044Google Scholar
  74. 74.
    Jung J, Kim E, You Y, Cho EJ (2014) Adv Synth Catal 356(13):2741–2748Google Scholar
  75. 75.
    Cheng J, Deng X, Wang G, Li Y, Cheng X, Li G (2016) Org Lett 18(18):4538–4541Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Univ Rennes, CNRS UMR6226RennesFrance

Personalised recommendations