Functionalization of C(sp2)–H Bonds of Arenes and Heteroarenes Assisted by Photoredox Catalysts for the C–C Bond Formation

  • Pierre H. DixneufEmail author
  • Jean-François SouléEmail author
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 63)


The formation of C–C bonds from arenes and heteroarenes through transition metal-catalyzed C–H bond functionalizations is one of the major achievements of these last decades. It is now possible to perform such transformations under mild reaction conditions with the help of visible light photocatalysis leading to eco-friendly and safer process to build organic molecules or materials. This chapter will focus on photoredox catalysis which involves a C(sp2)–H bond functionalization step for the formation of C(sp2)–C bonds [i.e., direct arylations and (perfluoro)alkylations] and will show how this hot topic contributes to the development of green chemistry.


C(sp2)–H bond C–C bond formation MLTC photoredox catalysis Visible light 


  1. 1.
    Satoh T, Miura M (2007) Chem Lett 36(2):200–205CrossRefGoogle Scholar
  2. 2.
    Seregin IV, Gevorgyan V (2007) Chem Soc Rev 36(7):1173–1193PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Bellina F, Rossi R (2009) Chem Rev 110(2):1082–1146CrossRefGoogle Scholar
  4. 4.
    Chen X, Engle KM, Wang D-H, Yu J-Q (2009) Angew Chem Int Ed 48(28):5094–5115CrossRefGoogle Scholar
  5. 5.
    Colby DA, Bergman RG, Ellman JA (2009) Chem Rev 110(2):624–655CrossRefGoogle Scholar
  6. 6.
    Litvinas ND, Brodsky BH, Du BJ (2009) Angew Chem Int Ed 48(25):4513–4516 S4513/4511-S4513/4512CrossRefGoogle Scholar
  7. 7.
    Cho SH, Kim JY, Kwak J, Chang S (2011) Chem Soc Rev 40(10):5068–5083PubMedCrossRefGoogle Scholar
  8. 8.
    Liu C, Zhang H, Shi W, Lei A (2011) Chem Rev 111(3):1780–1824PubMedCrossRefGoogle Scholar
  9. 9.
    Yeung CS, Dong VM (2011) Chem Rev 111(3):1215–1292PubMedCrossRefGoogle Scholar
  10. 10.
    Arockiam PB, Bruneau C, Dixneuf PH (2012) Chem Rev 112(11):5879–5918PubMedCrossRefGoogle Scholar
  11. 11.
    Mercier LG, Leclerc M (2013) Acc Chem Res 46(7):1597–1605PubMedCrossRefGoogle Scholar
  12. 12.
    Dixneuf PH, Doucet H (eds) C-H bond activation and catalytic functionalization Vol I (2015) & Vol II (2016) C-H bond activation and catalytic functionalization I. Springer International Publishing, ChamGoogle Scholar
  13. 13.
    Bheeter CB, Chen L, Soulé J-F, Doucet H (2016) Cat Sci Technol 6(7):2005–2049CrossRefGoogle Scholar
  14. 14.
    Lyons TW, Sanford MS (2010) Chem Rev 110(2):1147–1169PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F (2012) Angew Chem Int Ed 51(41):10236–10254CrossRefGoogle Scholar
  16. 16.
    Gafney HD, Adamson AW (1972) J Am Chem Soc 94(23):8238–8239CrossRefGoogle Scholar
  17. 17.
    Balzani V, Juris A (2001) Coord Chem Rev 211(1):97–115CrossRefGoogle Scholar
  18. 18.
    Yoon TP, Ischay MA, Du J (2010) Nat Chem 2:527–532PubMedCrossRefGoogle Scholar
  19. 19.
    Tucker JW, Stephenson CRJ (2012) J Org Chem 77(4):1617–1622PubMedCrossRefGoogle Scholar
  20. 20.
    Prier CK, Rankic DA, MacMillan DWC (2013) Chem Rev 113(7):5322–5363PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ravelli D, Fagnoni M, Albini A (2013) Chem Soc Rev 42(1):97–113PubMedCrossRefGoogle Scholar
  22. 22.
    Angnes RA, Li Z, Correia CRD, Hammond GB (2015) Org Biomol Chem 13(35):9152–9167PubMedCrossRefGoogle Scholar
  23. 23.
    Romero NA, Nicewicz DA (2016) Chem Rev 116(17):10075–10166PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Douglas JJ, Sevrin MJ, Stephenson CRJ (2016) Org Process Res Dev 20(7):1134–1147CrossRefGoogle Scholar
  25. 25.
    Shaw MH, Twilton J, MacMillan DWC (2016) J Org Chem 81(16):6898–6926PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Courant T, Masson G (2016) J Org Chem 81(16):6945–6952PubMedCrossRefGoogle Scholar
  27. 27.
    Fabry DC, Rueping M (2016) Acc Chem Res 49(9):1969–1979PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Xie J, Jin H, Hashmi ASK (2017) Chem Soc Rev 46(17):5193–5203PubMedCrossRefGoogle Scholar
  29. 29.
    Qin Q, Jiang H, Hu Z, Ren D, Yu S (2017) Chem Rec 17(8):754–774PubMedCrossRefGoogle Scholar
  30. 30.
    Boubertakh O, Goddard J-P (2017) Eur J Org Chem 2017(15):2072–2084CrossRefGoogle Scholar
  31. 31.
    Cano-Yelo H, Deronzier A (1984) J Chem Soc. Perkin Trans 2(6):1093–1098CrossRefGoogle Scholar
  32. 32.
    Luca OR, Gustafson JL, Maddox SM, Fenwick AQ, Smith DC (2015) Org Chem Front 2(7):823–848CrossRefGoogle Scholar
  33. 33.
    Liu Y-X, Xue D, Wang J-D, Zhao C-J, Zou Q-Z, Wang C, Xiao J (2013) Synlett 24(04):507–513CrossRefGoogle Scholar
  34. 34.
    Tobisu M, Furukawa T, Chatani N (2013) Chem Lett 42(10):1203–1205CrossRefGoogle Scholar
  35. 35.
    Yang F, Koeller J, Ackermann L (2016) Angew Chem Int Ed 55(15):4759–4762CrossRefGoogle Scholar
  36. 36.
    Ghosh I, Shaikh RS, König B (2017) Angew Chem Int Ed 56(29):8544–8549CrossRefGoogle Scholar
  37. 37.
    Natarajan P, Bala A, Mehta SK, Bhasin KK (2016) Tetrahedron 72(19):2521–2526CrossRefGoogle Scholar
  38. 38.
    Yuan K, Soulé J-F, Dorcet V, Doucet H (2016) ACS Catal 8121–8126Google Scholar
  39. 39.
    Yuan K, Soulé J-F, Doucet H (2015) ACS Catal 5(2):978–991CrossRefGoogle Scholar
  40. 40.
    Hfaiedh A, Yuan K, Ben Ammar H, Ben Hassine B, Soulé J-F, Doucet H (2015) ChemSusChem 8:1794–1804PubMedCrossRefGoogle Scholar
  41. 41.
    Skhiri A, Beladhria A, Yuan K, Soulé J-F, Ben Salem R, Doucet H (2015) Eur J Org Chem (20):4428–4436Google Scholar
  42. 42.
    Hagui W, Besbes N, Srasra E, Roisnel T, Soulé J-F, Doucet H (2016) Org Lett 18(17):4182–4185PubMedCrossRefGoogle Scholar
  43. 43.
    Arora A, Weaver JD (2016) Org Lett 18(16):3996–3999PubMedCrossRefGoogle Scholar
  44. 44.
    Nagib DA, MacMillan DWC (2011) Nature 480(7376):224–228PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Dolbier WR (1997) Fluorinated free radicals. In: Organofluorine chemistry. Springer, Berlin, pp 97–163CrossRefGoogle Scholar
  46. 46.
    Heaton CA, Miller AK, Powell RL (2001) J Fluor Chem 107(1):1–3CrossRefGoogle Scholar
  47. 47.
    Iqbal N, Choi S, Ko E, Cho EJ (2012) Tetrahedron Lett 53(15):2005–2008CrossRefGoogle Scholar
  48. 48.
    Straathof NJW, Gemoets HPL, Wang X, Schouten JC, Hessel V, Noël T (2014) ChemSusChem 7(6):1612–1617PubMedCrossRefGoogle Scholar
  49. 49.
    Su Y, Kuijpers KPL, König N, Shang M, Hessel V, Noël T (2016) Chem Eur J 22(35):12295–12300PubMedCrossRefGoogle Scholar
  50. 50.
    Lin Q, Chu L, Qing F-L (2013) Chin J Chem 31(7):885–891CrossRefGoogle Scholar
  51. 51.
    Prakash GKS, Hu J (2007) Acc Chem Res 40(10):921–930PubMedCrossRefGoogle Scholar
  52. 52.
    Su Y-M, Hou Y, Yin F, Xu Y-M, Li Y, Zheng X, Wang X-S (2014) Org Lett 16(11):2958–2961PubMedCrossRefGoogle Scholar
  53. 53.
    Wang L, Wei X-J, Lei W-L, Chen H, Wu L-Z, Liu Q (2014) Chem Commun 50(100):15916–15919CrossRefGoogle Scholar
  54. 54.
    Beatty JW, Douglas JJ, Cole KP, Stephenson CRJ (2015) Nat Commun 6:7919PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Beatty Joel W, Douglas James J, Miller R, McAtee Rory C, Cole Kevin P, Stephenson Corey RJ (2016) Chem 1(3):456–472PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Tucker JW, Narayanam JMR, Krabbe SW, Stephenson CRJ (2010) Org Lett 12(2):368–371PubMedCrossRefGoogle Scholar
  57. 57.
    Furst L, Matsuura BS, Narayanam JMR, Tucker JW, Stephenson CRJ (2010) Org Lett 12(13):3104–3107PubMedCrossRefGoogle Scholar
  58. 58.
    Swift EC, Williams TM, Stephenson CRJ (2016) Synlett 27(05):754–758CrossRefGoogle Scholar
  59. 59.
    McCallum T, Barriault L (2016) Chem Sci 7(7):4754–4758PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Klauck FJR, James MJ, Glorius F (2017) Angew Chem Int Ed Engl 56(40):12336–12339PubMedCrossRefGoogle Scholar
  61. 61.
    Lebée C, Languet M, Allain C, Masson G (2016) Org Lett 18(6):1478–1481PubMedCrossRefGoogle Scholar
  62. 62.
    Xue D, Jia Z-H, Zhao C-J, Zhang Y-Y, Wang C, Xiao J (2014) Chem Eur J 20(10):2960–2965PubMedCrossRefGoogle Scholar
  63. 63.
    Cano-Yelo H, Deronzier A (1987) J Photochem 37(2):315–321CrossRefGoogle Scholar
  64. 64.
    Zhang J, Chen J, Zhang X, Lei X (2014) J Org Chem 79(21):10682–10688PubMedCrossRefGoogle Scholar
  65. 65.
    Candish L, Freitag M, Gensch T, Glorius F (2017) Chem Sci 8(5):3618–3622PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    DiRocco DA, Dykstra K, Krska S, Vachal P, Conway DV, Tudge M (2014) Angew Chem Int Ed 53(19):4802–4806CrossRefGoogle Scholar
  67. 67.
    Li G-X, Morales-Rivera CA, Wang Y, Gao F, He G, Liu P, Chen G (2016) Chem Sci 7(10):6407–6412PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Jin J, MacMillan DWC (2015) Nature 525(7567):87–90PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Garza-Sanchez RA, Tlahuext-Aca A, Tavakoli G, Glorius F (2017) ACS Catal 7(6):4057–4061CrossRefGoogle Scholar
  70. 70.
    Kalyani D, McMurtrey KB, Neufeldt SR, Sanford MS (2011) J Am Chem Soc 133(46):18566–18569PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Liang L, Xie M-S, Wang H-X, Niu H-Y, Qu G-R, Guo H-M (2017) J Org Chem 82(11):5966–5973PubMedCrossRefGoogle Scholar
  72. 72.
    Xie J, Yuan X, Abdukader A, Zhu C, Ma J (2014) Org Lett 16(6):1768–1771PubMedCrossRefGoogle Scholar
  73. 73.
    Gao G-L, Yang C, Xia W (2017) Chem Commun 53(6):1041–1044CrossRefGoogle Scholar
  74. 74.
    Jung J, Kim E, You Y, Cho EJ (2014) Adv Synth Catal 356(13):2741–2748CrossRefGoogle Scholar
  75. 75.
    Cheng J, Deng X, Wang G, Li Y, Cheng X, Li G (2016) Org Lett 18(18):4538–4541PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Organométalliques, matériaux et Catalyse, Univ Rennes, CNRS, (UMR 6226), Institut Sciences ChimiquesRennesFrance

Personalised recommendations