Determining and Understanding N-H Bond Strengths in Synthetic Nitrogen Fixation Cycles

  • Máté J. Bezdek
  • Iraklis Pappas
  • Paul J. ChirikEmail author
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 60)


The fixation of atmospheric dinitrogen to ammonia using molecular catalysts has been a long-standing challenge in homogeneous catalysis and synthetic chemistry. New approaches to this problem may offer more energy-efficient and carbon-neutral routes to this important industrial compound. Despite the ubiquity of ammine, amide, imide and diazenide ligands in coordination chemistry, little thermodynamic data is available for understanding N-H bond strengths in molecules bearing these nitrogenous fragments. This article presents an overview of both computational and experimental approaches for the determination of N-H bond dissociation free energies in a variety of compounds relevant to nitrogen fixation to ammonia. The influence of metal oxidation state, ancillary ligand and identity of the nitrogen donor are highlighted. Implications for future design of molecular systems for the reduction of dinitrogen are discussed.


Ammonia Bond dissociation free energy Nitrogen fixation 


  1. 1.
    Smil V (2001) Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production. MIT Press, Cambridge, MAGoogle Scholar
  2. 2.
    Smil V (1999) Nature 400:415CrossRefGoogle Scholar
  3. 3.
    Haber F, van Oordt G (1905) Z Anorg Chem 43:111CrossRefGoogle Scholar
  4. 4.
    Haber F, van Oordt G (1905) Z Anorg Chem 44:341CrossRefGoogle Scholar
  5. 5.
    Haber F, van Oordt G (1905) Anorg Chem 47:42CrossRefGoogle Scholar
  6. 6.
    Tamaru K (1991) In: Jennings JR (ed) Catalytic ammonia synthesis, Plenum Press, New York, NYGoogle Scholar
  7. 7.
    Worrell E, Phylipsen D, Einstein D, Martin N (2000) Energy use and energy intensity of the U.S. Chemical Industry, E. O. Lawrence Berkeley National Laboratory, Publication number LBNL-44313Google Scholar
  8. 8.
    Hoffman B, Lukoyanov D, Dean DR, Seefeldt LC (2013) Acc Chem Res 46:587CrossRefGoogle Scholar
  9. 9.
    van der Ham CJM, Koper MTM, Hetterscheid DGH (2014) Chem Soc Rev 43:5183CrossRefGoogle Scholar
  10. 10.
    Appl M (2011) In: Bellussi G et al (eds) Ullmann’s encyclopedia of industrial chemistry. 7th edn, vol 3. Wiley-VCH, Weinheim, p 139Google Scholar
  11. 11.
    Chagas AP (2007) Quim Nova 30:240CrossRefGoogle Scholar
  12. 12.
    Shlögl R (2003) Angew Chem Int Ed 42:2004CrossRefGoogle Scholar
  13. 13.
    Allen AD, Senoff CV (1965) Chem Commun 621Google Scholar
  14. 14.
    Chatt J, Dilworth JR, Richards RL (1978) Chem Rev 78:589CrossRefGoogle Scholar
  15. 15.
    Chatt J, Richards RL (1982) J Organomet Chem 239:65CrossRefGoogle Scholar
  16. 16.
    Schrock RR (2005) Acc Chem Res 38:955CrossRefGoogle Scholar
  17. 17.
    Pickett CJ, Ryder KS, Talarmin J (1986) J Chem Soc Dalton Trans 1453Google Scholar
  18. 18.
    Pickett CJ, Talarmin J (1985) Nature 317:652CrossRefGoogle Scholar
  19. 19.
    Shilov AE (2003) Russ Chem Bull 52:2555CrossRefGoogle Scholar
  20. 20.
    Bazhenova TA, Shilov AE (1995) Coord Chem Rev 144:69CrossRefGoogle Scholar
  21. 21.
    Hill PJ, Doyle LR, Crawford AD, Myers WK, Ashley AE (2016) J Am Chem Soc 138:13521CrossRefGoogle Scholar
  22. 22.
    Yandulov D, Schrock RR (2003) Science 301:76CrossRefGoogle Scholar
  23. 23.
    Arashiba K, Miyake Y, Nishibayashi Y (2011) Nat Chem 3:120CrossRefGoogle Scholar
  24. 24.
    Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Kamaru N, Yoshizawa K, Nishibayashi Y (2014) J Am Chem Soc 136:9719CrossRefGoogle Scholar
  25. 25.
    Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Yoshizawa K, Nishibayashi Y (2015) Chem Sci 6:3940CrossRefGoogle Scholar
  26. 26.
    Ung G, Peters JC (2015) Angew Chem Int Ed 54:532Google Scholar
  27. 27.
    Creutz SE, Peters JC (2014) J Am Chem Soc 136:1105CrossRefGoogle Scholar
  28. 28.
    Anderson JS, Rittle J, Peters JC (2013) Nature 501:84CrossRefGoogle Scholar
  29. 29.
    Kuriyama S, Arashiba K, Nakajima K, Matsuo Y, Tanaka H, Ishii K, Yoshizawa K, Nishibayashi Y (2016) Nat Commun 7:12181CrossRefGoogle Scholar
  30. 30.
    Pappas I, Chirik PJ (2016) J Am Chem Soc 138:13379CrossRefGoogle Scholar
  31. 31.
    Warren JJ, Tronic TA, Mayer JM (2010) Chem Rev 110:6961CrossRefGoogle Scholar
  32. 32.
    Pappas I, Chirik PJ (2015) J Am Chem Soc 137:3498CrossRefGoogle Scholar
  33. 33.
    Lindley BM, Appel AM, Krogh-Jespersen K, Mayer JM, Miller AJM (2016) ACS Energy Lett 1:698Google Scholar
  34. 34.
    Munisamy T, Schrock RR (2012) Dalton Trans 41:130CrossRefGoogle Scholar
  35. 35.
    Nishibayashi Y (2015) Inorg Chem 54:9234CrossRefGoogle Scholar
  36. 36.
    Cheng JP, Lu Y, Zhu XQ, Sun Y, Bi F, He J (2000) J Org Chem 65:3853Google Scholar
  37. 37.
    Thimm W, Gradert C, Broda H, Wennmohs F, Neese F, Tuczek F (2015) Inorg Chem 54:9248CrossRefGoogle Scholar
  38. 38.
    Mader EA, Davidson ER, Mayer JM (2007) J Am Chem Soc 129:5153CrossRefGoogle Scholar
  39. 39.
    Sorai M, Seki S (1974) J Phys Chem Solids 35:555CrossRefGoogle Scholar
  40. 40.
    Bordwell F, Chang JP, Harrelson JA (1988) J Am Chem Soc 110:1229CrossRefGoogle Scholar
  41. 41.
    Tilset M (2001) In: Balzani V (ed) Electron transfer in chemistry. Wiley-VCH, Weinheim, p 677Google Scholar
  42. 42.
    Parker VD (1992) J Am Chem Soc 114:7458CrossRefGoogle Scholar
  43. 43.
    Takahashi T, Mizobe Y, Sato M, Uchida Y, Hidai M (1980) J Am Chem Soc 102:7461CrossRefGoogle Scholar
  44. 44.
    O’Donoghue MB, Davis WM, Schrock RR (1998) Inorg Chem 37:5149CrossRefGoogle Scholar
  45. 45.
    Chew KC, Clegg W, Coles MP, Elsegood MRJ, Gibson VC, White AJP, Williams DJ (1999) J Chem Soc Dalton Trans 2633Google Scholar
  46. 46.
    Hsieh TC, Gebreyes K, Zubieta J (1984) J Chem Soc Chem Commun 1172Google Scholar
  47. 47.
    Hsieh TC, Nicholson T, Zubieta J (1988) Inorg Chem 27:241CrossRefGoogle Scholar
  48. 48.
    Bossard GE, Busby DC, Chang M, George TA, Iske Jr SDA (1980) J Am Chem Soc 102:1001CrossRefGoogle Scholar
  49. 49.
    Yandulov DV, Schrock RR (2005) Inorg Chem 44:1103CrossRefGoogle Scholar
  50. 50.
    Rodima T, Kaljurand I, Pihl A, Mäemets V, Leito I, Koppel IA (2002) J Org Chem 67:1873CrossRefGoogle Scholar
  51. 51.
    Hoffmann BM, Dean DR, Seefeldt LC (2009) Acc Chem Res 42:609CrossRefGoogle Scholar
  52. 52.
    Hidai M, Mizobe Y (1995) Chem Rev 95:1115CrossRefGoogle Scholar
  53. 53.
    Bezdek MJ, Chirik PJ (2016) Dalton Trans 45:15922CrossRefGoogle Scholar
  54. 54.
    Busby DC, George TA, Iske SDA, Wagner SD (1981) Inorg Chem 20:22CrossRefGoogle Scholar
  55. 55.
    Schrock RR (1990) Acc Chem Res 23:158Google Scholar
  56. 56.
    Duncan AP, Bergman RG (2002) Chem Rec 2:431Google Scholar
  57. 57.
    Hazari N, Mountford P (2005) Acc Chem Res 38:839Google Scholar
  58. 58.
    Mindiola DJ (2006) Acc Chem Res 39:813Google Scholar
  59. 59.
    Sharp PR (1999) Comments Inorg Chem 21:85Google Scholar
  60. 60.
    Berry JF (2009) Comments Inorg Chem 30:28Google Scholar
  61. 61.
    Scepaniak JJ, Young JA, Bontchev RP, Smith JM (2009) Angew Chem Int Ed 48:3158CrossRefGoogle Scholar
  62. 62.
    Scheibel MG, Abbenseth J, Kinauer M, Heinemann FW, Würtele C, de Bruin B, Schneider S (2015) Inorg Chem 54:9290CrossRefGoogle Scholar
  63. 63.
    Cowley RE, Holland PL (2012) Inorg Chem 51:8352CrossRefGoogle Scholar
  64. 64.
    Iluc VM, Miller AJM, Anderson JS, Monreal MJ, Mehn MP, Hillhouse GL (2011) J Am Chem Soc 133:13055CrossRefGoogle Scholar
  65. 65.
    Iluc VM, Hillhouse GL (2010) J Am Chem Soc 132:15148CrossRefGoogle Scholar
  66. 66.
    Cowley RE, Bontchev RP, Sorrell J, Sarracino O, Feng Y, Wang H, Smith JM (2007) J Am Chem Soc 129:2424CrossRefGoogle Scholar
  67. 67.
    Nieto I, Ding F, Bontchev RP, Wang H, Smith JM (2008) J Am Chem Soc 130:2716CrossRefGoogle Scholar
  68. 68.
    Bart SC, Lobkovsky E, Bill E, Chirik PJ (2006) J Am Chem Soc 128:5302CrossRefGoogle Scholar
  69. 69.
    Milsmann C, Semproni SP, Chirik PJ (2014) J Am Chem Soc 136:12099CrossRefGoogle Scholar
  70. 70.
    Werner A (1893) Z Anorg Chem 3:267Google Scholar
  71. 71.
    Peyrone M (1844) Ann Chem Pharm 51:1Google Scholar
  72. 72.
    Ford PC, Rudd DFP, Gaunder R, Taube H (1968) J Am Chem Soc 90:1187Google Scholar
  73. 73.
    Hu Y, Norton JR (2014) J Am Chem Soc 136:5938CrossRefGoogle Scholar
  74. 74.
    Bezdek MJ, Guo S, Chirik PJ (2016) Science 354:730CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Máté J. Bezdek
    • 1
  • Iraklis Pappas
    • 1
  • Paul J. Chirik
    • 1
    Email author
  1. 1.Department of ChemistryPrinceton UniversityPrincetonUSA

Personalised recommendations