Advertisement

Catalytic Asymmetric Addition Reactions of Cu(I)-Conjugated Soft Carbon Nucleophiles

Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 58)

Abstract

Copper is a ubiquitous element on the earth. Copper catalysts promote a wide variety of reaction types by acting as a Lewis acid, a π acid, a Brønsted base, or an electron mediator. These features make copper catalysts particularly attractive in modern organic chemistry. In this review, we discuss examples of recent copper(I)-catalyzed asymmetric C–C bond-forming reactions via the addition of soft copper(I)-conjugated carbon nucleophiles to carbonyl electrophiles. Specifically, we focus on the unique orthogonal reactivity of soft copper(I)-conjugated carbon nucleophiles to hard protic functional groups, which would allow for protecting group-minimized molecular synthesis.

Keywords

Asymmetric Catalyst Copper Protecting group-minimized Soft carbon nucleophile 

References

  1. 1.
    Walsh PJ, Kozlowski MC (2009) Fundamentals of asymmetric catalysis. University Science Books, SausalitoGoogle Scholar
  2. 2.
    Corey EJ, Kürti L (2010) Enantioselective chemical synthesis. Direct Book Publishing, DallasGoogle Scholar
  3. 3.
    Zhou Q-L (2011) Privileged chiral ligands and catalysts. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  4. 4.
    Trost BM (1991) Science 254:1471CrossRefGoogle Scholar
  5. 5.
    Wender PA, Miller BL (2009) Nature 460:197CrossRefGoogle Scholar
  6. 6.
    Dunn PJ, Hii KK, Krische MJ, Williams MT (2012) Sustainable catalyst: challenges and practices for the pharmaceutical and fine chemical industries. Wiley, New Jersey, USAGoogle Scholar
  7. 7.
    Trost BM, Brindle CS (2010) Chem Soc Rev 39:1600Google Scholar
  8. 8.
    Kumagai N, Shibasaki M (2011) Angew Chem Int Ed 50:4760Google Scholar
  9. 9.
    I. S. Young, P. S. Baran (2009) Nat Chem 1:193Google Scholar
  10. 10.
    Pearson RG (1963) J Am Chem Soc 85:3533Google Scholar
  11. 11.
    Pearson RG (1966) Science 151:172CrossRefGoogle Scholar
  12. 12.
    Shibasaki M, Kanai M (2008) Chem Rev 108:2853CrossRefGoogle Scholar
  13. 13.
    Kanai M, Matsunaga S, Oisaki K, Shimizu Y (2013) J Synth Org Chem Japan 71:433Google Scholar
  14. 14.
    Yamasaki S, Fujii K, Wada R, Kanai M, Shibasaki M (2002) J Am Chem Soc 124:6536Google Scholar
  15. 15.
    Wada R, Oisaki K, Kanai M, Shibasaki M (2004) J Am Chem Soc 126:8910Google Scholar
  16. 16.
    Wada R, Shibuguchi T, Makino S, Oisaki K, Kanai M, Shibasaki M (2006) J Am Chem Soc 2006:7687CrossRefGoogle Scholar
  17. 17.
    Kanai M, Wada R, Shibuguchi T, Shibasaki M (2008) Pure Appl Chem 80:1055CrossRefGoogle Scholar
  18. 18.
    Shi S-L, Xu L-W, Oisaki K, Kanai M, Shibasaki M (2010) J Am Chem Soc 132:6638Google Scholar
  19. 19.
    Tomita D, Wada R, Kanai M, Shibasaki M (2005) J Am Chem Soc 127:4138Google Scholar
  20. 20.
    Tomita D, Kanai M, Shibasaki M (2006) Chem Asian J 1:161Google Scholar
  21. 21.
    Tomita D, Yamatsugu K, Kanai M, Shibasaki M (2009) J Am Chem Soc 131:6946Google Scholar
  22. 22.
    Oisaki K, Suto Y, Kanai M, Shibasaki M (2003) J Am Chem Soc 125:5644Google Scholar
  23. 23.
    Oisaki K, Zhao D, Kanai M, Shibasaki M (2006) J Am Chem Soc 128:7164Google Scholar
  24. 24.
    Zhao D, Oisaki K, Kanai M, Shibasaki M (2006) J Am Chem Soc 128:14440Google Scholar
  25. 25.
    Du Y, Xu W, Shimizu Y, Kanai M, Shibasaki M (2008) J Am Chem Soc 130:16146Google Scholar
  26. 26.
    Oisaki K, Zhao D, Kanai M, Shibasaki M (2007) J Am Chem Soc 129:7439Google Scholar
  27. 27.
    Yin L, Kanai M, Shibasaki M (2009) J Am Chem Soc 131:9610Google Scholar
  28. 28.
    Suto Y, Tsuji R, Kanai M, Shibasaki M (2005) Org Lett 7:3757Google Scholar
  29. 29.
    Suto Y, Kumagai N, Matsunaga S, Kanai M, Shibasaki M (2003) Org Lett 5:3147Google Scholar
  30. 30.
    Motoki R, Kanai M, Shibasaki M (2007) Org Lett 9:2997Google Scholar
  31. 31.
    Chakraborty S, Pater Y, Krause J, Guan H-R (2013) Angew Chem Int Ed 52:7523Google Scholar
  32. 32.
    Sureshkumar D, Ganesh V, Kumagai N, Shibasaki M (2014) Chem Eur J 20:15723Google Scholar
  33. 33.
    Tsuda T, Hashimoto T, Saegusa T (1972) J Am Chem Soc 94:658Google Scholar
  34. 34.
    Majumdar N, Saito A, Yin L, Kumagai N, Shibasaki M (2015) Org Lett 17:3362Google Scholar
  35. 35.
    Alagiri K, Lin S, Kumagai N, Shibasaki M (2014) Org Lett 16:5301Google Scholar
  36. 36.
    Matsuzawa A, Opie CR, Kumagai N, Shibasaki M (2014) Chem Eur J 20:68Google Scholar
  37. 37.
    Kawato Y, Chaudhary S, Kumagai N, Shibasaki M (2013) Chem Eur J 19:3802Google Scholar
  38. 38.
    Gopinath P, Watanabe T, Shibasaki M (2012) J Org Chem 77:9260CrossRefGoogle Scholar
  39. 39.
    Sureshkumar D, Kawato Y, Iwata M, Kumagai N, Shibasaki M (2012) Org Lett 14:3018Google Scholar
  40. 40.
    Suzuki Y, Iwata M, Yazaki R, Kumagai N, Shibasaki M (2012) J Org Chem 77:4496CrossRefGoogle Scholar
  41. 41.
    Suzuki Y, Yazaki R, Kumagai N, Shibasaki M (2011) Chem Eur J 17:11998Google Scholar
  42. 42.
    Iwata M, Yazaki R, Chen I, Sureshkumar D, Kumagai N, Shibasaki M (2011) J Am Chem Soc 133:5554Google Scholar
  43. 43.
    Iwata M, Yazaki R, Kumagai N, Shibasaki M (2010) Tetrahedron Asymmetry 21:1688CrossRefGoogle Scholar
  44. 44.
    Takemura K, Kumagai N, Shibasaki M (2015) Eur J Org Chem 2015:3026CrossRefGoogle Scholar
  45. 45.
    Saito A, Kumagai N, Shibasaki M (2014) Tetrahedron Lett 55:3167CrossRefGoogle Scholar
  46. 46.
    Yin L, Takada H, Lin S, Kumagai N, Shibasaki M (2014) Angew Chem Int Ed 53:5327Google Scholar
  47. 47.
    Yin L, Takada H, Kumagai N, Shibasaki M (2013) Angew Chem Int Ed 52:7310Google Scholar
  48. 48.
    Ogawa T, Mouri S, Yazaki R, Kumagai N, Shibasaki M (2012) Org Lett 14:110Google Scholar
  49. 49.
    Yanagida Y, Yazaki R, Kumagai N, Shibasaki M (2011) Angew Chem Int Ed 50:7910Google Scholar
  50. 50.
    Yazaki R, Kumagai N, Shibasaki M (2010) J Am Chem Soc 132:5522Google Scholar
  51. 51.
    Yin L, Brewitz L, Kumagai N, Shibasaki M (2014) J Am Chem Soc 136:17958Google Scholar
  52. 52.
    Shi S-L, Kanai M, Shibasaki M (2012) Angew Chem Int Ed 51:3932Google Scholar
  53. 53.
    Korzhavyi PA, Soroka IL, Isaev EI, Lilja C, Johansson B (2012) Proc Natl Acad Sci USA 109:686Google Scholar
  54. 54.
    Shi S-L, Wei X-F, Shimizu Y, Kanai M (2012) J Am Chem Soc 134:17019Google Scholar
  55. 55.
    Kimura Y, Ito S, Shimizu Y, Kanai M (2013) Org Lett 15:4130Google Scholar
  56. 56.
    Lin W, Cao T, Fan W, Han Y, Kuang J, Luo H, Miao B, Tang X, Yu Q, Yuan W, Zhang J, Zhu C, Ma S (2014) Angew Chem Int Ed 53:277Google Scholar
  57. 57.
    Ishii T, Watanabe R, Moriya T, Ohmiya H, Mori S, Sawamura M (2013) Chem Eur J 19:13547Google Scholar
  58. 58.
    Maity P, Srinivas HD, Watson MP (2011) J Am Chem Soc 133:17142Google Scholar
  59. 59.
    Hashimoto T, Omote M, Maruoka K (2011) Angew Chem Int Ed 50:8952Google Scholar
  60. 60.
    Yazaki R, Kumagai N, Shibasaki M (2010) J Am Chem Soc 132:10275Google Scholar
  61. 61.
    Gommermann N, Koradin C, Polborn K, Knochel P (2003) Angew Chem Int Ed 42:5763Google Scholar
  62. 62.
    Shimizu Y, Kanai M (2014) Tetrahedron Lett 460:197Google Scholar
  63. 63.
    Kawai J, Chikkade PK, Shimizu Y, Kanai M (2013) Angew Chem Int Ed 52:7177Google Scholar
  64. 64.
    Chikkade PK, Shimizu Y, Kanai M (2014) Chem Sci 5:1585CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Graduate School of Pharmaceutical Sciencesthe University of TokyoTokyoJapan
  2. 2.JST-ERATO, Kanai Life Science Catalysis ProjectTokyoJapan

Personalised recommendations