Advertisement

pp 1-28 | Cite as

Green Cross-Coupling Using Visible Light for C–O and C–N Bond Formation

  • Hong Yi
  • Yichang Liu
  • Aiwen LeiEmail author
Chapter
Part of the Topics in Organometallic Chemistry book series

Abstract

The development of green and sustainable approaches in organic synthesis can provide an environmentally friendly method in the industrial manufacture. Recently, visible-light-mediated photocatalysis has achieved great progress and been a powerful tool to the construction of new chemical bonds in the green synthetic community. This chapter provides an updated summary of visible-light-mediated cross-coupling for C–O and C–N bond formations. Compared with the traditional synthetic methods, the visible-light catalysis provides a new way for the useful compounds synthesis (O-containing and N-containing molecules).

Keywords

C–H functionalization C–N bond C–O bond Cross-coupling Photoredox catalysis Visible light 

References

  1. 1.
    Xuan J, Xiao WJ (2012). Angew Chem Int Ed 51:6828–6838Google Scholar
  2. 2.
    Zeitler K (2009). Angew Chem Int Ed 48:9785–9789Google Scholar
  3. 3.
    Prier CK, Rankic DA, MacMillan DW (2013). Chem Rev 113:5322–5363Google Scholar
  4. 4.
    Romero NA, Nicewicz DA (2016). Chem Rev 116:10075–10166Google Scholar
  5. 5.
    Narayanam JM, Stephenson CR (2011). Chem Soc Rev 40:102–113Google Scholar
  6. 6.
    Xi Y, Yi H, Lei A (2013). Org Biomol Chem 11:2387–2403Google Scholar
  7. 7.
    Yasu Y, Koike T, Akita M (2012). Angew Chem Int Ed 51:9567–9571Google Scholar
  8. 8.
    Courant T, Masson G (2012). Chem Eur J 18:423–427Google Scholar
  9. 9.
    Carboni A, Dagousset G, Magnier E, Masson G (2014). Org Lett 16:1240–1243Google Scholar
  10. 10.
    Yi H, Zhang X, Qin C, Liao Z, Liu J, Lei A (2014). Adv Synth Catal 356:2873–2877Google Scholar
  11. 11.
    Fumagalli G, Boyd S, Greaney MF (2013). Org Lett 15:4398–4401Google Scholar
  12. 12.
    Hopkinson MN, Sahoo B, Glorius F (2014). Adv Synth Catal 356:2794–2800Google Scholar
  13. 13.
    Ran Y, Lin QY, Xu XH, Qing FL (2016). J Org Chem 81:7001–7007Google Scholar
  14. 14.
    Tlahuext-Aca A, Garza-Sanchez RA, Glorius F (2017). Angew Chem Int Ed 56:3708–3711Google Scholar
  15. 15.
    Majek M, Jacobi von Wangelin A (2015). Angew Chem Int Ed 54:2270–2274Google Scholar
  16. 16.
    Guo W, Lu LQ, Wang Y, Wang YN, Chen JR, Xiao WJ (2015). Angew Chem Int Ed 54:2265–2269Google Scholar
  17. 17.
    Terrett JA, Cuthbertson JD, Shurtleff VW, MacMillan DW (2015). Nature 524:330–334Google Scholar
  18. 18.
    Baviskar AT et al (2015). ACS Med Chem Lett 6:481–485Google Scholar
  19. 19.
    Kibriya G, Samanta S, Jana S, Mondal S, Hajra A (2017). J Org Chem 82:13722–13727Google Scholar
  20. 20.
    Margrey KA, Nicewicz DA (2016). Acc Chem Res 49:1997–2006Google Scholar
  21. 21.
    Hamilton DS, Nicewicz DA (2012). J Am Chem Soc 134:18577–18580Google Scholar
  22. 22.
    Grandjean JM, Nicewicz DA (2013). Angew Chem Int Ed Engl 52:3967–3971Google Scholar
  23. 23.
    Perkowski AJ, Nicewicz DA (2013). J Am Chem Soc 135:10334–10337Google Scholar
  24. 24.
    Yi H et al (2017). Angew Chem Int Ed 56:1120–1124Google Scholar
  25. 25.
    Pandey G, Pal S, Laha R (2013). Angew Chem Int Ed 52:5146–5149Google Scholar
  26. 26.
    Pandey G, Laha R, Singh D (2016). J Org Chem 81:7161–7171Google Scholar
  27. 27.
    Zhang G et al (2016). J Am Chem Soc 138:12037–12040Google Scholar
  28. 28.
    Hu X, Zhang G, Bu F, Lei A (2017). ACS Catal 7:1432–1437Google Scholar
  29. 29.
    Malpani YR, Biswas BK, Han HS, Jung YS, Han SB (2018). Org Lett 20:1693–1697Google Scholar
  30. 30.
    Li Y, Ding YJ, Wang JY, Su YM, Wang XS (2013). Org Lett 15:2574–2577Google Scholar
  31. 31.
    Ramirez NP, Bosque I, Gonzalez-Gomez JC (2015). Org Lett 17:4550–4553Google Scholar
  32. 32.
    Shao A, Zhan J, Li N, Chiang CW, Lei A (2018). J Org Chem 83:3582–3589Google Scholar
  33. 33.
    Yang Q, Jia Z, Li L, Zhang L, Luo S (2018). Org Chem Front 5:237–241Google Scholar
  34. 34.
    Zhang M, Ruzi R, Li N, Xie J, Zhu C (2018). Org Chem Front 5:749–752Google Scholar
  35. 35.
    Metternich JB, Gilmour R (2016). J Am Chem Soc 138:1040–1045Google Scholar
  36. 36.
    Ohkubo K, Fujimoto A, Fukuzumi S (2011). Chem Commun 47:8515–8517Google Scholar
  37. 37.
    An J, Zou Y-Q, Yang Q-Q, Wang Q, Xiao W-J (2013). Adv Synth Catal 355:1483–1489Google Scholar
  38. 38.
    Yadav AK, Yadav LDS (2016). Green Chem 18:4240–4244Google Scholar
  39. 39.
    Griesbeck AG, Cho M (2007). Org Lett 9:611–613Google Scholar
  40. 40.
    Su Y, Zhang L, Jiao N (2011). Org Lett 13:2168–2171Google Scholar
  41. 41.
    Yi H, Bian C, Hu X, Niu L, Lei A (2015). Chem Commun 51:14046–14049Google Scholar
  42. 42.
    Liu X, Cong T, Liu P, Sun P (2016). J Org Chem 81:7256–7261Google Scholar
  43. 43.
    Zou YQ et al (2012). Angew Chem Int Ed 51:784–788Google Scholar
  44. 44.
    Zhang X et al (2018). Org Lett 20:708–711Google Scholar
  45. 45.
    Ni K, Meng LG, Wang K, Wang L (2018). Org Lett 20:2245–2248Google Scholar
  46. 46.
    Koike T, Akita M (2009). Chem Lett 38:166–167Google Scholar
  47. 47.
    Noto N, Miyazawa K, Koike T, Akita M (2015). Org Lett 17:3710–3713Google Scholar
  48. 48.
    Shao A, Luo X, Chiang CW, Gao M, Lei A (2017). Chem Eur J 23:17874–17878Google Scholar
  49. 49.
    Tlahuext-Aca A, Garza-Sanchez RA, Schafer M, Glorius F (2018). Org Lett 20:1546–1549Google Scholar
  50. 50.
    Yin ZB et al (2018). Org Lett 20:190–193Google Scholar
  51. 51.
    Monnier F, Taillefer M (2009). Angew Chem Int Ed 48:6954–6971Google Scholar
  52. 52.
    Wolfe JP, Wagaw S, Marcoux J-F, Buchwald SL (1998). Acc Chem Res 31:805–818Google Scholar
  53. 53.
    Chen JR, Hu XQ, Lu LQ, Xiao WJ (2016). Chem Soc Rev 45:2044–2056Google Scholar
  54. 54.
    Creutz SE, Lotito KJ, Fu GC, Peters JC (2012). Science 338:647–651Google Scholar
  55. 55.
    Yoo WJ, Tsukamoto T, Kobayashi S (2015). Org Lett 17:3640–3642Google Scholar
  56. 56.
    Bissember AC, Lundgren RJ, Creutz SE, Peters JC, Fu GC (2013). Angew Chem Int Ed 52:5129–5133Google Scholar
  57. 57.
    Kainz QM, Matier CD, Bartoszewicz A, Zultanski SL, Peters JC, Fu GC (2016). Science 351:681–684Google Scholar
  58. 58.
    Do HQ, Bachman S, Bissember AC, Peters JC, Fu GC (2014). J Am Chem Soc 136:2162–2167Google Scholar
  59. 59.
    Matier CD, Schwaben J, Peters JC, Fu GC (2017). J Am Chem Soc 139:17707–17710Google Scholar
  60. 60.
    Yoo WJ, Tsukamoto T, Kobayashi S (2015). Angew Chem Int Ed 54:6587–6590Google Scholar
  61. 61.
    Tasker SZ, Jamison TF (2015). J Am Chem Soc 137:9531–9534Google Scholar
  62. 62.
    Oderinde MS et al (2016). Angew Chem Int Ed 55:13219–13223Google Scholar
  63. 63.
    Corcoran EB et al (2016). Science 353:279–283Google Scholar
  64. 64.
    Pandey G, Laha R (2015). Angew Chem Int Ed 54:14875–14879Google Scholar
  65. 65.
    Zhang L, Yi H, Wang J, Lei A (2017). J Org Chem 82:10704–10709Google Scholar
  66. 66.
    Romero NA, Margrey KA, Tay NE, Nicewicz DA (2015). Science 349:1326–1330Google Scholar
  67. 67.
    Margrey KA, Levens A, Nicewicz DA (2017). Angew Chem Int Ed 56:15644–15648Google Scholar
  68. 68.
    Schmidt AW, Reddy KR, Knolker HJ (2012). Chem Rev 112:3193–3328Google Scholar
  69. 69.
    Choi S, Chatterjee T, Choi WJ, You Y, Cho EJ (2015). ACS Catal 5:4796–4802Google Scholar
  70. 70.
    Zhao Y, Huang B, Yang C, Xia W (2016). Org Lett 18:3326–3329Google Scholar
  71. 71.
    Das S, Natarajan P, Konig B (2017). Chem Eur J 23:18161–18165Google Scholar
  72. 72.
    Song C, Yi H, Dou B, Li Y, Singh AK, Lei A (2017). Chem Commun 53:3689–3692Google Scholar
  73. 73.
    Niu L, Yi H, Wang S, Liu T, Liu J, Lei A (2017). Nat Commun 8:14226Google Scholar
  74. 74.
    Xuan J, Cheng Y, An J, Lu LQ, Zhang XX, Xiao WJ (2011). Chem Commun 47:8337–8339Google Scholar
  75. 75.
    Becker P, Duhamel T, Stein CJ, Reiher M, Muniz K (2017). Angew Chem Int Ed 56:8004–8008Google Scholar
  76. 76.
    Maity S, Zheng N (2012). Angew Chem Int Ed 51:9562–9566Google Scholar
  77. 77.
    Hu X, Zhang G, Bu F, Lei A (2018). Angew Chem Int Ed 57:1286–1290Google Scholar
  78. 78.
    Tian WF, Wang DP, Wang SF, He KH, Cao XP, Li Y (2018). Org Lett 20:1421–1425Google Scholar
  79. 79.
    Allen LJ, Cabrera PJ, Lee M, Sanford MS (2014). J Am Chem Soc 136:5607–5610Google Scholar
  80. 80.
    Svejstrup TD, Ruffoni A, Julia F, Aubert VM, Leonori D (2017). Angew Chem Int Ed 56:14948–14952Google Scholar
  81. 81.
    Zhang M et al (2016). Org Lett 18:5356–5359Google Scholar
  82. 82.
    Qin Q, Yu S (2015). Org Lett 17:1894–1897Google Scholar
  83. 83.
    An XD, Yu S (2015). Org Lett 17:2692–2695Google Scholar
  84. 84.
    Jiang H, An X, Tong K, Zheng T, Zhang Y, Yu S (2015). Angew Chem Int Ed 54:4055–4059Google Scholar
  85. 85.
    Davies J, Svejstrup TD, Fernandez Reina D, Sheikh NS, Leonori D (2016). J Am Chem Soc 138:8092–8095Google Scholar
  86. 86.
    Davies J, Sheikh NS, Leonori D (2017). Angew Chem Int Ed 56:13361–13365Google Scholar
  87. 87.
    Li J, Zhang P, Jiang M, Yang H, Zhao Y, Fu H (2017). Org Lett 19:1994–1997Google Scholar
  88. 88.
    Hu XQ et al (2016). Nat Commun 7:11188Google Scholar
  89. 89.
    Ding Y, Zhang T, Chen QY, Zhu C (2016). Org Lett 18:4206–4209Google Scholar
  90. 90.
    Greulich TW, Daniliuc CG, Studer A (2015). Org Lett 17:254–257Google Scholar
  91. 91.
    Musacchio AJ, Lainhart BC, Zhang X, Naguib SG, Sherwood TC, Knowles RR (2017). Science 355:727–730Google Scholar
  92. 92.
    Wang Q, Huang J, Zhou L (2015). Adv Synth Catal 357:2479–2484Google Scholar
  93. 93.
    Brachet E, Ghosh T, Ghosh I, Konig B (2015). Chem Sci 6:987–992Google Scholar
  94. 94.
    Liu J et al (2014). Angew Chem Int Ed 53:502–506Google Scholar
  95. 95.
    Cecere G, Konig CM, Alleva JL, MacMillan DW (2013). J Am Chem Soc 135:11521–11524Google Scholar
  96. 96.
    Shen X, Harms K, Marsch M, Meggers E (2016). Chem Eur J 22:9102–9105Google Scholar
  97. 97.
    Sagadevan A, Ragupathi A, Lin C-C, Hwu JR, Hwang KC (2015). Green Chem 17:1113–1119Google Scholar
  98. 98.
    Ragupathi A, Sagadevan A, Lin CC, Hwu JR, Hwang KC (2016). Chem Commun 52:11756–11759Google Scholar
  99. 99.
    Gentry EC, Knowles RR (2016). Acc Chem Res 49:1546–1556Google Scholar
  100. 100.
    Zhang Z, Tang X, Thomoson CS, Dolbier Jr WR (2015). Org Lett 17:3528–3531Google Scholar
  101. 101.
    Koleoso OK, Elsegood MRJ, Teat SJ, Kimber MC (2018). Org Lett 20:1003–1006Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan UniversityWuhanChina

Personalised recommendations