Advertisement

Asymmetric Addition of Boron and Silicon Nucleophiles

  • Alexander Hensel
  • Martin OestreichEmail author
Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 58)

Abstract

The recent progress in catalytic asymmetric carbon–boron and carbon–silicon bond formation catalyzed by chiral copper(I) complexes is tremendous. Within less than a decade, the majority of fundamental bond-forming reactions in this arena, that is, conjugate addition, 1,2-addition and allylic substitution, were accomplished. These enantioselective transformations had been either elusive or not even known before. This chapter summarizes these fascinating developments together with a brief mechanistic discussion as these copper(I) catalyses share transmetalation of interelement bonds such as B–B and Si–B as a common feature.

Keywords

Asymmetric catalysis Borylation Copper σ-bond metathesis Silylation Transmetalation 

Notes

Acknowledgments

M.O. thanks the Einstein Foundation (Berlin) for an endowed professorship.

References

  1. 1.
    Semba K, Fujihara T, Terao J, Tsuji Y (2015) Tetrahedron 71:2183–2197CrossRefGoogle Scholar
  2. 2.
    Sawamura M, Ito H (2014) Carbon–boron and carbon–silicon bond formation. In: Alexakis A, Krause N, Woodward S (eds) Copper-catalyzed asymmetric synthesis. Wiley, Weinheim, pp 157–177CrossRefGoogle Scholar
  3. 3.
    Oestreich M, Hartmann E, Mewald M (2013) Chem Rev 113:404–441CrossRefGoogle Scholar
  4. 4.
    Cid J, Gulyás H, Carbó JJ, Fernández E (2012) Chem Soc Rev 41:3558–3570CrossRefGoogle Scholar
  5. 5.
    Suginome M, Ohmura T (2011) Transition metal-catalyzed element–boryl additions to unsaturated organic compounds. In: Hall DG (ed) Boronic acids: preparation and applications in organic synthesis, medicine and materials. Wiley, Weinheim, pp 171–212CrossRefGoogle Scholar
  6. 6.
    Hartmann E, Oestreich M (2011) Chim Oggi 29:34–37Google Scholar
  7. 7.
    Calow ADJ, Whiting A (2012) Org Biomol Chem 10:5485–5497CrossRefGoogle Scholar
  8. 8.
    Hartmann E, Vyas DJ, Oestreich M (2011) Chem Commun 47:7917–7932CrossRefGoogle Scholar
  9. 9.
    Delvos LB, Oestreich M (2013) Chim Oggi 31:74–77Google Scholar
  10. 10.
    Takaya J, Iwasawa N (2012) ACS Catal 2:1993–2006CrossRefGoogle Scholar
  11. 11.
    Parra A, López A, Díaz-Tendero S, Amenós L, Ruano JLG, Tortosa M (2014) Synlett 26:494–500Google Scholar
  12. 12.
    Lee J-E, Yun J (2008) Angew Chem Int Ed 47:145–147CrossRefGoogle Scholar
  13. 13.
    Sim H-S, Feng X, Yun J (2009) Chem Eur J 15:1939–1943CrossRefGoogle Scholar
  14. 14.
    Chea H, Sim H-S, Yun J (2009) Adv Synth Catal 351:855–858CrossRefGoogle Scholar
  15. 15.
    Hartmann E, Oestreich M (2012) Org Lett 14:2406–2409CrossRefGoogle Scholar
  16. 16.
    Feng X, Yun J (2009) Chem Commun 6577–6579Google Scholar
  17. 17.
    Chen I-H, Yin L, Itano W, Kanai M, Shibasaki M (2009) J Am Chem Soc 131:11664–11665CrossRefGoogle Scholar
  18. 18.
    Chen I-H, Kanai M, Shibasaki M (2012) Org Lett 12:4098–4101CrossRefGoogle Scholar
  19. 19.
    Lillo V, Prieto A, Bonet A, Dias-Requejo MM, Ramirez J, Perez JP, Fernandez E (2009) Organometallics 28:659–662CrossRefGoogle Scholar
  20. 20.
    Fleming WJ, Müller-Bunz H, Lillo V, Fernández E, Guiry PJ (2009) Org Biomol Chem 7:2520–2524CrossRefGoogle Scholar
  21. 21.
    Solé C, Whiting A, Gulyás H, Fernández E (2011) Adv Synth Catal 353:376–384CrossRefGoogle Scholar
  22. 22.
    Solé C, Bonet A, de Vries AHM, de Vries JG, Lefort L, Gulyás H, Fernández E (2012) Organometallics 31:7855–7861CrossRefGoogle Scholar
  23. 23.
    Calow ADJ, Batsanov AS, Pujol A, Solè C, Fernández E (2013) Org Lett 15:4810–4813CrossRefGoogle Scholar
  24. 24.
    Zhang J-L, Chen L-A, Xu R-B, Wang C-F, Ruan Y-P, Wang A-E, Huang P-Q (2013) Tetrahedron Asymmetry 24:492–498CrossRefGoogle Scholar
  25. 25.
    Huang L, Cao Y, Zhao M, Tang Z, Sun Z (2014) Org Biomol Chem 12:6554−6556Google Scholar
  26. 26.
    O’Brien JM, Lee K-S, Hoveyda AH (2010) J Am Chem Soc 132:10630–10633CrossRefGoogle Scholar
  27. 27.
    Moure AL, Arrayás RG, Cerretero JC (2011) Chem Commun 47:6701–6703CrossRefGoogle Scholar
  28. 28.
    Hirsch-Weil D, Abboud KA, Hong S (2010) Chem Commun 46:7525–7527CrossRefGoogle Scholar
  29. 29.
    Park JK, Lackey HH, Rexford MD, Kovnur K, Shatruk M, McQuade DT (2010) Org Lett 12:5008–5011CrossRefGoogle Scholar
  30. 30.
    Zhao L, Ma Y, Duan W, He F, Chen J, Song C (2012) Org Lett 14:5780–5783CrossRefGoogle Scholar
  31. 31.
    Zhao L, Ma Y, He F, Duan W, Chen J, Song C (2013) J Org Chem 78:1677–1681CrossRefGoogle Scholar
  32. 32.
    Jiang Q, Guo T, Yu Z (2015) ChemCatChem 7:660–665CrossRefGoogle Scholar
  33. 33.
    Suginome M, Matsuda T, Ito H (2000) Organometallics 19:4647–4649CrossRefGoogle Scholar
  34. 34.
    Ohmura T, Suginome M (2009) Bull Chem Soc Jpn 82:29–49CrossRefGoogle Scholar
  35. 35.
    Lee K-S, Hoveyda AH (2010) J Am Chem Soc 132:2898–2900CrossRefGoogle Scholar
  36. 36.
    Plotzitzka J, Kleeberg C (2014) Organometallics 33:6915–6926CrossRefGoogle Scholar
  37. 37.
    Harb HY, Collins KD, Altur JVG, Bowker S, Campbell L, Procter DJ (2010) Org Lett 12:5446–5449CrossRefGoogle Scholar
  38. 38.
    Pace V, Rae JP, Harb HY, Procter DJ (2013) Chem Commun 49:5150–5152CrossRefGoogle Scholar
  39. 39.
    Pace V, Rae JP, Procter DJ (2014) Org Lett 16:476–479CrossRefGoogle Scholar
  40. 40.
    Ibrahem I, Santoro S, Himo F, Córdova A (2011) Adv Synth Catal 353:245–252CrossRefGoogle Scholar
  41. 41.
    Luo Y, Roy ID, Madec AGE, Lam HW (2014) Angew Chem Int Ed 53:4186–4190CrossRefGoogle Scholar
  42. 42.
    Lee K-S, Wu H, Haeffner F, Hoveyda AH (2012) Organometallics 31:7823–7826CrossRefGoogle Scholar
  43. 43.
    Kubota K, Yamamoto E, Ito H (2015) J Am Chem Soc 137:420–424CrossRefGoogle Scholar
  44. 44.
    Beene MA, An C, Ellman JA (2008) J Am Chem Soc 130:3769–3771Google Scholar
  45. 45.
    Wen K, Wang H, Chen J, Zhang H, Cui X, Wei C, Fan E, Sun Z (2013) J Org Chem 78:4305–4309Google Scholar
  46. 46.
    Zhang S-S, Zhao Y-S, Tian P, Lin G-Q (2013) Synlett 24:437–442CrossRefGoogle Scholar
  47. 47.
    Solé C, Gulyas H, Fernández E (2012) Chem Commun 48:3769–3774CrossRefGoogle Scholar
  48. 48.
    Cirriez V, Rasson C, Hermant T, Petrignet J, Alvarez JD, Robeyns K, Riant O (2013) Angew Chem Int Ed 52:1785–1788CrossRefGoogle Scholar
  49. 49.
    Hensel A, Nagura K, Delvos LB, Oestreich M (2014) Angew Chem Int Ed 53:4964–4967CrossRefGoogle Scholar
  50. 50.
    Mita T, Sugawara M, Saito K, Sato Y (2014) Org Lett 16:3028–3031CrossRefGoogle Scholar
  51. 51.
    Zhao C, Jiang C, Wang J, Wu C, Zhang Q-W, He W (2014) Asian J Org Chem 3:851–855CrossRefGoogle Scholar
  52. 52.
    Ito H, Ito S, Sakai Y, Matsuura K, Sawamura M (2007) J Am Chem Soc 129:14856–14857CrossRefGoogle Scholar
  53. 53.
    Ito H, Kawakami C, Sawamura M (2005) J Am Chem Soc 127:16034–16035CrossRefGoogle Scholar
  54. 54.
    Ito H, Kosaka Y, Nonoyama K, Sakai Y, Sawamura M (2008) Angew Chem Int Ed 47:7424–7427CrossRefGoogle Scholar
  55. 55.
    Zhong C, Kunii S, Kosaka Y, Sawamura M, Ito H (2010) J Am Chem Soc 132:11440–11442CrossRefGoogle Scholar
  56. 56.
    Guzman-Martinez A, Hoveyda AH (2010) J Am Chem Soc 132:10634–10637CrossRefGoogle Scholar
  57. 57.
    Park JK, Lackey HH, Ondrusek BA, McQuade DT (2011) J Am Chem Soc 133:2410–2413CrossRefGoogle Scholar
  58. 58.
    Yamamoto E, Takenouchi Y, Ozaki T, Miya T, Ito H (2014) J Am Chem Soc 136:16515–16521CrossRefGoogle Scholar
  59. 59.
    Delvos LB, Vyas DJ, Oestreich M (2013) Angew Chem Int Ed 52:4650–4653CrossRefGoogle Scholar
  60. 60.
    Delvos LB, Hensel A, Oestreich M (2014) Synthesis 46:2957–2964CrossRefGoogle Scholar
  61. 61.
    Takeda M, Shintani R, Hayashi T (2013) J Org Chem 78:5007–5017CrossRefGoogle Scholar
  62. 62.
    Morizawa Y, Oda H, Oshima K, Nozaki H (1984) Tetrahedron Lett 25:1163–1166CrossRefGoogle Scholar
  63. 63.
    Weickgenannt A, Oestreich M (2010) Chem Eur J 16:402–412CrossRefGoogle Scholar
  64. 64.
    Oestreich M, Auer G (2005) Adv Synth Catal 347:637–640CrossRefGoogle Scholar
  65. 65.
    Schmidtmann ES, Oestreich M (2006) Chem Commun 3643–3645Google Scholar
  66. 66.
    Vyas DJ, Oestreich M (2010) Chem Commun 46:568–570CrossRefGoogle Scholar
  67. 67.
    Hazra CK, Oestreich M (2012) Org Lett 14:4010–4013CrossRefGoogle Scholar
  68. 68.
    Hensel A, Oestreich M (2015) Chem Eur J 21:9062–9065CrossRefGoogle Scholar
  69. 69.
    Ito H, Kunii S, Sawamura M (2010) Nat Chem 2:972–976CrossRefGoogle Scholar
  70. 70.
    Delvos LB, Oestreich M (2015) Synthesis 47:924–933CrossRefGoogle Scholar
  71. 71.
    Sasaki Y, Zhong C, Sawamura M, Ito H (2010) J Am Chem Soc 132:1226–1227CrossRefGoogle Scholar
  72. 72.
    Burns AR, González JS, Lam HW (2012) Angew Chem Int Ed 51:10827–10831CrossRefGoogle Scholar
  73. 73.
    Liu P, Fukui Y, Tian P, He Z-T, Sun CY, Wu N-Y, Lin G-Q (2013) J Am Chem Soc 135:11700–11703CrossRefGoogle Scholar
  74. 74.
    Lee J-E, Kwon J, Yun J (2008) Chem Commun 733–734Google Scholar
  75. 75.
    Lee Y, Jang H, Hoveyda AH (2009) J Am Chem Soc 131:18234–18235CrossRefGoogle Scholar
  76. 76.
    Kim HR, Jung IG, Yoo K, Jang K, Lee ES, Yun J, Son SU (2010) Chem Commun 46:758–760CrossRefGoogle Scholar
  77. 77.
    Kim HR, Yun J (2011) Chem Commun 47:2943–2945CrossRefGoogle Scholar
  78. 78.
    Jung HY, Yun J (2012) Org Lett 14:2606–2609CrossRefGoogle Scholar
  79. 79.
    Wang P, Yeo X-L, Loh T-P (2011) J Am Chem Soc 133:1254–1256CrossRefGoogle Scholar
  80. 80.
    Meng F, Jang H, Hoveyda AH (2013) Chem Eur J 19:3204–3214CrossRefGoogle Scholar
  81. 81.
    Hazra CK, Fopp C, Oestreich M (2014) Chem Asian J 9:3005–3010CrossRefGoogle Scholar
  82. 82.
    Vercruysse S, Cornelissen L, Nahra F, Collard L, Riant O (2014) Chem Eur J 20:1834–1838CrossRefGoogle Scholar
  83. 83.
    Calderone JA, Santos WL (2014) Angew Chem Int Ed 53:4154–4158CrossRefGoogle Scholar
  84. 84.
    Linstadt RTH, Peterson CA, Lippincott DJ, Jette CI, Lipschutz BH (2014) Angew Chem Int Ed 53:4159–4163CrossRefGoogle Scholar
  85. 85.
    Xu Y-H, Wu L-H, Wang J, Loh T-P (2014) Chem Commun 50:7195–7197CrossRefGoogle Scholar
  86. 86.
    Matsuda N, Hirano K, Satoh T, Miura M (2013) J Am Chem Soc 135:4934–4937CrossRefGoogle Scholar
  87. 87.
    Meng F, Haeffner F, Hoveyda AH (2014) J Am Chem Soc 136:11304–11307CrossRefGoogle Scholar
  88. 88.
    Welle A, Petrignet J, Tinant B, Wouters J, Riant O (2010) Chem Eur J 16:10980–10983CrossRefGoogle Scholar
  89. 89.
    Noh D, Yoon SK, Won J, Lee JY, Yun J (2011) Chem Asian J 6:1967–1969CrossRefGoogle Scholar
  90. 90.
    Feng X, Jeon H, Yun J (2013) Angew Chem Int Ed 52:3989–3992CrossRefGoogle Scholar
  91. 91.
    Lee JCH, McDonald R, Hall DG (2011) Nat Chem 3:894–899CrossRefGoogle Scholar
  92. 92.
    Ito H, Okura T, Matsuura K, Sawamura M (2010) Angew Chem Int Ed 49:560–563CrossRefGoogle Scholar
  93. 93.
    Parra A, Amenós L, Guisán-Ceinos M, López A, Ruano JLG, Tortosa M (2014) J Am Chem Soc 136:15833–15836CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut für ChemieTechnische Universität BerlinBerlinGermany

Personalised recommendations