Catalytic Transformations of Molecular Dinitrogen by Iron and Cobalt–Dinitrogen Complexes as Catalysts

Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 60)

Abstract

This chapter describes the recent advances of the iron and cobalt-catalyzed transformations of molecular dinitrogen into not only silylamine but also ammonia and hydrazine under mild reaction conditions. In both reaction systems, reaction pathways are proposed based on the experimental and theoretical studies on iron and cobalt–dinitrogen complexes.

Keywords

Ammonia Catalyst Cobalt Dinitrogen Iron Reduction Silylamine 

References

  1. 1.
    Liu H (2013) Ammonia synthesis catalysts. Chemical Industry Press & World Scientific, Singapore & BeijingCrossRefGoogle Scholar
  2. 2.
    Hoffman BM, Lukoyanov D, Yang ZH, Dean DR, Seefeldt LC (2014) Chem Rev 114:4041CrossRefGoogle Scholar
  3. 3.
    Spatzal T, Aksoyoglu M, Zhang L, Andrade SLA, Schleicher E, Weber S, Rees DC, Einsle O (2011) Science 334:940CrossRefGoogle Scholar
  4. 4.
    Lancaster KM, Roemelt M, Ettenhuber P, Hu Y, Ribbe MW, Neese F, Bergmann U, DeBeer S (2011) Science 334:974CrossRefGoogle Scholar
  5. 5.
    Lancaster KM, Hu Y, Bergmann U, Ribbe MW, DeBeer S (2013) J Am Chem Soc 135:610CrossRefGoogle Scholar
  6. 6.
    Wiig JA, Hu Y, Lee CC, Ribbe MW (2012) Science 337:1672CrossRefGoogle Scholar
  7. 7.
    Köthe C, Limberg C (2015) Z Anorg Allg Chem 641:18CrossRefGoogle Scholar
  8. 8.
    Khoenkhoen N, de Bruin B, Reek JNH, Dzik WI (2015) Eur J Inorg Chem 567Google Scholar
  9. 9.
    Nishibayashi Y (2015) Inorg Chem 54:9234CrossRefGoogle Scholar
  10. 10.
    Tanabe Y, Nishibayashi Y (2016) Chem Rec 16:1549CrossRefGoogle Scholar
  11. 11.
    Crossland JL, Tyler DR (2010) Coord Chem Rev 254:1883CrossRefGoogle Scholar
  12. 12.
    Hazari N (2010) Chem Soc Rev 39:4044CrossRefGoogle Scholar
  13. 13.
    MacLeod KC, Holland PL (2013) Nat Chem 5:559CrossRefGoogle Scholar
  14. 14.
    Fryzuk MD (2013) Chem Commun 49:4866CrossRefGoogle Scholar
  15. 15.
    Yamamoto A, Kitazume S, Pu LS, Ikeda S (1967) Chem Commun 79Google Scholar
  16. 16.
    Sacco A, Aresta M (1968) Chem Commun 1223Google Scholar
  17. 17.
    Tyler DR (2015) Z Anorg Allg Chem 641:31CrossRefGoogle Scholar
  18. 18.
    Shiina K (1972) J Am Chem Soc 94:9266CrossRefGoogle Scholar
  19. 19.
    Kawaguchi M, Hamaoka S, Mori M (1993) Tetrahedron Lett 34:6907CrossRefGoogle Scholar
  20. 20.
    Mori M (2004) J Organomet Chem 689:4210CrossRefGoogle Scholar
  21. 21.
    Komori K, Oshita H, Mizobe Y, Hidai M (1989) J Am Chem Soc 111:1939CrossRefGoogle Scholar
  22. 22.
    Komori K, Sugiura S, Mizobe Y, Yamada M, Hidai M (1989) Bull Chem Soc Jpn 62:2953CrossRefGoogle Scholar
  23. 23.
    Oshita H, Mizobe Y, Hidai M (1993) J Organomet Chem 456:213CrossRefGoogle Scholar
  24. 24.
    Tanaka H, Sasada A, Kouno T, Yuki M, Miyake Y, Nakanishi H, Nishibayashi Y, Yoshizawa K (2011) J Am Chem Soc 133:3498CrossRefGoogle Scholar
  25. 25.
    Yuki M, Tanaka H, Sasaki K, Miyake Y, Yoshizawa K, Nishibayashi Y (2012) Nat Commun 3:1254CrossRefGoogle Scholar
  26. 26.
    Ung G, Peters JC (2015) Angew Chem Int Ed 2015:532Google Scholar
  27. 27.
    Moret ME, Peters JC (2011) Angew Chem Int Ed 50:2063CrossRefGoogle Scholar
  28. 28.
    Anderson JS, Rittle J, Peters JC (2013) Nature 501:84CrossRefGoogle Scholar
  29. 29.
    Del Castillo TJ, Thompson NB, Peters JC (2016) J Am Chem Soc 138:5341CrossRefGoogle Scholar
  30. 30.
    Creutz SE, Peters JC (2014) J Am Chem Soc 136:1105CrossRefGoogle Scholar
  31. 31.
    Lee Y, Mankad NP, Peres JC (2010) Nat Chem 2:558CrossRefGoogle Scholar
  32. 32.
    Rittle J, McCrory CCL, Peters JC (2014) J Am Chem Soc 136:13853CrossRefGoogle Scholar
  33. 33.
    Creutz SE, Peters JC (2015) J Am Chem Soc 137:7310CrossRefGoogle Scholar
  34. 34.
    Anderson JS, Moret ME, Peters JC (2013) J Am Chem Soc 135:534CrossRefGoogle Scholar
  35. 35.
    Anderson JS, Cutsail III GE, Rittle J, Connor BA, Gunderson WA, Zhang L, Hoffman BM, Peters JC (2015) J Am Chem Soc 137:7803CrossRefGoogle Scholar
  36. 36.
    Rittle J, Peters JC (2016) J Am Chem Soc 138:4243CrossRefGoogle Scholar
  37. 37.
    Kuriyama S, Arashiba K, Nakajima K, Matsuo Y, Tanaka H, Ishii K, Yoshizawa K, Nishibayashi Y (2016) Nat Commun 7:12181CrossRefGoogle Scholar
  38. 38.
    Yamamoto A, Miura Y, Ito T, Chen HL, Iri K, Ozawa F, Miki K, Sei T, Tanaka N, Kasai N (1983) Organometallics 2:1429CrossRefGoogle Scholar
  39. 39.
    Siedschlag RB, Bernales V, Vogiatzis KD, Planas N, Clouston LJ, Bill E, Gagliardi L, Lu CC (2015) J Am Chem Soc 137:4638CrossRefGoogle Scholar
  40. 40.
    Imayoshi R, Tanaka H, Matsuo Y, Yuki M, Nakajima K, Yoshizawa K, Nishibayashi Y (2015) Chem Eur J 21:8905CrossRefGoogle Scholar
  41. 41.
    Del Castillo TJ, Thompson NB, Suess DLM, Ung G, Peters JC (2015) Inorg Chem 54:9256CrossRefGoogle Scholar
  42. 42.
    Kuriyama S, Arashiba K, Tanaka H, Matsuo Y, Nakajima K, Yoshizawa K, Nishibayashi Y (2016) Angew Chem Int Ed 55:14291CrossRefGoogle Scholar
  43. 43.
    Hill PJ, Doyle LR, Crawford AD, Myers WK, Ashley AE (2016) J Am Chem Soc 138: 13521Google Scholar
  44. 44.
    Imayoshi R, Nakajima K, Nishibayashi Y (2017) Chem Lett 46:466Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Systems Innovation, School of EngineeringThe University of TokyoTokyoJapan

Personalised recommendations