pp 1-18 | Cite as

Conversion of Alcohols to Carboxylates Using Water and Base with H2 Liberation

  • Peng Hu
  • David Milstein
Part of the Topics in Organometallic Chemistry book series


Production of carboxylic acids from alcohols is an important process for both industry and laboratory. Traditional methods usually require environmentally unfriendly oxidants and generate stoichiometric waste. Recently, methods using O2 as oxidant, oxidation processes applying stoichiometric hydrogen acceptors and acceptorless dehydrogenative coupling reactions to generate carboxylic acids/carboxylic acid salts have been developed. This chapter reviews the reported results on the generation of carboxylic acids/carboxylates by acceptorless dehydrogenative coupling of alcohols and water. The chapter is according to the types of catalysts used; reaction conditions, product yields, and mechanisms are also discussed.


Alcohols Carboxylic acids Catalysis Dehydrogenation Dihydrogen 


  1. 1.
    Tojo G, Fernandez M (2007) Oxidation of primary alcohols to carboxylic acids: a guide to current common practice. Springer, New YorkGoogle Scholar
  2. 2.
    Reid EM, Worthington H, Larchar AW (1939). J Am Chem Soc 61:99Google Scholar
  3. 3.
    Franczyk TS, Moench WL (2003) US patent 6,646,160Google Scholar
  4. 4.
    Mallat T, Baiker A (2004). Chem Rev 104:3037Google Scholar
  5. 5.
    Della Pina C, Falletta E, Rossi M (2012). Chem Soc Rev 41:350Google Scholar
  6. 6.
    Rass HA, Essayem N, Besson M (2013). Green Chem 15:2240Google Scholar
  7. 7.
    Ahmed MS, Mannel DS, Root TW, Stahl SS (2017). Org Process Res Dev 21:1388Google Scholar
  8. 8.
    Han L, Xing P, Jiang B (2014). Org Lett 16:3428Google Scholar
  9. 9.
    Jiang X, Zhang J, Ma S (2016). J Am Chem Soc 138:8344Google Scholar
  10. 10.
    Zweifel T, Naubron J-V, Grützmacher H (2009). Angew Chem Int Ed 48:559Google Scholar
  11. 11.
    Trincado M, Kühlein K, Grützmacher H (2011). Chem Eur J 17:11905Google Scholar
  12. 12.
    Annen S, Zweifel T, Ricatto F, Grützmacher H (2010). ChemCatChem 2:1286Google Scholar
  13. 13.
    Gianetti TL, Annen SP, Santiso-Quinones G, Reiher M, Driess M, Grützmacher H (2016). Angew Chem Int Ed 55:1854Google Scholar
  14. 14.
    Gunanathan C, Milstein D (2011). Acc Chem Res 44:588Google Scholar
  15. 15.
    Gunanathan C, Milstein D (2013). Science 341:1229712Google Scholar
  16. 16.
    Gunanathan C, Milstein D (2014). Chem Rev 114:12024Google Scholar
  17. 17.
    Trinicado M, Banerjee D, Grützmacher H (2014). Energy Environ Sci 7:2464Google Scholar
  18. 18.
    Younus HA, Su W, Ahmad N, Chen S, Verpoort F (2015). Adv Synth Catal 357:283Google Scholar
  19. 19.
    Huang F, Liu Z, Yu Z (2015). Angew Chem Int Ed 54:2Google Scholar
  20. 20.
    Werkmeister S, Neumann J, Junge K, Beller M (2015). Chem Eur J 21:12226Google Scholar
  21. 21.
    Alberico E, Nielsen M (2015). Chem Commun 51:6714Google Scholar
  22. 22.
    Khusnutdinova JR, Milstein D (2016). Angew Chem Int Ed 55:1854Google Scholar
  23. 23.
    Pandey P, Dutta I, Bera JK (2016). Proc Natl Acad Sci India Sect A Phys Sci 86:561–579Google Scholar
  24. 24.
    Balaraman E, Khaskin E, Leitus G, Milstein D (2013). Nat Chem 5:122Google Scholar
  25. 25.
    Li H, Hall MB (2014). J Am Chem Soc 136:383Google Scholar
  26. 26.
    Hu P, Ben-David Y, Milstein D (2016). J Am Chem Soc 138:6143Google Scholar
  27. 27.
    Gnanaprakasam B, Balaraman E, Ben-David Y, Milstein D (2011). Angew Chem Int Ed 50:12240Google Scholar
  28. 28.
    Hu P, Diskin-Posner Y, Ben-David Y, Milstein D (2014). ACS Catal 4:2649Google Scholar
  29. 29.
    Nielsen M, Alberico E, Baumann W, Drexler H-J, Junge H, Gladiali S, Beller M (2013). Nature 495:85Google Scholar
  30. 30.
    Alberico E, Lennox AJJ, Vogt LK, Jiao H, Baumann W, Drexler H, Nielsen M, Spannenberg A, Checinski MP, Junge H, Beller M (2016). J Am Chem Soc 138:14890Google Scholar
  31. 31.
    Rodríguez-Lugo RE, Trincado M, Vogt M, Tewes F, Santiso-Quinones G, Grützmacher H (2013). Nat Chem 5:342Google Scholar
  32. 32.
    Brewster TP, Goldberg JM, Tran JCD, Heinekey M, Goldberg KI (2016). ACS Catal 6:6302Google Scholar
  33. 33.
    Choi J-H, Heim LE, Ahrens M, Prechtl MHG (2014). Dalton Trans 43:17248Google Scholar
  34. 34.
    Heim LE, Schlörer NE, Choi J, Prechtl MHG (2014). Nat Commun 5:3621Google Scholar
  35. 35.
    Sponholz P, Mellmann D, Cordes C, Alsabeh PG, Li B, Li Y, Nielsen M, Junge H, Dixneuf P, Beller M (2014). ChemSusChem 7:2419Google Scholar
  36. 36.
    Zhang L, Nguyen DH, Raffa G, Trivelli X, Capet F, Desset S, Paul S, Dumeignil F, Gauvin R (2016). ChemSusChem 9:1413Google Scholar
  37. 37.
    Nguyen DH, Morin Y, Zhang L, Trivelli X, Capet F, Paul S, Desset S, Dumeignil F, Gauvin RM (2017). ChemCatChem 9:2652Google Scholar
  38. 38.
    Alberico E, Sponholz P, Cordes C, Nielsen M, Drexler H-J, Baumann W, Junge H, Beller M (2013). Angew Chem Int Ed 52:14162Google Scholar
  39. 39.
    Andérez-Fernández M, Vogt LK, Fischer S, Zhou W, Jiao H, Garbe M, Elangovan S, Junge K, Junge H, Ludwig R, Beller M (2017). Angew Chem Int Ed 56:559Google Scholar
  40. 40.
    Malineni J, Keul H, Möller M (2015). Dalton Trans 44:17409Google Scholar
  41. 41.
    Santilli C, Makarov IS, Fristrup P, Madsen R (2016). J Org Chem 81:9931Google Scholar
  42. 42.
    Ventura-Espinosa D, Vicent C, Bayac M, Mata JA (2016). Cat Sci Technol 6:8024Google Scholar
  43. 43.
    Wang X, Wang C, Liu Y, Xiao J (2016). Green Chem 18:4605Google Scholar
  44. 44.
    Dahl EW, Louis-Goff T, Szymczak NK (2017). Chem Commun 53:2287Google Scholar
  45. 45.
    Sarbajna A, Dutta I, Daw P, Dinda S, Rahaman SMW, Sarkar A, Bera JK (2017). ACS Catal 7:2786Google Scholar
  46. 46.
    Dai Z, Luo Q, Meng X, Li R, Zhang J, Peng T (2017). J Organomet Chem 830:11Google Scholar
  47. 47.
    Dai Z, Luo Q, Jiang H, Luo Q, Li H, Zhang J, Peng T (2017). Cat Sci Technol 7:2506Google Scholar
  48. 48.
    Fujita K, Tamura R, Tanaka Y, Yoshida M, Onoda M, Yamaguchi R (2017). ACS Catal 7:7226Google Scholar
  49. 49.
    Sawama Y, Morita K, Yamada T, Nagata S, Yabe Y, Monguchi Y, Sajiki H (2014). Green Chem 16:3439Google Scholar
  50. 50.
    Sawama Y, Morita K, Asai S, Kozawa M, Tadokoro S, Nakajima J, Monguchi Y, Sajikia H (2015). Adv Synth Catal 357:1205Google Scholar
  51. 51.
    Ghalehshahi HG, Madsen R (2017). Chem Eur J 23:11920Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of ChemistrySun Yat-sen UniversityGuangzhouP. R. China
  2. 2.Department of Organic ChemistryWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations