Hybrid Organic–Inorganic Cyanide-Bridged Networks

  • Tomasz Korzeniak
  • Beata Nowicka
  • Barbara SiekluckaEmail author
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 64)


Hybrid organic–inorganic CN-bridged networks are an important and versatile group of molecular magnets. Cyanide ligands mediate relatively strong magnetic interactions and at the same time allow easy design of polynuclear assemblies via building block approach. Introduction of organic ligands allows effective manipulation of topology and dimensionality, enabling formation of discrete polynuclear structures, chains and layers as well as intricate 3D architectures. Organic molecules in hybrid systems can act as blocking or bridging ligands as well as guest molecules. Most importantly, apart from directing the structure formation, organic ligands can be used to induce additional desired properties. In this chapter, we present numerous examples of hybrid CN-bridged assemblies to illustrate their diverse functionalities. They include single molecule (SMMs) and single chain magnets (SCMs), magnetic sponges, multi-switchable spin-crossover (SCO) and charge-transfer systems as well as materials combining magnetic ordering with optical activity or luminescence. Current efforts in the research of CN-bridged systems concentrate on several topics connected with their potential applications, like search for materials with high critical temperature of magnetic ordering, development of bistable systems responsive to multiple stimuli, or surface deposition and formation of heterostructures.


Cyanide ligand Luminescence Multifunctionality Photomagnetism Solvatomagnetism Spin crossover 


  1. 1.
    Verdaguer M, Bleuzen A, Marvaud V et al (1999) Molecules to build solids: high TC molecule-based magnets by design and recent revival of cyano complexes chemistry. Coord Chem Rev 190–192:1023–1047Google Scholar
  2. 2.
    Robin MB (1962) The color and electronic configurations of Prussian blue. Inorg Chem 1:337–342Google Scholar
  3. 3.
    Ito A, Suenaga M, Ono K (1968) Mossbauer study of soluble Prussian blue, insoluble Prussian blue, and Turnbull’s blue. J Chem Phys 48:3597–3599Google Scholar
  4. 4.
    Ferlay S, Mallah T, Ouahes R, Veillet P, Verdaguer M (1995) A room-temperature organometallic magnet based on Prussian blue. Nature 378:701–703Google Scholar
  5. 5.
    Holmes SM, Girolami GS (1999) Sol-gel synthesis of KVII[CrIII(CN)6]∙2H2O: a crystalline molecule-based magnet with a magnetic ordering temperature above 100 °C. J Am Chem Soc 121:5593–5594Google Scholar
  6. 6.
    Newton GN, Nihei M, Oshio H (2011) Cyanide-bridged molecular squares – the building units of Prussian blue. Eur J Inorg Chem 2011:3031–3042Google Scholar
  7. 7.
    Korzeniak T, Stadnicka K, Rams M, Sieklucka B (2004) Grid-type two-dimensional magnetic multinuclear metal complex: strands of {[CuII(μ-4,4′-bpy)]2+}n cross-linked by Octacyanotungstate(V) ions. Inorg Chem 43:4811–4813PubMedGoogle Scholar
  8. 8.
    Larionova J, Gross M, Pilkington M, Andres H, Stoeckli-Evans H, Güdel HU, Decurtins S (2000) High-spin molecules: a novel Cyano-bridged MnII 9MoV 6 molecular cluster with a S = 51/2 ground state and ferromagnetic intercluster ordering at low temperatures. Angew Chem Int Ed 39:1605–1609Google Scholar
  9. 9.
    Zhong ZJ, Seino H, Mizobe Y, Hidai M, Fujishima A, Ohkoshi S, Hashimoto K (2000) A high-spin cyanide-bridged Mn9W6 cluster (S = 39/2) with a full-capped cubane structure. J Am Chem Soc 122:2952–2953Google Scholar
  10. 10.
    Bonadio F, Gross M, Stoeckli-Evans H, Decurtins S (2002) High-spin molecules: synthesis, X-ray characterization, and magnetic behavior of two new cyano-bridged NiII 9MoV 6 and NiII 9WV 6 clusters with a S = 12 ground state. Inorg Chem 41:5891–5896PubMedGoogle Scholar
  11. 11.
    Song Y, Zhang P, Ren X-M, Shen X-F, Li Y-Z, You X-Z (2005) Octacyanometallate-based single-molecule magnets: CoII 9MV 6 (M = W, Mo). J Am Chem Soc 127:3708–3709PubMedGoogle Scholar
  12. 12.
    Freedman DE, Bennett MV, Long JR (2006) Symmetry-breaking substitutions of [Re(CN)8]3− into the centered, face-capped octahedral clusters (CH3OH)24M9M′6(CN)48 (M = Mn, Co; M′ = Mo, W). Dalton Trans:2829–2834Google Scholar
  13. 13.
    Ma SL, Ren S, Ma Y, Liao DZ, Yan SP (2009) A high-spin cyanide-bridged Mo6Mn9 cluster: crystal structure and magnetism. Struct Chem 20:161–167Google Scholar
  14. 14.
    Podgajny R, Chorazy S, Nitek W, Rams M, Majcher AM, Marszałek B, Żukrowski J, Kapusta C, Sieklucka B (2013) Co–NC–W and Fe–NC–W electron-transfer channels for thermal bistability in trimetallic {Fe6Co3[W(CN)8]6} cyanido-bridged cluster. Angew Chem Int Ed 52:896–900Google Scholar
  15. 15.
    Chorazy S, Podgajny R, Nogaś W, Nitek W, Kozieł M, Rams M, Juszyńska-Gałązka E, Żukrowski J, Kapusta C, Nakabayashi K, Fujimoto T, Ohkoshi S (2014) Charge transfer phase transition with reversed thermal hysteresis loop in the mixed-valence Fe9[W(CN)8]6·xMeOH cluster. Chem Commun 50:3484–3487Google Scholar
  16. 16.
    Chorazy S, Stanek JJ, Nogaś W, Majcher AM, Rams M, Kozieł M, Juszyńska-Gałązka E, Nakabayashi K, Ohkoshi S, Sieklucka B, Podgajny R (2016) Tuning of charge transfer assisted phase transition and slow magnetic relaxation functionalities in {Fe9–xCox[W(CN)8]6} (x = 0–9) molecular solid solution. J Am Chem Soc 138:1635–1646PubMedGoogle Scholar
  17. 17.
    Lim JH, Yoo JH, Kim HC, Hong CS (2006) Surface modification of a six-capped body-centered cube Ni9W6 cluster: structure and single-molecule magnetism. Angew Chem Int Ed 45:7424–7426Google Scholar
  18. 18.
    Lim JH, Yoo HS, Kim JI, Yoon JH, Yang N, Koh EK, Park J-G, Hong CS (2008) A facially capped body-centered Ni9W6 cubane modified with sulfur-containing bidentate ligands: structure and magnetic properties. Eur J Inorg Chem:3428–3431Google Scholar
  19. 19.
    Lim JH, Yoo HS, Yoon JH, Koh EK, Kim HC, Hong CS (2008) Structure and magnetic properties of cyanide-bridged NiII 9MoV 6 cluster modified by bidentate capping ligands. Polyhedron 27:299–303Google Scholar
  20. 20.
    Hilfiger MG, Zhao H, Prosvirin A, Wernsdorfer W, Dunbar KM (2009) Molecules based on M(V) (M = Mo, W) and Ni(II) ions: a new class of trigonal bipyramidal cluster and confirmation of SMM behavior for the pentadecanuclear molecule {NiII[NiII(tmphen)(MeOH)]6[Ni(H2O)3]2[m-CN]30[WV(CN)3]6}. Dalton Trans:5155–5163Google Scholar
  21. 21.
    Nowicka B, Stadnicka K, Nitek W, Rams M, Sieklucka B (2012) Geometrical isomerism in pentadecanuclear high-spin Ni9W6 clusters with symmetrical bidentate ligands detected. CrystEngComm 14:6559–6564Google Scholar
  22. 22.
    Chorazy S, Rams M, Hoczek A, Czarnecki B, Sieklucka B, Ohkoshi S, Podgajny R (2016) Structural anisotropy of cyanido-bridged {CoII 9WV 6} single-molecule magnets induced by bidentate ligands: towards the rational enhancement of energy barrier. Chem Commun 52:4772–4775Google Scholar
  23. 23.
    Podgajny R, Nitek W, Rams M, Sieklucka B (2008) Testing the high spin MnII 9WV 6 cluster as building block for three-dimensional coordination networks. Cryst Growth Des 8:3817–3821Google Scholar
  24. 24.
    Podgajny R, Chorazy S, Nitek W, Rams M, Bałanda M, Sieklucka B (2010) {MnII 9WV 6}n nanowires organized into 3D hybrid network of I1O2 topology. Cryst Growth Des 10:4693–4696Google Scholar
  25. 25.
    Chorazy S, Podgajny R, Nitek W, Rams M, Ohkoshi S, Sieklucka B (2013) Supramolecular chains and coordination nanowires constructed of high-spin CoII 9WV 6 clusters and 4,4′-bpdo linkers. Cryst Growth Des 13:3036–3045Google Scholar
  26. 26.
    Sieklucka B, Szklarzewicz J, Kemp TJ, Errington W (2000) X-ray evidence of CN bridging in bimetallic complexes based on [M(CN)8]4− (M = Mo, W). The crystal structure of {[Mn(bpy)2]2(μ-NC)2[Mo(CN)6]2(μ-CN)2[Mn(bpy)2]2}·8H2O. Inorg Chem 39:5156–5158PubMedGoogle Scholar
  27. 27.
    Mathonière C, Podgajny R, Guionneau P, Labrugere C, Sieklucka B (2005) Photomagnetism in cyano-bridged hexanuclear clusters [MnII(bpy)2]4[MIV(CN)8]2·xH2O (M = Mo, x = 14, and M = W, x = 9). Chem Mater 17:442–449Google Scholar
  28. 28.
    Venkatakrishnan TS, Rajamani R, Ramasesha S, Sutter JP (2007) Synthesis, crystal structure, and magnetic properties of hexanuclear [{MnL2}4{Nb(CN)8}2] and nonanuclear [{MnL2}6{Nb(CN)8}3] heterometallic clusters (L = bpy, phen). Inorg Chem 46:9569–9574PubMedGoogle Scholar
  29. 29.
    Korzeniak T, Jankowski R, Kozieł M, Pinkowicz D, Sieklucka B (2017) Reversible single-crystal-to-single-crystal transformation in photomagnetic cyanido-bridged Cd4M2 octahedral molecules. Inorg Chem 56:12914–12919PubMedGoogle Scholar
  30. 30.
    Chorazy S, Reczyński M, Podgajny R, Nogaś W, Buda S, Rams M, Nitek W, Nowicka B, Mlynarski J, Ohkoshi S, Sieklucka B (2015) Implementation of chirality into high-spin ferromagnetic CoII 9WV 6 and NiII 9WV 6 cyanido-bridged clusters. Cryst Growth Des 15:3573–3581Google Scholar
  31. 31.
    Chorazy S, Stanek JJ, Kobylarczyk J, Ohkoshi S, Sieklucka B, Podgajny R (2017) Modulation of the FeII spin crossover effect in the pentadecanuclear {Fe9[M(CN)8]6} (M = Re, W) clusters by facial coordination of tridentate polyamine ligands. Dalton Trans 46:8027–8036PubMedGoogle Scholar
  32. 32.
    Ozaki N, Yamada R, nakabayashi K, Ohkoshi S (2011) Catena-poly[[[tetrakis(cyanido-kC)-tungstate(IV)]-di-m-cyanido-k4C:N-bis-[diaqua(2,2′-bipyridyl-k2N,N’)-manganese(II)]-di-m-cyanido-k4N:C]hexahydrate]. Acta Cryst E67:m702–m703Google Scholar
  33. 33.
    Podgajny R, Pełka R, Desplanches C, Ducase L, Nitek W, Korzeniak T, Stefańczyk O, Rams M, Sieklucka B, Verdaguer M (2011) W-knotted chain {[CuII(dien)]4[WV(CN)8]}5+ : synthesis, crystal structure, magnetism, and theory. Inorg Chem 2011:3213Google Scholar
  34. 34.
    Venkatakrishnan TS, Sahoo S, Brefuel N, Duhayon C, Paulsen C, Barra AL, Ramasesha S, Sutter JP (2010) Enhanced ion anisotropy by nonconventional coordination geometry: single-chain magnet behavior for a [{FeIIL}2{NbIV(CN)8}] helical chain compound designed with heptacoordinate FeII. J Am Chem Soc 132:6047–6056PubMedGoogle Scholar
  35. 35.
    Nowicka B, Rams M, Stadnicka K, Sieklucka B (2007) Reversible guest-induced magnetic and structural single-crystal-to-single-crystal transformation in microporous coordination network {[Ni(cyclam)]3[W(CN)8]2}n. Inorg Chem 46:8123–8125PubMedGoogle Scholar
  36. 36.
    Nowicka B, Bałanda M, Gaweł B, Ćwiak G, Budziak A, Łasocha W, Sieklucka B (2011) Microporous {[Ni(cyclam)]3[W(CN)8]2}n affording reversible structural and magnetic conversions. Dalton Trans 40:3067–3073PubMedGoogle Scholar
  37. 37.
    Lim JH, You YS, Yoo HS, Yoon JH, Kim JI, Koh EK, Hong CS (2007) Bimetallic MV 2CuII 3 (M = Mo, W) coordination complexes based on octacyanometalates: structures and magnetic variations tuned by chelated tetradentate macrocyclic ligands. Inorg Chem 46:10578–10586PubMedGoogle Scholar
  38. 38.
    Long J, Chamoreau LM, Mathoniere C, Marvaud V (2009) Photoswitchable heterotrimetallic chain based on octacyanomolybdate, copper, and nickel: synthesis, characterization, and photomagnetic properties. Inorg Chem 48:22–24PubMedGoogle Scholar
  39. 39.
    Arimoto Y, Ohkoshi S, Zhong ZJ, Seino H, Mizobe Y, Hashimoto K (2002) Crystal structure and magnetic properties of two-dimensional cyanide-bridged bimetallic assembly composed of CsI[MnII(3-cyanopyridine)2{WV(CN)8}]·H2O. Chem Lett 31:832–833Google Scholar
  40. 40.
    Podgajny R, Korzeniak T, Bałanda M, Wasiutyński T, Errington W, Kemp TJ, Alcock NW, Sieklucka B (2002) 2-D soft ferromagnet based on [WV(CN)8]3− and CuII with a Tc of 34 K. Chem Commun 2:1138–1139Google Scholar
  41. 41.
    Korzeniak T, Podgajny R, Alcock NW, Lewiński K, Bałanda M, Wasiutyński T, Sieklucka B (2003) A new family of magnetic 2D coordination polymers based on [MV(CN)8] (M = Mo, W) and pre-programmed Cu2+ centres. Polyhedron 22:2183–2190Google Scholar
  42. 42.
    Sieklucka B, Korzeniak T, Podgajny R, Bałanda M, Nakazawa Y, Miyazaki Y, Sorai M, Wasiutyński T (2004) Ferromagnetic ordering in new layered copper octacyanometallates. J Magn Magn Mater 272–276:1058–1059Google Scholar
  43. 43.
    Sieklucka B, Podgajny R, Przychodzeń P, Korzeniak T (2005) Engineering of octacyanometalate-based coordination networks towards functionality. Coord Chem Rev 249:2203–2221Google Scholar
  44. 44.
    Przychodzeń P, Korzeniak T, Podgajny R, Sieklucka B (2006) Supramolecular coordination networks based on octacyanometalates: from structure to function. Coord Chem Rev 250:2234–2260Google Scholar
  45. 45.
    Nowicka B, Korzeniak T, Stefańczyk O, Pinkowicz D, Chorąży S, Podgajny R, Sieklucka B (2012) The impact of ligands upon topology and functionality of octacyanidometallate-based assemblies. Coord Chem Rev 256:1946–1971Google Scholar
  46. 46.
    Hatlevik Ø, Buschmann WE, Zhang J, Manson JL, Miller JS (1999) Enhancement of the magnetic ordering temperature and air stability of a mixed valent vanadium hexacyanochromate(III) magnet to 99°C (372 K). Adv Mater 11:914–918Google Scholar
  47. 47.
    Imoto K, Takemura M, Tokoro H, Ohkoshi S (2012) A cyano-bridged vanadium-niobium bimetal assembly exhibiting a high curie temperature of 210 K. Eur J Inorg Chem 16:2649–2652Google Scholar
  48. 48.
    Pinkowicz D, Pełka R, Drath O, Nitek W, Bałanda M, Majcher AM, Ponetti G, Sieklucka B (2010) Nature of magnetic interactions in 3D {[MII(pyrazole)4]2[NbIV(CN)8]·4H2O}n (M = Mn, Fe, Co, Ni) molecular magnets. Inorg Chem 49:7565–7576PubMedGoogle Scholar
  49. 49.
    Ohkoshi S, Hashimoto K (2001) Photo-magnetic and magneto-optical effects of functionalized metal polycyanides. J Photochem Photobiol C 2:71–88Google Scholar
  50. 50.
    Decurtins S, Gütlich P, Köhler CP, Spiering H, Hauser A (1984) Light-induced excited spin state trapping in a transition-metal complex: the hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system. Chem Phys Lett 105:1–4Google Scholar
  51. 51.
    Carvajal MA, Reguero M, de Graaf C (2010) On the mechanism of the photoinduced magnetism in copper octacyanomolybdates. Chem Commun 46:5737–5739Google Scholar
  52. 52.
    Carvajal MA, Caballol R, de Graaf C (2011) Insights on the photomagnetism in copper octacyanomolybdates. Dalton Trans 40:7295–7303PubMedGoogle Scholar
  53. 53.
    Bunău O, Arrio MA, Sainctavit P, Paulatto L, Calandra M, Juhin A, Marvaud V, Cartier dit Moulin C (2012) Understanding the Photomagnetic behavior in copper octacyanomolybdates. J Phys Chem A 116:8678–8683PubMedGoogle Scholar
  54. 54.
    Bridonneau N, Long J, Cantin JL, von Bardeleben J, Pillet S, Bendeif EE, Aravena D, Ruiz E, Marvaud V (2015) First evidence of light-induced spin transition in molybdenum(IV). Chem Commun 51:8229Google Scholar
  55. 55.
    Magott M, Stefańczyk O, Sieklucka B, Pinkowicz D (2017) Octacyanidotungstate(IV) coordination chains demonstrate a light-induced excited spin state trapping behavior and magnetic exchange photoswitching. Angew Chem Int Ed 56:13283–13287Google Scholar
  56. 56.
    Arczyński M, Rams M, Stanek J, Fitta M, Sieklucka B, Dunbar KR, Pinkowicz D (2017) A family of octahedral magnetic molecules based on [NbIV(CN)8]4−. Inorg Chem 56:4021–4027PubMedGoogle Scholar
  57. 57.
    Arimoto Y, Ohkoshi S, Zhong ZJ, Seino H, Mizobe Y, Hashimoto K (2003) Photoinduced magnetization in a two-dimensional cobalt octacyanotungstate. J Am Chem Soc 125:9240–9241PubMedGoogle Scholar
  58. 58.
    Korzeniak T, Pinkowicz D, Nitek W, Dańko T, Pełka R, Sieklucka B (2016) Photoswitchable CuII 4MoIV and CuII 2MoIV cyanido-bridged molecules. Dalton Trans 45:16585–16595PubMedGoogle Scholar
  59. 59.
    Stefańczyk O, Majcher AM, Rams M, Nitek W, Mathoniere C, Sieklucka B (2015) Photo-induced magnetic properties of the [CuII(bapa)]2[MoIV(CN)8]·7H2O molecular ribbon. J Mater Chem C 3:8712–8719Google Scholar
  60. 60.
    Herrera JM, Marvaud V, Verdaguer M, Marrot J, Kalisz M, Mathoniere C (2004) Reversible photoinduced magnetic properties in the heptanuclear complex [MoIV(CN)2(CN-CuL)6]8+: a photomagnetic high-spin molecule. Angew Chem Int Ed 43:5468–5471Google Scholar
  61. 61.
    Chorazy S, Wyczesany M, Sieklucka B (2017) Lanthanide photoluminescence in heterometallic polycyanidometallate-based coordination networks. Molecules 22:1902PubMedCentralGoogle Scholar
  62. 62.
    Long J, Chelebaeva E, Larionova J, Guari Y, Ferreira RAS, Carlos LD, Almeida Paz FA, Trifonov A, Guérin C (2011) Near-infrared luminescent and magnetic cyano-bridged coordination polymers Nd(phen)n(DMF)m[M(CN)8] (M = Mo, W). Inorg Chem 50:9924–9926PubMedGoogle Scholar
  63. 63.
    Chorazy S, Rams M, Wang J, Sieklucka B, Ohkoshi S (2017) Octahedral Yb(III) complexes embedded in [CoIII(CN)6]-bridged coordination chains: combining sensitized near-infrared fluorescence with slow magnetic relaxation. Dalton Trans 46:13668–13672PubMedGoogle Scholar
  64. 64.
    Chorazy S, Rams M, Nakabayashi K, Sieklucka B, Ohkoshi S (2016) White light emissive Dy III single-molecule magnets sensitized by diamagnetic [CoIII(CN)6]3− linkers. Chem Eur J 22:7371–7375Google Scholar
  65. 65.
    Chorazy S, Sieklucka B, Ohkoshi S (2016) Near-infrared photoluminescence in hexacyanido-bridged Nd−Cr layered ferromagnet. Cryst Growth Des 16:4918–4925Google Scholar
  66. 66.
    Chorazy S, Kumar K, Nakabayashi K, Sieklucka B, Ohkoshi S (2017) Fine tuning of multicolored photoluminescence in crystalline magnetic materials constructed of trimetallic EuxTb1−x[co(CN)6] cyanido-bridged chains. Inorg Chem 56:5239–5252PubMedGoogle Scholar
  67. 67.
    Chorazy S, Nakabayashi K, Arczynski M, Pełka R, Ohkoshi S, Sieklucka B (2014) Multifunctionality in bimetallic LnIII[WV(CN)8]3− (Ln=Gd, Nd) coordination helices: optical activity, luminescence, and magnetic coupling. Chem Eur J 20:7144–7159PubMedGoogle Scholar
  68. 68.
    Chorazy S, Nakabayashi K, Ozaki N, Pełka R, Fic T, Mlynarski J, Sieklucka B (2013) Thermal switching between blue and red luminescence in magnetic chiral cyanido-bridged EuIII–WV coordination helices. RSC Adv 3:1065–1068Google Scholar
  69. 69.
    Pinkowicz D, Podgajny R, Nitek W, Rams M, Majcher AM, Nuida T, Ohkoshi S, Sieklucka B (2011) Multifunctional magnetic molecular {[MnII(urea)2(H2O)]2[NbIV(CN)8]}n system: magnetization-induced SHG in the chiral polymorph. Chem Mater 23:21–31Google Scholar
  70. 70.
    Kosaka W, Hashimoto K, Ohkoshi S (2007) Three-dimensional manganese octacyanoniobate-based pyroelectric ferrimagnet. Bull Chem Soc Jpn 81:992–994Google Scholar
  71. 71.
    Tsunobuchi Y, Kosaka W, Nuida T, Ohkoshi S (2009) Magnetization-induced second harmonic generation in a three-dimensional manganese octacyanoniobate-based pyroelectric ferrimagnet. CrystEngComm 11:2051–2053Google Scholar
  72. 72.
    Kosaka W, Nuida T, Hashimoto K, Ohkoshi S (2007) Crystal structure, magnetic properties, and second harmonic generation of a three-dimensional pyroelectric cyano-bridged Mn–Mo complex. Bull Chem Soc Jpn 80:960–962Google Scholar
  73. 73.
    Dechambenoit P, Long JR (2011) Microporous magnets. Chem Soc Rev 40:3249–3265PubMedGoogle Scholar
  74. 74.
    Kahn O, Larionova J, Yakhmi JV (1999) Molecular magnetic sponges. Chem Eur J 5:3443–3449Google Scholar
  75. 75.
    Kaneko W, Ohba M, Kitagawa S (2007) A flexible coordination polymer crystal providing reversible structural and magnetic conversions. J Am Chen Soc 129:13706–13712Google Scholar
  76. 76.
    Pinkowicz D, Podgajny R et al (2008) Magnetic sponge-like behavior of 3D ferrimagnetic {[MnII(imH)]2[NbIV(CN)8]}n with Tc = 62 K. Inorg Chem 47:9745–9747PubMedGoogle Scholar
  77. 77.
    Pinkowicz D, Podgajny R et al (2011) Double switching of a magnetic coordination framework through intraskeletal molecular rearrangement. Angew Chem Int Ed 50:3973–3977Google Scholar
  78. 78.
    Milon J, Daniel MC, Kaiba A, Guionneau P, Brandes S, Sutter JP (2007) Nanoporous magnets of chiral and racemic [{Mn(HL)}2Mn{Mo(CN)7}2] with switchable ordering temperatures (TC = 85 K ↔ 106 K) driven by H2O sorption (L = N,N-dimethylalaninol). J Am Chem Soc 129:13872–13878PubMedGoogle Scholar
  79. 79.
    Zhang YJ, Liu T, Kanegawa S, Sato O (2009) Reversible single-crystal-to-single-crystal transformation from achiral antiferromagnetic hexanuclears to a chiral ferrimagnetic double zigzag chain. J Am Chem Soc 131:7942–7943PubMedGoogle Scholar
  80. 80.
    Ohkoshi S, Tsunobuchi Y, Takahashi H, Hozumi T, Shiro M, Hashimoto K (2007) Synthesis and alcohol vapor sensitivity of a ferromagnetic copper−tungsten bimetallic assembly. J Am Chem Soc 129:3084–3085PubMedGoogle Scholar
  81. 81.
    Wang QL, Southerland H, Li JR, Prosvirin AV, Zhao H, Dunbar KR (2012) Crystal-to-crystal transformation of magnets based on heptacyanomolybdate(III) involving dramatic changes in coordination mode and ordering temperature. Angew Chem Int Ed 51:9321–9324Google Scholar
  82. 82.
    Yanai N, Kaneko W, Yoneda K, Ohba M, Kitagawa S (2007) Reversible water-induced magnetic and structural conversion of a flexible microporous Ni(II)Fe(III) ferromagnet. J Am Chem Soc 129:3496–3497PubMedGoogle Scholar
  83. 83.
    Nowicka B, Reczyński M, Rams M, Nitek W, Kozieł M, Sieklucka B (2015) Larger pores and higher Tc: {[Ni(cyclam)]3[W(CN)8]2·solv}n – a new member of the largest family of pseudo-polymorphic isomers among octacyanometallate-based assemblies. CrystEngComm 17:3526–3532Google Scholar
  84. 84.
    Nowicka B, Reczyński M, Bałanda M, Fitta M, Gaweł B, Sieklucka B (2016) The rule rather than the exception: structural flexibility of [Ni(cyclam)]2+-based cyano-bridged magnetic networks. Cryst Growth Des 16:4736–4743Google Scholar
  85. 85.
    Chorazy S, Podgajny R et al (2015) Optical activity and dehydration-driven switching of magnetic properties in enantiopure cyanido-bridged CoII 3WV 2 trigonal bipyramids. Inorg Chem 54:5784–5794PubMedGoogle Scholar
  86. 86.
    Nowicka B, Heczko M, Reczyński M, Rams M, Nitek W, Gaweł B, Sieklucka B (2016) Exploration of a new building block for the construction of cyano-bridged solvatomagnetic assemblies: [N(cyclam)]3+. CrystEngComm 18:7011–7020Google Scholar
  87. 87.
    Herchel R, Tuček J, Trávníček Z, Petridis D, Zbořil R (2011) Crystal water molecules as magnetic tuners in molecular metamagnets exhibiting antiferro-ferro-paramagnetic transitions. Inorg Chem 50:9153–9163PubMedGoogle Scholar
  88. 88.
    Maspoch D et al (2007) Structural and magnetic modulation of a purely organic open framework by selective guest inclusion. Chem Eur J 13:8153–8163PubMedGoogle Scholar
  89. 89.
    Ohba M, Maruono N, Okawa H, Enoki T, Latour JM (1994) A new bimetallic ferromagnet, [Ni(en)2]3[Fe(CN)6]2∙2H2O, with a rare rope-ladder chain structure. J Am Chem Soc 116:11566–11567Google Scholar
  90. 90.
    Ferlay S, Mallah T, Vaissermann J, Bartolome F, Veillet P, Verdaguer M (1996) A chromium(III) nickel(II) cyanide-bridged ferromagnetic layered structure with corrugated sheets. Chem Commun 1996:2481–2482Google Scholar
  91. 91.
    Colacio E, Dominguez-Vera JM, Ghazi M, Kivekas R, Lloret F, Morenoa JM, Stoeckli-Evans H (1999) A novel two-dimensional honeycomb-like bimetallic iron(III)–nickel(II) cyanide-bridged magnetic material [Ni(cyclam)]3[Fe(CN)6]2·nH2O (cyclam = 1,4,8,11-tetraazacyclodecane). Chem Commun 1999:987–988Google Scholar
  92. 92.
    Marvaud V, Decroix C, Scuiller A, Guyard-Duhayon C, Vaissermann J, Gonnet F, Verdaguer M (2003) Hexacyanometalate molecular chemistry: heptanuclear heterobimetallic complexes; control of the ground spin state. Chem Eur J 8:1677–1691Google Scholar
  93. 93.
    Tuyèras F, Scuiller A, Duhayon C, Hernandez-Molina M, Fabrizi de Biani F, Verdaguer M, Mallah T, Wernsdorfer W, Marvaud V (2008) Hexacyanidometalate molecular chemistry, part III: di-, tri-, tetra-, hexa- and hepta-nuclear chromium–nickel complexes: control of spin, structural anisotropy, intra- and inter-molecular exchange couplings. Inorg Chim Acta 361:3505–3518Google Scholar
  94. 94.
    Gu ZZ, Einaga Y, Sato O, Fujishima A, Hashimoto K (2001) Photo- and dehydration-induced charge transfer processes accompanied with spin transition on CoFe(CN)5NH3∙ 6H2O. J Solid State Chem 159:336–342Google Scholar
  95. 95.
    Liu M, Bian XF, Xia YF, Bao Z, Wu HS, Xu MX (2011) Variation of magnetic properties with different annealed temperatures in the Ni3[Fe(CN)6]2∙XH2O. Curr Appl Phys 11:271–275Google Scholar
  96. 96.
    Nowicka B, Reczyński M, Rams M, Nitek W, Żukrowski J, Kapusta C, Sieklucka B (2015) Hydration-switchable charge transfer in the first bimetallic assembly based on the [Ni(cyclam)]3+ − magnetic CN-bridged chain {(H3O)[NiIII(cyclam)] [FeII(CN)6]·5H2O}n. Chem Commun 51:11485–11488Google Scholar
  97. 97.
    Ohba M et al (2009) Bidirectional chemo-switching of spin state in a microporous framework. Angew Chem Int Ed 48:4767–4771Google Scholar
  98. 98.
    Bartual-Murgui C et al (2012) Synergetic effect of host-guest chemistry and spin crossover in 3D Hofmann-like metal-organic frameworks [Fe(bpac)M(CN)4] (M=Pt, Pd, Ni). Chem Eur J 18:507–516PubMedGoogle Scholar
  99. 99.
    Berlinguette CP, Dragulescu-Andrasi A, Sieber A, Güdel HU, Achim C, Dunbar KR (2005) A charge-transfer-induced spin transition in a discrete complex: the role of extrinsic factors in stabilizing three electronic isomeric forms of a cyanide-bridged co/Fe cluster. J Am Chem Soc 127:6766–6779PubMedGoogle Scholar
  100. 100.
    Ozaki N, Tokoro H, Miyamotoa Y, Ohkoshi S (2014) Humidity dependency of the thermal phase transition of a cyano bridged Co–W bimetal assembly. New J Chem 38:1950–1954Google Scholar
  101. 101.
    Koumousi ES et al (2014) Metal-to-metal electron transfer in co/Fe Prussian blue molecular analogues: the ultimate miniaturization. J Am Chem Soc 136:15461–15464PubMedGoogle Scholar
  102. 102.
    Horike S, Umeyama D, Kitagawa S (2013) Ion conductivity and transport by porous coordination polymers and metal-organic frameworks. Acc Chem Res 46:2376–2384PubMedGoogle Scholar
  103. 103.
    Imoto K, Nakagawa K, Miyahara H, Ohkoshi S (2013) Super-ionic conductive magnet based on a cyano-bridged Mn−Nb bimetal assembly. Cryst Growth Des 13:4673–4677Google Scholar
  104. 104.
    Okubo M (2013) Reversible solid state redox of an octacyanometallate-bridged coordination polymer by electrochemical ion insertion/extraction. Inorg Chem 52:3772–3779PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Tomasz Korzeniak
    • 1
  • Beata Nowicka
    • 1
  • Barbara Sieklucka
    • 1
    Email author
  1. 1.Wydział ChemiiUniwersytet JagiellońskiKrakówPoland

Personalised recommendations