Beyond Organometallic Flow Chemistry: The Principles Behind the Use of Continuous-Flow Reactors for Synthesis

  • Timothy NoëlEmail author
  • Yuanhai Su
  • Volker Hessel
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 57)


Flow chemistry is typically used to enable challenging reactions which are difficult to carry out in conventional batch equipment. Consequently, the use of continuous-flow reactors for applications in organometallic and organic chemistry has witnessed a spectacular increase in interest from the chemistry community in the last decade. However, flow chemistry is more than just pumping reagents through a capillary and the engineering behind the observed phenomena can help to exploit the technology’s full potential. Here, we give an overview of the most important engineering aspects associated with flow chemistry. This includes a discussion of mass-, heat-, and photon-transport phenomena which are relevant to carry out chemical reactions in a microreactor. Next, determination of intrinsic kinetics, automation of chemical processes, solids handling, and multistep reaction sequences in flow are discussed. Safety is one of the main drivers to implement continuous-flow microreactor technology in an existing process and a brief overview is given here as well. Finally, the scale-up potential of microreactor technology is reviewed.


Continuous flow Continuous manufacturing – synthesis Flow chemistry Microreactors 



T.N. would like to acknowledge financial support from the Dutch Science Foundation for a VIDI Grant (SensPhotoFlow, No. 14150) and from the European Union for a Marie Curie CIG Grant (Flach, Grant No. 333659) and Marie Curie ITN Grant (Photo4Future, Grant No. 641861). Y.S. would like to thank the European Union for a Marie Curie Intra-European Fellowship (No. 622415).


  1. 1.
    Jiménez-González C, Poechlauer P, Broxterman QB, Yang B-S, am Ende D, Baird J, Bertsch C, Hannah RE, Dell’Orco P, Noorman H, Yee S, Reintjens R, Wells A, Massonneau V, Manley J (2011) Org Process Res Dev 15:900–911CrossRefGoogle Scholar
  2. 2.
    Poechlauer P, Colberg J, Fisher E, Jansen M, Johnson MD, Koenig SG, Lawler M, Laporte T, Manley J, Martin B, O’Kearney-McMullan A (2013) Org Process Res Dev 17:1472–1478CrossRefGoogle Scholar
  3. 3.
    Anderson NG (2012) Org Process Res Dev 16:852–869CrossRefGoogle Scholar
  4. 4.
    Poechlauer P, Manley J, Broxterman R, Gregertsen B, Ridemark M (2012) Org Process Res Dev 16:1586–1590CrossRefGoogle Scholar
  5. 5.
    Denčić I, Ott D, Kralisch D, Noël T, Meuldijk J, de Croon M, Hessel V, Laribi Y, Perrichon P (2014) Org Process Res Dev 18:1326–1338CrossRefGoogle Scholar
  6. 6.
    Hart SL, Cristensen, CM, MIT Sloan Management Review (2002) Accessed July 2015
  7. 7.
    Mascia S, Heider PL, Zhang H, Lakerveld R, Benyahia B, Barton PI, Braatz RD, Cooney CL, Evans JMB, Jamison TF, Jensen KF, Myerson AS, Trout BL (2013) Angew Chem Int Ed 52:12359–12363CrossRefGoogle Scholar
  8. 8.
    Mitic A, Gernaey KV (2015) Chem Eng Technol. doi: 10.1002/ceat.201400765
  9. 9.
    Van Gerven T, Stankiewicz A (2009) Ind Eng Chem Res 48:2465–2474CrossRefGoogle Scholar
  10. 10.
    Hartman RL, McMullen JP, Jensen KF (2011) Angew Chem Int Ed 50:7502–7519CrossRefGoogle Scholar
  11. 11.
    Denčić I, Noël T, Meuldijk J, de Croon M, Hessel V (2013) Eng Life Sci 13:326–343CrossRefGoogle Scholar
  12. 12.
    Hessel V, Kralisch D, Kockmann N, Noël T, Wang Q (2013) ChemSusChem 6:746–789CrossRefGoogle Scholar
  13. 13.
    Hessel V, Vural Gürsel I, Wang Q, Noël T, Lang J (2012) Chem Eng Technol 35:1184–1204CrossRefGoogle Scholar
  14. 14.
    Stouten SC, Noël T, Wang Q, Hessel V (2013) Aust J Chem 66:121–130CrossRefGoogle Scholar
  15. 15.
    Roberge DM, Ducry L, Bieler N, Cretton P, Zimmermann B (2005) Chem Eng Technol 28:318–323CrossRefGoogle Scholar
  16. 16.
    Hartman RL (2012) Org Process Res Dev 16:870–887CrossRefGoogle Scholar
  17. 17.
    Capretto L, Cheng W, Hill M, Zhang X, Zhang X (2011) In: Lin B (ed) Microfluidics, vol 304. Springer, Berlin/Heidelberg, pp 27–68, ch. 150CrossRefGoogle Scholar
  18. 18.
    Hessel V, Löwe H, Schönfeld F (2005) Chem Eng Sci 60:2479–2501CrossRefGoogle Scholar
  19. 19.
    Kuo JS, Chiu DT (2011) Annu Rev Anal Chem 4:275–296CrossRefGoogle Scholar
  20. 20.
    Falk L, Commenge JM (2010) Chem Eng Sci 65:405–411CrossRefGoogle Scholar
  21. 21.
    Hessel V, Noël T (2012) Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim. doi: 10.1002/14356007.b16_b37.pub2 Google Scholar
  22. 22.
    Suh YK, Kang S (2010) Micromachines 1:82CrossRefGoogle Scholar
  23. 23.
    Bourne JR (2003) Org Process Res Dev 7:471–508CrossRefGoogle Scholar
  24. 24.
    Yoshida J, Nagaki A, Iwasaki T, Suga S (2005) Chem Eng Technol 28:259–266CrossRefGoogle Scholar
  25. 25.
    Nagaki A, Takabayashi N, Tomida Y, Yoshida J-i (2008) Org Lett 10:3937–3940CrossRefGoogle Scholar
  26. 26.
    Nagaki A, Togai M, Suga S, Aoki N, Mae K, Yoshida J-i (2005) J Am Chem Soc 127:11666–11675CrossRefGoogle Scholar
  27. 27.
    Nagaki A, Tomida Y, Yoshida J-i (2008) Macromolecules 41:6322–6330CrossRefGoogle Scholar
  28. 28.
    Jong T, Bradley M (2015) Org Lett 17:422–425CrossRefGoogle Scholar
  29. 29.
    Nagy KD, Shen B, Jamison TF, Jensen KF (2012) Org Process Res Dev 16:976–981CrossRefGoogle Scholar
  30. 30.
    Fogler HS (2005) Elements of chemical reaction engineering. Prentice Hall, BostonGoogle Scholar
  31. 31.
    Levenspiel O (1999) Chemical reaction engineering. Wiley, New YorkGoogle Scholar
  32. 32.
    Lange H, Carter CF, Hopkin MD, Burke A, Goode JG, Baxendale IR, Ley SV (2011) Chem Sci 2:765–769CrossRefGoogle Scholar
  33. 33.
    Hawbaker N, Wittgrove E, Christensen B, Sach N, Blackmond DG (2015) Org Process Res Dev. doi: 10.1021/op500360w Google Scholar
  34. 34.
    Kuhn S, Hartman RL, Sultana M, Nagy KD, Marre S, Jensen KF (2011) Langmuir 27:6519–6527CrossRefGoogle Scholar
  35. 35.
    Kreutz JE, Shukhaev A, Du W, Druskin S, Daugulis O, Ismagilov RF (2010) J Am Chem Soc 132:3128–3132CrossRefGoogle Scholar
  36. 36.
    Song H, Ismagilov RF (2003) J Am Chem Soc 125:14613–14619CrossRefGoogle Scholar
  37. 37.
    Zheng B, Tice JD, Roach LS, Ismagilov RF (2004) Angew Chem Int Ed 43:2508–2511CrossRefGoogle Scholar
  38. 38.
    Khan SA, Jensen KF (2007) Adv Mater 19:2556–2560CrossRefGoogle Scholar
  39. 39.
    Mallia CJ, Baxendale IR (2015) Org Process Res Dev. doi: 10.1021/acs.oprd.5b00222 Google Scholar
  40. 40.
    Gemoets HPL, Su Y, Shang M, Hessel V, Luque R, Noel T (2015) Chem Soc Rev. doi: 10.1039/C5CS00447K Google Scholar
  41. 41.
    Pieber B, Kappe CO (2015) Top Organomet Chem. doi: 10.1007/3418_2015_133
  42. 42.
    Jovanović J, Rebrov EV, Nijhuis TA, Hessel V, Schouten JC (2010) Ind Eng Chem Res 49:2681–2687CrossRefGoogle Scholar
  43. 43.
    Mellouli S, Bousekkine L, Theberge AB, Huck WTS (2012) Angew Chem Int Ed 51:7981–7984CrossRefGoogle Scholar
  44. 44.
    Su Y, Zhao Y, Chen G, Yuan Q (2010) Chem Eng Sci 65:3947–3956CrossRefGoogle Scholar
  45. 45.
    Su Y, Zhao Y, Jiao F, Chen G, Yuan Q (2011) AIChE J 57:1409–1418CrossRefGoogle Scholar
  46. 46.
    Su Y, Chen G, Yuan Q (2011) Chem Eng Sci 66:2912–2919CrossRefGoogle Scholar
  47. 47.
    Pedras MHJ, de Lemos MJS (2001) Int J Heat Mass Transfer 44:1081–1093CrossRefGoogle Scholar
  48. 48.
    Naber JR, Buchwald SL (2010) Angew Chem Int Ed 49:9469–9474CrossRefGoogle Scholar
  49. 49.
    Li P, Buchwald SL (2011) Angew Chem Int Ed 50:6396–6400CrossRefGoogle Scholar
  50. 50.
    Noël T, Kuhn S, Musacchio AJ, Jensen KF, Buchwald SL (2011) Angew Chem Int Ed 50:5943–5946CrossRefGoogle Scholar
  51. 51.
    Noël T, Musacchio AJ (2011) Org Lett 13:5180–5183CrossRefGoogle Scholar
  52. 52.
    Shang M, Noël T, Wang Q, Hessel V (2013) Chem Eng Technol 36:1001–1009CrossRefGoogle Scholar
  53. 53.
    Shang M, Noël T, Wang Q, Su Y, Miyabayashi K, Hessel V, Hasebe S (2015) Chem Eng J 260:454–462CrossRefGoogle Scholar
  54. 54.
    Baxendale I, Hayward J, Lanners S, Ley S, Smith C (2008) In: Wirth T (ed) Microreactors in organic synthesis and catalysis. Wiley, Weinheim, pp 84–122Google Scholar
  55. 55.
    Habraken E, Haspeslagh P, Vliegen M, Noël T (2015) J Flow Chem 5:2–5CrossRefGoogle Scholar
  56. 56.
    Cantillo D, Kappe CO (2014) ChemCatChem 6:3286–3305CrossRefGoogle Scholar
  57. 57.
    Noël T, Maimone TJ, Buchwald SL (2011) Angew Chem Int Ed 50:8900–8903CrossRefGoogle Scholar
  58. 58.
    Ceylan S, Friese C, Lammel C, Mazac K, Kirschning A (2008) Angew Chem Int Ed 47:8950–8953CrossRefGoogle Scholar
  59. 59.
    Benaskar F, Patil NG, Rebrov EV, Ben-Abdelmoumen A, Meuldijk J, Hulshof LA, Hessel V, Schouten JC (2013) ChemSusChem 6:353–366CrossRefGoogle Scholar
  60. 60.
    Sachse A, Galarneau A, Coq B, Fajula F (2011) New J Chem 35:259–264CrossRefGoogle Scholar
  61. 61.
    Kirschning A, Solodenko W, Mennecke K (2006) Chem Eur J 12:5972–5990CrossRefGoogle Scholar
  62. 62.
    Su Y, Straathof NJW, Hessel V, Noël T (2014) Chem Eur J 20:10562–10589CrossRefGoogle Scholar
  63. 63.
    Su Y, Hessel V, Noël T (2015) AIChE J 61:2215–2227CrossRefGoogle Scholar
  64. 64.
    Fischer J, Lange T, Boehling R, Rehfinger A, Klemm E (2010) Chem Eng Sci 65:4866–4872CrossRefGoogle Scholar
  65. 65.
    Kashid MN, Renken A, Kiwi-Minsker L (2014) Microstructured devices for chemical processing. Wiley, Weinheim, pp 179–230. doi: 10.1002/9783527685226.ch5
  66. 66.
    Rebrov EV, Schouten JC, de Croon MHJM (2011) Chem Eng Sci 66:1374–1393CrossRefGoogle Scholar
  67. 67.
    Tuckerman DB, Pease RFW (1981) IEEE Electron Device Lett 2:126–129CrossRefGoogle Scholar
  68. 68.
    Brandner JJ, Bohn L, Henning T, Schygulla U, Schubert K (2007) Heat Transfer Eng 28:761–771CrossRefGoogle Scholar
  69. 69.
    Khan MG, Fartaj A (2011) Int J Energy Res 35:553–582CrossRefGoogle Scholar
  70. 70.
    Brandner JJ, Anurjew E, Bohn L, Hansjosten E, Henning T, Schygulla U, Wenka A, Schubert K (2006) Exp Thermal Fluid Sci 30:801–809CrossRefGoogle Scholar
  71. 71.
    Brandner JJ (2008) Microreactors in organic synthesis and catalysis. Wiley, Weinheim, pp 1–17. doi: 10.1002/9783527622856.ch1 CrossRefGoogle Scholar
  72. 72.
    Frank T (2008) Microreactors in organic synthesis and catalysis. Wiley, Weinheim, pp 19–41. doi: 10.1002/9783527622856.ch2 CrossRefGoogle Scholar
  73. 73.
    Noel T, Wang X, Hessel V (2013) Chim Oggi 31:10–14Google Scholar
  74. 74.
    Harris C, Despa M, Kelly K (2000) J Microelectromech Syst 9:502–508CrossRefGoogle Scholar
  75. 75.
    Newman SG, Gu L, Lesniak C, Victor G, Meschke F, Abahmane L, Jensen KF (2014) Green Chem 16:176–180CrossRefGoogle Scholar
  76. 76.
    Gutmann B, Cantillo D, Kappe CO (2015) Angew Chem Int Ed 54:6688–6728CrossRefGoogle Scholar
  77. 77.
    Usutani H, Tomida Y, Nagaki A, Okamoto H, Nokami T, Yoshida J-i (2007) J Am Chem Soc 129:3046–3047CrossRefGoogle Scholar
  78. 78.
    Haber J, Kashid MN, Renken A, Kiwi-Minsker L (2012) Ind Eng Chem Res 51:1474–1489CrossRefGoogle Scholar
  79. 79.
    Roberge DM, Bieler N, Mathier M, Eyholzer M, Zimmermann B, Barthe P, Guermeur C, Lobet O, Moreno M, Woehl P (2008) Chem Eng Technol 31:1155–1161CrossRefGoogle Scholar
  80. 80.
    Irfan M, Glasnov TN, Kappe CO (2011) ChemSusChem 4:300–316CrossRefGoogle Scholar
  81. 81.
    Kulkarni AA (2014) Beilstein J Org Chem 10:405–424CrossRefGoogle Scholar
  82. 82.
    Wang X (2015) J Flow Chem. doi: 10.1556/1846.2015.00003 Google Scholar
  83. 83.
    Hessel V, Ehrfeld W, Golbig K, Haverkamp V, Löwe H, Storz M, Wille C, Guber AE, Jähnisch K, Baerns M (2000) In: Ehrfeld W (ed) Microreaction technology: industrial prospects. Springer, Berlin/Heidelberg, pp 526–540. doi: 10.1007/978-3-642-59738-1_55, ch. 55CrossRefGoogle Scholar
  84. 84.
    de Mas N, Günther A, Schmidt MA, Jensen KF (2003) Ind Eng Chem Res 42:698–710CrossRefGoogle Scholar
  85. 85.
    Kappe CO, Pieber B, Dallinger D (2013) Angew Chem Int Ed 52:1088–1094CrossRefGoogle Scholar
  86. 86.
    Kappe CO (2004) Angew Chem Int Ed 43:6250–6284CrossRefGoogle Scholar
  87. 87.
    Glasnov TN, Kappe CO (2011) Chem Eur J 17:11956–11968CrossRefGoogle Scholar
  88. 88.
    Borukhova S, Noël T, Metten B, de Vos E, Hessel V (2013) ChemSusChem 6:2220–2225CrossRefGoogle Scholar
  89. 89.
    Kobayashi H, Driessen B, van Osch DJGP, Talla A, Ookawara S, Noël T, Hessel V (2013) Tetrahedron 69:2885–2890CrossRefGoogle Scholar
  90. 90.
    Snead DR, Jamison TF (2015) Angew Chem Int Ed 54:983–987CrossRefGoogle Scholar
  91. 91.
    Bergamelli F, Iannelli M, Marafie JA, Moseley JD (2010) Org Process Res Dev 14:926–930CrossRefGoogle Scholar
  92. 92.
    Ceylan S, Coutable L, Wegner J, Kirschning A (2011) Chem Eur J 17:1884–1893CrossRefGoogle Scholar
  93. 93.
    Shore G, Yoo W-J, Li C-J, Organ MG (2010) Chem Eur J 16:126–133CrossRefGoogle Scholar
  94. 94.
    Patil NG, Hermans AIG, Benaskar F, Meuldijk J, Hulshof LA, Hessel V, Schouten JC, Rebrov EV (2012) AIChE J 58:3144–3155CrossRefGoogle Scholar
  95. 95.
    Benaskar F, Patil NG, Engels V, Rebrov EV, Meuldijk J, Hulshof LA, Hessel V, Wheatley AEH, Schouten JC (2012) Chem Eng J 207–208:426–439CrossRefGoogle Scholar
  96. 96.
    Stouten SC, Noël T, Wang Q, Hessel V (2014) Chem Eng Process Process Intensif 83:26–32CrossRefGoogle Scholar
  97. 97.
    Burguete MI, García-Verdugo E, Luis SV (2011) Beilstein J Org Chem 7:1347–1359CrossRefGoogle Scholar
  98. 98.
    Hintermair U, Francio G, Leitner W (2011) Chem Commun 47:3691–3701CrossRefGoogle Scholar
  99. 99.
    Bach T, Hehn JP (2011) Angew Chem Int Ed 50:1000–1045CrossRefGoogle Scholar
  100. 100.
    Brimioulle R, Lenhart D, Maturi MM, Bach T (2015) Angew Chem Int Ed 54:3872–3890CrossRefGoogle Scholar
  101. 101.
    Hoffmann N (2012) ChemSusChem 5:352–371CrossRefGoogle Scholar
  102. 102.
    Narayanam JMR, Stephenson CRJ (2011) Chem Soc Rev 40:102–113CrossRefGoogle Scholar
  103. 103.
    Tucker JW, Stephenson CRJ (2012) J Org Chem 77:1617–1622CrossRefGoogle Scholar
  104. 104.
    Prier CK, Rankic DA, MacMillan DWC (2013) Chem Rev 113:5322–5363CrossRefGoogle Scholar
  105. 105.
    Camera Roda G, Santarelli F (2007) Ind Eng Chem Res 46:7637–7644CrossRefGoogle Scholar
  106. 106.
    Garlets ZJ, Nguyen JD, Stephenson CRJ (2014) Isr J Chem 54:351–360CrossRefGoogle Scholar
  107. 107.
    Gilmore K, Seeberger PH (2014) Chem Rec 14:410–418CrossRefGoogle Scholar
  108. 108.
    Knowles JP, Elliott LD, Booker-Milburn KI (2012) Beilstein J Org Chem 8:2025–2052CrossRefGoogle Scholar
  109. 109.
    Oelgemoeller M (2012) Chem Eng Technol 35:1144–1152CrossRefGoogle Scholar
  110. 110.
    Cismesia M, Yoon T (2015) Chem Sci. doi: 10.1039/C5SC02185E Google Scholar
  111. 111.
    Majek M, Filace F, Wangelin AJv (2014) Beilstein J Org Chem 10:981–989CrossRefGoogle Scholar
  112. 112.
    Kuhn HJ, Braslavsky SE, Schmidt R (2004) Pure Appl Chem 76:2105–2146CrossRefGoogle Scholar
  113. 113.
    Aillet T, Loubiere K, Dechy-Cabaret O, Prat L (2014) Int J Chem React Eng 12:257Google Scholar
  114. 114.
    Gorges R, Meyer S, Kreisel G (2004) J Photochem Photobiol A Chem 167:95–99CrossRefGoogle Scholar
  115. 115.
    Jamali A, Vanraes R, Hanselaer P, Van Gerven T (2013) Chem Eng Process Process Intensif 71:43–50CrossRefGoogle Scholar
  116. 116.
    Shen B, Bedore MW, Sniady A, Jamison TF (2012) Chem Commun 48:7444–7446CrossRefGoogle Scholar
  117. 117.
    Su Y, Talla A, Hessel V, Noël T (2015) Chem Eng Technol. doi: 10.1002/ceat.201500376
  118. 118.
    Cassano AE, Martin CA, Brandi RJ, Alfano OM (1995) Ind Eng Chem Res 34:2155–2201CrossRefGoogle Scholar
  119. 119.
    Blackmond DG (2005) Angew Chem Int Ed 44:4302–4320CrossRefGoogle Scholar
  120. 120.
    Berger RJ, Kapteijn F, Moulijn JA, Marin GB, De Wilde J, Olea M, Chen D, Holmen A, Lietti L, Tronconi E, Schuurman Y (2008) Appl Catal Gen 342:3–28CrossRefGoogle Scholar
  121. 121.
    Al-Rifai N, Cao E, Dua V, Gavriilidis A (2013) Curr Opin Chem Eng 2:338–345CrossRefGoogle Scholar
  122. 122.
    Noël T, Hessel V (2013) ChemSusChem 6:405–407CrossRefGoogle Scholar
  123. 123.
    Zhou X, Medhekar R, Toney MD (2003) Anal Chem 75:3681–3687CrossRefGoogle Scholar
  124. 124.
    Yue J, Schouten JC, Nijhuis TA (2012) Ind Eng Chem Res 51:14583–14609CrossRefGoogle Scholar
  125. 125.
    Moore JS, Jensen KF (2014) Angew Chem Int Ed 53:470–473CrossRefGoogle Scholar
  126. 126.
    Mozharov S, Nordon A, Littlejohn D, Wiles C, Watts P, Dallin P, Girkin JM (2011) J Am Chem Soc 133:3601–3608CrossRefGoogle Scholar
  127. 127.
    Ley SV, Fitzpatrick DE, Ingham RJ, Myers RM (2015) Angew Chem Int Ed 54:3449–3464CrossRefGoogle Scholar
  128. 128.
    Weissman SA, Anderson NG (2014) Org Process Res Dev. doi: 10.1021/op500169m Google Scholar
  129. 129.
    Noël T (2014) Discovering the future of molecular sciences. Wiley, Weinheim, pp 137–164. doi: 10.1002/9783527673223.ch6 CrossRefGoogle Scholar
  130. 130.
    McMullen JP, Stone MT, Buchwald SL, Jensen KF (2010) Angew Chem Int Ed 49:7076–7080CrossRefGoogle Scholar
  131. 131.
    McMullen JP, Jensen KF (2011) Org Process Res Dev 15:398–407CrossRefGoogle Scholar
  132. 132.
    Reizman BJ, Jensen KF (2012) Org Process Res Dev 16:1770–1782CrossRefGoogle Scholar
  133. 133.
    Ingham RJ, Battilocchio C, Fitzpatrick DE, Sliwinski E, Hawkins JM, Ley SV (2015) Angew Chem Int Ed 54:144–148CrossRefGoogle Scholar
  134. 134.
    Aillet T, Loubiere K, Dechy-Cabaret O, Prat L (2013) Chem Eng Process Process Intensif 64:38–47CrossRefGoogle Scholar
  135. 135.
    Talla A, Driessen B, Straathof NJW, Milroy L-G, Brunsveld L, Hessel V, Noël T (2015) Adv Synth Catal 357:2180–2186CrossRefGoogle Scholar
  136. 136.
    Bieringer T, Buchholz S, Kockmann N (2013) Chem Eng Technol 36:900–910CrossRefGoogle Scholar
  137. 137.
    Liebner C, Fischer J, Heinrich S, Lange T, Hieronymus H, Klemm E (2012) Process Saf Environ Prot 90:77–82CrossRefGoogle Scholar
  138. 138.
    Liebner C, Heinrich S, Edeling F, Hieronymus H, Lange T, Elias K (2013) Chem Eng Trans 31:601–606Google Scholar
  139. 139.
    Fischer J, Liebner C, Hieronymus H, Klemm E (2009) Chem Eng Sci 64:2951–2956CrossRefGoogle Scholar
  140. 140.
    Wang X, Cuny GD, Noël T (2013) Angew Chem Int Ed 52:7860–7864CrossRefGoogle Scholar
  141. 141.
    Gutmann B, Roduit J-P, Roberge D, Kappe CO (2010) Angew Chem Int Ed 49:7101–7105CrossRefGoogle Scholar
  142. 142.
    Kockmann N, Roberge DM (2011) Chem Eng Process Process Intensif 50:1017–1026CrossRefGoogle Scholar
  143. 143.
    Di Miceli Raimondi N, Olivier-Maget N, Gabas N, Cabassud M, Gourdon C (2015) Chem Eng Res Des 94:182–193CrossRefGoogle Scholar
  144. 144.
    Heinrich S, Edeling F, Liebner C, Hieronymus H, Lange T, Klemm E (2012) Chem Eng Sci 84:540–543CrossRefGoogle Scholar
  145. 145.
    Klais O, Westphal F, Benaïssa W, Carson D (2009) Chem Eng Technol 32:1831–1844CrossRefGoogle Scholar
  146. 146.
    Klais O, Westphal F, Benaissa W, Carson D (2009) Chem Eng Technol 32:1966–1973CrossRefGoogle Scholar
  147. 147.
    Klais O, Westphal F, Benaissa W, Carson D, Albrecht J (2010) Chem Eng Technol 33:444–454CrossRefGoogle Scholar
  148. 148.
    Klais O, Albrecht J, Carson D, Kraut M, Lö P, Minnich C, Olschewski F, Reimers C, Simoncelli A, Uerdingen M (2010) Chem Eng Technol 33:1159–1168CrossRefGoogle Scholar
  149. 149.
    Theyssen N, Hou Z, Leitner W (2006) Chem Eur J 12:3401–3409CrossRefGoogle Scholar
  150. 150.
    Hao J, Cheng H, Wang H, Cai S, Zhao F (2007) J Mol Catal A Chem 271:42–45CrossRefGoogle Scholar
  151. 151.
    Veser G (2001) Chem Eng Sci 56:1265–1273CrossRefGoogle Scholar
  152. 152.
    Schoenitz M, Grundemann L, Augustin W, Scholl S (2015) Chem Commun 51:8213–8228CrossRefGoogle Scholar
  153. 153.
    Flowers BS, Hartman RL (2012) Challenges 3:194CrossRefGoogle Scholar
  154. 154.
    Hartman RL, Naber JR, Zaborenko N, Buchwald SL, Jensen KF (2010) Org Process Res Dev 14:1347–1357CrossRefGoogle Scholar
  155. 155.
    Liedtke A-K, Scheiff F, Bornette F, Philippe R, Agar DW, de Bellefon C (2015) Ind Eng Chem Res 54:4699–4708CrossRefGoogle Scholar
  156. 156.
    Poe SL, Cummings MA, Haaf MP, McQuade DT (2006) Angew Chem Int Ed 45:1544–1548CrossRefGoogle Scholar
  157. 157.
    Snead DR, Jamison TF (2013) Chem Sci 4:2822–2827CrossRefGoogle Scholar
  158. 158.
    Browne DL, Deadman BJ, Ashe R, Baxendale IR, Ley SV (2011) Org Process Res Dev 15:693–697CrossRefGoogle Scholar
  159. 159.
    Hübner S, Kressirer S, Kralisch D, Bludszuweit-Philipp C, Lukow K, Jänich I, Schilling A, Hieronymus H, Liebner C, Jähnisch K (2012) ChemSusChem 5:279–288CrossRefGoogle Scholar
  160. 160.
    Noel T, Naber JR, Hartman RL, McMullen JP, Jensen KF, Buchwald SL (2011) Chem Sci 2:287–290CrossRefGoogle Scholar
  161. 161.
    Kuhn S, Noel T, Gu L, Heider PL, Jensen KF (2011) Lab Chip 11:2488–2492CrossRefGoogle Scholar
  162. 162.
    Shu W, Pellegatti L, Oberli MA, Buchwald SL (2011) Angew Chem Int Ed 50:10665–10669CrossRefGoogle Scholar
  163. 163.
    Horie T, Sumino M, Tanaka T, Matsushita Y, Ichimura T, Yoshida J-i (2010) Org Process Res Dev 14:405–410CrossRefGoogle Scholar
  164. 164.
    Sedelmeier J, Ley SV, Baxendale IR, Baumann M (2010) Org Lett 12:3618–3621CrossRefGoogle Scholar
  165. 165.
    Castro F, Kuhn S, Jensen K, Ferreira A, Rocha F, Vicente A, Teixeira JA (2013) Chem Eng Sci 100:352–359CrossRefGoogle Scholar
  166. 166.
    Castro F, Kuhn S, Jensen K, Ferreira A, Rocha F, Vicente A, Teixeira JA (2013) Chem Eng J 215–216:979–987CrossRefGoogle Scholar
  167. 167.
    Webb D, Jamison TF (2010) Chem Sci 1:675–680CrossRefGoogle Scholar
  168. 168.
    Pastre JC, Browne DL, Ley SV (2013) Chem Soc Rev 42:8849–8869CrossRefGoogle Scholar
  169. 169.
    Myers RM, Roper KA, Baxendale IR, Ley SV (2012) Modern tools for the synthesis of complex bioactive molecules. Wiley, Hoboken, pp 359–393. doi: 10.1002/9781118342886.ch11 CrossRefGoogle Scholar
  170. 170.
    Hartman RL, Jensen KF (2009) Lab Chip 9:2495–2507CrossRefGoogle Scholar
  171. 171.
    Kenig EY, Su YH, Lautenschleger A, Chasanis P, Grunewald M (2013) Sep Purif Technol 120:245–264CrossRefGoogle Scholar
  172. 172.
    Varas AC, Noël T, Wang Q, Hessel V (2012) ChemSusChem 5:1703–1707CrossRefGoogle Scholar
  173. 173.
    Vural Gürsel I, Aldiansyah F, Wang Q, Noël T, Hessel V (2015) Chem Eng J 270:468–475CrossRefGoogle Scholar
  174. 174.
    Hamlin TA, Lazarus GML, Kelly CB, Leadbeater NE (2014) Org Process Res Dev 18:1253–1258CrossRefGoogle Scholar
  175. 175.
    Adamo A, Heider PL, Weeranoppanant N, Jensen KF (2013) Ind Eng Chem Res 52:10802–10808CrossRefGoogle Scholar
  176. 176.
    Sahoo HR, Kralj JG, Jensen KF (2007) Angew Chem 119:5806–5810CrossRefGoogle Scholar
  177. 177.
    Hu DX, O’Brien M, Ley SV (2012) Org Lett 14:4246–4249CrossRefGoogle Scholar
  178. 178.
    Hartman RL, Naber JR, Buchwald SL, Jensen KF (2010) Angew Chem Int Ed 49:899–903CrossRefGoogle Scholar
  179. 179.
    O’Brien AG, Horváth Z, Lévesque F, Lee JW, Seidel-Morgenstern A, Seeberger PH (2012) Angew Chem Int Ed 51:7028–7030CrossRefGoogle Scholar
  180. 180.
    Horváth Z, Horosanskaia E, Lee JW, Lorenz H, Gilmore K, Seeberger PH, Seidel-Morgenstern A (2015) Org Process Res Dev 19:624–634CrossRefGoogle Scholar
  181. 181.
    Baraldi Patricia T, Hessel V (2012) Green Processes Synth 1:149Google Scholar
  182. 182.
    Baxendale IR, Deeley J, Griffiths-Jones CM, Ley SV, Saaby S, Tranmer GK (2006) Chem Commun, pp 2566–2568. doi: 10.1039/B600382F
  183. 183.
    Tsubogo T, Oyamada H, Kobayashi S (2015) Nature 520:329–332CrossRefGoogle Scholar
  184. 184.
    Lévesque F, Seeberger PH (2012) Angew Chem Int Ed 51:1706–1709CrossRefGoogle Scholar
  185. 185.
    Kopetzki D, Lévesque F, Seeberger PH (2013) Chem Eur J 19:5450–5456CrossRefGoogle Scholar
  186. 186.
    Hopkin MD, Baxendale IR, Ley SV (2013) Org Biomol Chem 11:1822–1839CrossRefGoogle Scholar
  187. 187.
    Hopkin MD, Baxendale IR, Ley SV (2010) Chem Commun 46:2450–2452CrossRefGoogle Scholar
  188. 188.
    Kashid MN, Gupta A, Renken A, Kiwi-Minsker L (2010) Chem Eng J 158:233–240CrossRefGoogle Scholar
  189. 189.
    Su Y, Chen G, Kenig EY (2015) Lab Chip 15:179–187CrossRefGoogle Scholar
  190. 190.
    Tonkovich A, Kuhlmann D, Rogers A, McDaniel J, Fitzgerald S, Arora R, Yuschak T (2005) Chem Eng Res Des 83:634–639CrossRefGoogle Scholar
  191. 191.
    Al-Rawashdeh M, Zalucky J, Müller C, Nijhuis TA, Hessel V, Schouten JC (2013) Ind Eng Chem Res 52:11516–11526CrossRefGoogle Scholar
  192. 192.
    Tonkovich ALY, Lerou JJ (2010) Novel concepts in catalysis and chemical reactors. Wiley, Weinheim, pp 239–260. doi: 10.1002/9783527630882.ch11 CrossRefGoogle Scholar
  193. 193.
    Hübner S, Bentrup U, Budde U, Lovis K, Dietrich T, Freitag A, Küpper L, Jähnisch K (2009) Org Process Res Dev 13:952–960CrossRefGoogle Scholar
  194. 194.
    Al-Rawashdeh M, Yu F, Nijhuis TA, Rebrov EV, Hessel V, Schouten JC (2012) Chem Eng J 207–208:645–655CrossRefGoogle Scholar
  195. 195.
    Su Y, kuijpers K, Hessel V, Noël T (2016) React Chem Eng. doi: 10.1039/c5re00021a
  196. 196.
    Vankayala Bhanu K, Löb P, Hessel V, Menges G, Hofmann C, Metzke D, Krtschil U, Kost H-J (2007) Int J Chem React Eng 5. doi: 10.2202/1542-6580.1463
  197. 197.
    Hornung CH, Hallmark B, Baumann M, Baxendale IR, Ley SV, Hester P, Clayton P, Mackley MR (2010) Ind Eng Chem Res 49:4576–4582CrossRefGoogle Scholar
  198. 198.
    Dencic I, Hessel V (2013) Microreactors in organic chemistry and catalysis. Wiley, Weinheim, pp 373–446. doi: 10.1002/9783527659722.ch11 CrossRefGoogle Scholar
  199. 199.
    Kockmann N, Gottsponer M, Roberge DM (2011) Chem Eng J 167:718–726CrossRefGoogle Scholar
  200. 200.
    Zhang Y, Born SC, Jensen KF (2014) Org Process Res Dev 18:1476–1481CrossRefGoogle Scholar
  201. 201.
    Calabrese GS, Pissavini S (2011) AIChE J 57:828–834CrossRefGoogle Scholar
  202. 202.
    Wu K-J, Nappo V, Kuhn S (2015) Ind Eng Chem Res. doi: 10.1021/acs.iecr.5b01444 Google Scholar
  203. 203.
    Nieves-Remacha MJ, Kulkarni AA, Jensen KF (2015) Ind Eng Chem Res 52:8996–9010CrossRefGoogle Scholar
  204. 204.
    Nieves-Remacha MJ, Jensen KF (2015) J Flow Chem 1–6. doi: 10.1556/1846.2015.00010

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Micro Flow Chemistry and Process TechnologyEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Department of Organic ChemistryGhent UniversityGhentBelgium

Personalised recommendations